Breakout Session A

Physical Chemical Characterization and Impurities

FDA/DIA Scientific Workshop on Follow-on Protein Pharmaceuticals

Moderators

FDA:	Barry Cherney Andrew Chang Stephen Moore
Barr Laboratories:	Charles DiLiberti
Genentech:	Reed Harris

Question 1

• Which product attributes should be evaluated?

Which product attributes should be evaluated?

Reed Harris:

- What is known about molecular characteristics that mediate:

- * Bioavailability
- * Potency
- * Safety (including immunogenicity)
- What is known about the routes of degradation:
 - * Effects of container and/or storage conditions
- Process-related impurities:
 - * Host cell proteins, leachable compounds

Which product attributes should be evaluated?

Charles E. DiLiberti:

- Perform full physical/chemical characterization using all available and relevant <u>comparative</u> analytical tools
- Perform redundant measurements of each aspect of structure and purity with multiple orthogonal methods
- Address identity, purity, and potency
- Analytical results collectively provide highly sensitive and selective fingerprint of product

Which product attributes should be evaluated?

Audience / moderator comments:

- All relevant parameters should be evaluated
 - No need to test to infinity
 - Historical data base needed
 - Value of literature
 - Based on sound science and product class (e.g., bacterial expression systems don't need glycosylation data)

Which product attributes should be evaluated (Cont.)?

- Perceived clinical issues: safety, efficacy
 - All properties may be relevant for safety
- Discussion regarding what *relevant* means
- Orthogonal approach needed
 May not find what you're not looking for

Question 2

What are the capabilities and limitations

of the available analytical tools to evaluate

those identified product attributes?

What are the capabilities and limitations of the available analytical tools to evaluate those identified product attributes?

Reed Harris:

- Limits: *f* (length) (# modifications) (# polypeptides)
- Single modification type at multiple sites vs. variable modification at one site
- Higher order structure methods
- Examples: deamidation and aspartate isomerization
- Glycosylation (N-linked, O-linked, site occupancy, terminal groups)

What are the capabilities and limitations of the available analytical tools to evaluate those identified product attributes?

Charles E. DiLiberti:

- Complete comparative characterization is both possible and routine for most protein products, and provides the foundation for supporting product changes and comparisons
- Similar logic and criteria should be used for comparisons between products from different manufacturers
- Complete elucidation of covalent structure
- Sensitive methods for <u>comparing</u> higher order structure (fingerprint)
- Sensitive methods for measuring impurities

What are the capabilities and limitations of the available analytical tools to evaluate those identified product attributes?

Audience / moderator comments:

- Discussion centered on *limitations*
 - ability to detect clinically relevant properties
 - "absolute" vs. "comparative" characterization
 - mechanism for Eprex immunogenicity
 - hGH process change (immunogenicity)
 - Comparing HCPs from one manufacturer to another (HCPs meant to monitor process, not safety)
 - acidic forms of MAbs
 - succinimide forms
 - aggregates (literature re. effects on biological activity)
 - glycosylation
 - leachates
 - aspartate isomerization (isoAsp has same charge and mass)

What are the capabilities and limitations of the available analytical tools to evaluate those identified product attributes (Cont.)?

- Challenge of comparing quantitative results across independent labs (e.g., hGH strength)
- Capable of generating ample data
 - how to use the data (e.g., glycosylation: site occupancy, terminal glycans, fucosylation)
- Physicochemical methods have improved significantly
 - still not absolute limitations remain, extent is subject to opinion
 - limitations can trigger additional studies (PK, PK/PD, clinical)
- Follow-On manufacturer:
 - might use better methods than the innovator
 - not privy to current innovator methods
- Innovator may continue to find new characteristics over time

Question 3

What are the appropriate standard(s)

for the characterization of those

identified attributes?

What are the appropriate standard(s) for the characterization of those identified attributes?

Reed Harris:

- How to apply "comparability" concepts without a historical data set?
- How to link FOPP lots to the innovator's clinical material without a common reference, methods, or reagents?
- To what extent does a FOPP manufacturer recharacterize, assign impurities etc.?
- How to determine that FOPP is monitoring critical quality attributes?

What are the appropriate standard(s) for the comparison of those identified product attributes?

Charles E. DiLiberti:

- In most cases, the brand product is the appropriate comparator.
- Acceptance criteria should be based, in part, on brand product variation.

What are the appropriate standard(s) for the comparison of those identified product attributes?

Audience / moderator comments:

- Drug product as comparator
 - this is the product that goes into people
- Excipients may interfere with analysis of API
 - extraction may affect API characteristics
 - may be able to validate methods by adding/removing excipients
- May need to evaluate intermediates and bulk drug substance in addition to the drug product

What are the appropriate standard(s) for the comparison of those identified product attributes?

- Pharmacy samples :
 - number of drug product lots needed for analysis by FOPP
 - (e.g., may depend on complexity and purity of product)
 - may compare to multiple innovators
 - FOPP mfr does not know how many API batches are represented
 - impact of stability (not working with fresh material)
- Reliance solely on limited sample set may lead to specifications that are tighter than innovator's
 - ability of product reviewer to decide on FOPP specs without reference to innovator's proprietary information
- FOPP specifications based on innovator's clinical experience via analysis of marketed lots

Additional Comments

- Comparability within a manufacturer vs. follow-on
 - in-process materials, historical data, clinical experience not available to FOPP
 - extent of manufacturing changes (incremental vs. *de novo*)
 - reference standards, monographs available for some products
- Control process to limit modifications (i.e., heterogeneity)
- Innovators may stop sharing their experiences if their disclosures are used to support FOPP applications

 industry standards may be harder to identify
- Industry thanked for sharing their experiences where something went wrong - this could help all manufacturers avoid repeating the same mistakes