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Abstract: Considerable scientific, regulatory and popular press attention has been devoted to the Endo
crine Disrupting Chemicals (EDCs), of which estrogenic chemicals figure prominently. A large number of 
potential estrogenic EDCs are associated with products regulated by the Food and Drug Administration 
(FDA), including plastics used in food packaging, phytoestrogens, food additives, pharmaceuticals, cos
metics, etc. Recent legislation mandates the U.S. Environmental Protection Agency (EPA), a sister regu
latory agency, to develop a screening and testing program for potential EDCs in drinking water and food 
additives. Under the legislation, a large number of chemicals will undergo various in vitro and in vivo assays 
for their potential estrogenicity, as well as other hormonal activities. There is a crucial need to set priority 
for these chemicals to reduce the cost and speed the screening and testing process. At the FDA National 
Center for Toxicological Research (NCTR), quantitative structure-activity relationships (QSARs) is a 

wledge Base (EDKB) project – a prototype Toxicological K
major 

component of the Endocrine Disruptor Kno nowl
edge Base. By integrating experimentation and modeling, a series of QSAR models have been developed 
and validated in the project. These models are integrated into a "Four-Phase" scheme, with each succes
sive phase eliminating unlikely estrogen receptor (ER) binders, resulting in a priority listing of chemicals for 
regulatory application. The system performance has been validated using several data sets with known e s
trogenic activity and, subsequently, applied to three environmental data sets, identified by the EPA. It has 
also been used to assess estrogenic activity of chemicals of concern at other Centers within the FDA, 
namely the Center for Food Safety and Applied Nutrition (CFSAN) and the Center for Drug Evaluation and 
Research (CDER). The rigorous validation of the integrated system is ongoing via the interagency agree
ment (IAG) between EPA and NCTR. The approach presented here for estrogen is anticipated to be equally 
applicable for other receptor-mediated, endocrine disrupting mechanisms, e.g., androgen receptor binding, 
and other toxicity endpoints. 

Introduction instrumentation, and in the general expensive testing in laboratory ani-
understanding of biological mecha- mals, since epidemiological data are 

While the toxicological sciences nisms, the overall paradigm is insufficient and testing in humans is 
have advanced steadily over past largely unchanged. Specifically, not possible (except for drugs during 
decades owing to constant improve- models for risk assessment are pre- the advanced stages of develop
ment in experimental techniques and dominantly dependent on slow and (Continued on page 2) 
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(Continued from page 1) 
ment). A fundamental tenet of this 
paradigm is that effects in laboratory 
animals can be extrapolated to hu
mans (or other animals). Intrinsic vari
ability in the response of the test spe
cies, and the number of animals 
tested, limits the resolving power of 
the affordable protocols to determine 
a No Observed Adverse Effect Level 
(NOAEL), the dose which provides no 
statistically significant increase in 
adverse effects above the control 
value. This, together with the need to 
extrapolate to humans, results in the 
use of safety factors, generally in the 
range of two or more orders of magni
tude to determine an allowable dose 
for non-genotoxic chemicals.

 In 1995, the National Center for 
Toxicological Research (NCTR) reori
ented its strategic goals to begin to 
alter the paradigm of toxicological 
research, taking direct aim at in
creasing regulatory efficiency by r e
ducing the time, expense and animal 
use in the regulation process. One 
primary strategic goal was the devel
opment of knowledge bases, that 
were defined to be computer-based 
systems that unify applicable litera
ture and data and provide computa
tional models to predict a chemical’s 
toxic potential, predict experimental 
needs and improve regulatory risk 
assessment capability. The inspira
tion for the Estrogen Knowledge 
Base (EKB) program came from a 
center wide challenge issued by 
then NCTR Director, Dr. Bernard 
Schwetz, to develop a knowledge 
base with the capability to extend 
the predictability of existing data. 
Scientists within the Division of R e-
productive and Developmental Toxi
cology suggested that estrogens 
might provide an appropriate area to 
develop a prototype. Knowing that 
NCTR scientists had been engaged 
in estrogen related research for more 
than two decades, Dr. Schwetz 
posed the questions whether they 
could recognize an estrogen recep
tor ligand, solely based on chemical 
structure, and whether models 

based on existing data could be 
used to develop models to make 
such a prediction. The answers were 
"no" and, "let’s try," respectively. 
The “let us try” subsequently devel-
oped into a concept to develop a pro- 
totype knowledge base to predict 
estrogenicity, and a grant from FDA's 
Office of Women’s Health enabled 
the acquisition of the required com
puter hardware and software.

 The earliest models, based on 13 
chemicals tested at NCTR, proved 
very inadequate. Despite the clear 
statement in endocrinology text
books that a single nuclear receptor 
protein that exhibited high ligand 
specificity mediated most estrogenic 
effects, it became quickly apparent 
that the estrogen receptor binds 
chemical structures of surprisingly 
broad diversity. Next, we used the 
extensive data published in the litera
ture to build models based on 50
chemical training sets. While these 
models were much improved, we 
learned that better models were pos
sible given a proper database. 

During the course of our work on 
the early models, a major scientific 
and regulatory issue developed sur
rounding environmental chemicals, 
termed endocrine disrupting chemi
cals (EDCs), suspected of disrupting 
endocrine function by mimicking 
natural hormones in experimental 
animals, wildlife and humans. There 
was a constantly growing concern 
among the scientific community, gov
ernment regulators and the public 
that EDCs in the environment were 
adversely affecting human and wild
life health (1, 2). Adverse outcomes 
had been observed in experimental 
animals and wildlife; potential effects 
in humans included reproductive and 
developmental toxicity, carcinogene
sis, immunotoxicity, and neurotoxic
ity, among others (3). The scientific 
debate surrounding EDCs grew con
tentious, in part owing to the fact that 
some suspected EDCs are high pro
duction volume, economically impor
tant chemicals. The public and regu
latory concerns led to government 

regulatory actions and expanded r e-
search across Europe, Japan and 
North America (4, 5). In 1996, the 
U.S. Congress mandated that the 
Environmental Protection Agency 
(EPA) develop a strategy for screen
ing and testing a large number of 
chemicals found in drinking water, 
food additives and other sources for 
their endocrine disruption potential 
(4).
     In response to Congressional a  c
tion, the EPA established the Endo
crine Disruptor Screening and Test
ing Advisory Committee (EDSTAC), 
which includes scientific expertise 
from government, academia and in
dustry. EDSTAC recommended a 
two-tier (Tier 1 screening and Tier 2 
testing) strategy to screen and test 
for estrogenic, androgenic and thy
roid endpoints for a large number of 
chemicals. To accomplish this, 
chemicals will be screened (Tier 1) 
using a multiple-endpoint strategy 
that includes more than 20 different 
in vitro and in vivo assays recom
mended by EDSTAC (6). Although 
more than ~87,000 chemicals were 
initially selected for evaluation, many 
were polymers or otherwise unlikely 
to bind to steroid receptors, leaving 
about ~58,000 chemicals for evalua
tion in Tier 1. The number that will 
progress to the testing step (Tier 2) 
(7) is not known. Processing all 
chemicals through both tiers, if re
quired, will require many years and 
extensive resources. Hence, the 
EPA has adopted an approach re
quiring priority setting before Tier 1 
(www.epa.gov/scipoly/oscpendo/), 
and where QSAR predictions are 
likely to prove of particular utility.

 The EKB multidisciplinary team 
of researchers developed a plan to 
meet the newly important challenge 
for precise and validated predictive 
models that was reviewed and en
dorsed by the NCTR Scientific Advi
sory Board (SAB) in 1997. The most 
important finding of the early model 
building ( 8-12) effort was that, de
spite decades of testing for estro

(Continued on page 3) 
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(Continued from page 2) 
genicity, the existing data were in
adequate to construct robust QSAR 
models (SETAC chapter) (12). Ac
cordingly, the EKB plan called for 
developing a model training data set 
by conducting ER binding measure
ments in a validated assay. The 
chemicals to be tested would be 
chosen by the computational chem
ists to obtain a training set spanning 
the broad range of chemical struc
tures of ER ligands, both agonists 
and antagonists. Furthermore, there 
needed to be several types of models 
ranging from fast and easy classifica
tion methods to rule out inactive 
chemicals, to highly accurate but 
t ime-intensive, three-dimensional 
QSAR models to quantify binding 
affinity for active chemicals. As the 
scope of the EKB project expanded 
in the late 1990s, to include all Endo
crine Disrupting Compounds, we r  e-
named the prototype knowledge 
base the Endocrine Disruptor Knowl
edge Base (EDKB). A follow-up sec
ond SAB review occurred in 2000, 
which supported placing the EDKB 
database on the WEB (http://edkb. 
fda.gov). As the program developed, 
additional funding was provided by 
the OWH, in 1998 and 2000, by a 
Cooperative Research and Develop
ment Agreement (CRADA) with the 
American Chemistry Council (ACC), 
formerly the Chemical Manufacturer's 
Association (CMA), and again in 
2001, with continued support to 
2005, by EPA. 

The objective of the EDC priority 
setting is to rank order a large num
ber of chemicals for more resource-
intensive and costly Tier 1 evaluations 
from most important to least impor
tant. There are a number of criteria 
that can be used for this purpose, 
such as production volume, persis
tence and fate in the environment, 
human exposure levels, etc. Most of 
the 58,000 chemicals required for a s-
say have no biological data. Both 
QSARs and transcription-based high 
throughput pre-screening (HTPS) 
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were recommended by the EDSTAC 
as the primary source of biological 
effect information for priority setting. 
However, in a pilot study undertaken 
by EPA, the HTPS system did not 
perform well (13), such that the EDKB 
models could prove critical in EDC 
screening and testing program. 

The compounds assayed at NCTR 
were selected based on providing uni
form coverage of the diverse chemical 
structure space of chemicals that 
bind the receptors, as well as cover
age of an activity range extending 
down to a million-fold below that of 
the endogenous hormones. The 
model training set designed for 
chemical structure diversity com
prises 130 ER binders and 100 non-
binders (14, 15). The large number of 
inactive chemicals, included in the 
training sets, enables models to be 
trained to distinguish active from inac
tive compounds. Many SAR, QSAR 
and chemometric predictive models 
were developed using the many pow
erful commercial software packages 
that are now routinely applied in drug 
discovery and development. In the 
end, the rigorous, three-dimensional, 
QSAR method of Comparative Mo
lecular Field Analysis (CoMFA) was 
selected for quantitative prediction of 
receptor binding affinity (16). Three 
different types of models (structural 
alerts, pharmacophores and classifi
cation methods) were combined ( 17) 
to make qualitative prediction (i.e., 
active or inactive) of ER binding activ
ity. 
     In the sections that follow, we pre
sent results of integrating the qualita
tive and quantitative predictive models 
into a sequential "Four-Phase" 
scheme (18, 19) according to the 
strength of each type of model. Hier
archical sequencing of the models 
allows faster models to be used to 
eliminate the majority of inactive 
chemicals with an extremely low rate 
of false negatives. The more time-
consuming but more precise models 
can be used to refine predictions for 
an increasingly smaller number of r e-

maining chemicals. The application of 
the more refined models further elimi
nates true negatives, as well as false 
positives, from earlier models. Re
sults are presented suggesting that 
the use of this scheme could elimi
nate from testing about 90% of the 
chemicals of potential concern in the 
national screening and testing pro
gram. Should the ER-binding models 
be used for priority setting, the pro
gram begun as a prototype effort will 
have matured to one of the most sig
nificant uses of QSAR in the regula
tory application.
     Currently, the EDKB team is com
pleting models for prediction of bind
ing to the androgen receptor (AR). A 
validation program is also now under
way via an Interagency Agreement 
between FDA/NCTR and EPA. A 
large number of chemicals will be 
tested blind by the models, for b  oth 
ER and AR binding, and the predic
tions then compared to assay results 
from an outside contract laboratory. 
The validation results will define 
whether and how model predictions 
are used in priority setting in the 
EPA's Endocrine Disruptor Screening 
and Testing Program. 

Quantitative Structure-Activity 
Relationships (QSARs) 

QSAR modeling employs statisti
cal approaches to correlate and ra
tionalize variations in the biological 
activity of a series of chemicals with 
variations in their molecular struc
tures. The molecular structure is often 
represented by a set of quantities 
commonly known as structural de
scriptors. QSARs have been applied 
extensively in a wide range of scien
tific disciplines including chemistry, 
biology and toxicology (20, 21). In 
both drug discovery and environ
mental toxicology (22), QSAR models 
are now regarded as a scientifically 
credible tool for predicting and classi
fying the biological activities of un
tested chemicals. As we enter the 

(Continued on page 4) 
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(Continued from page 3) 
informatics era, QSAR has become 
essential in the drug discovery proc
ess as a screening and enrichment 
tool to eliminate, from further develop
ment, those chemicals lacking drug-
like properties (23-25) or those chemi
cals predicted to elicit a toxic re
sponse. This developing scenario por
tends the spread of QSAR, beyond 
the pharmaceutical industry, to human 
and environmental regulatory authori
ties for use in toxicology (16, 19, 26
30). The EDSTAC considers QSAR 
as an important part of its priority set
ting process (31). QSARs can be 
used to evaluate untested chemicals 
to provide biological data for use in 
priority setting (32-36). 

The basic assumption in every 
QSAR model is that a chemical’s 
physical and chemical properties and 
its biological activities are predicted 
by its structure (37). Since structural 
descriptors of a chemical can be d e
termined by computational means 
more efficiently than its biological a c
tivity using in vitro or in vivo ap
proaches, a statistically validated 
QSAR model is capable of predicting 
the biological activity of a new chemi
cal in lieu of the time-consuming and 
labor-intensive processes of chemical 
synthesis and biological evaluation. 
Applied judiciously, QSAR can save 
substantial amounts of time, money 
and human resources. A major advan
tage of QSARs, to priority setting, is 
the efficiency of scale when applied to 
a large number of chemicals. When 
several endpoints are analyzed simul
taneously, the efficiency of scale of 
computation is even more pro
nounced. 

The first step in developing a 
QSAR model is acquisition of a train
ing set of chemicals that have known 
activities. Second, descriptors repre
senting molecular structure of individ
ual chemicals (i.e., hydrophobicity, 
structural fragments, charged surface 
area, the number of hydrogen bonds, 
solubility, and etc.) are calculated. 
Then, a correlation between descrip
tors and activity for the training set is 

evaluated by employing various statis
tical approaches to determine the 
most statistically significant relation
ship (the QSAR model). A proper vali
dation is required to ensure the 
model’s predictive value for the chemi
cals not used in the training set. With 
adequately validated performance, 
such models can be used to predict 
activities of untested potential EDCs.   

Obtaining a good quality QSAR 
model heavily depends on many fac
tors, in the approach, particularly on 
quality of biological data, descriptor 
selection and statistical methods: 
(1) Quality of biological data 	– It is 

desirable that data come from 
the same assay protocol, and 
care is taken to avoid inter-
laboratory variability. Any bad 
data points may corrupt the 
proper correlation of structure 
and activity. Rules of thumb for a 
good QSAR data set are: 1) the 
dose-response relationship is 
smooth; 2) the potency (or affin
ity) is reproducible; 3) the activity 
range spans two or more orders 
of magnitude from the least a  c
tive to the most active chemical 
in the series; 4) the number of 
chemicals used to build the 
QSAR model is sufficiently large 
to ensure statistical stability; 5) 
activities of the chemicals are 
evenly distributed across the 
range of activity; and 6) the 
chemicals selected for the train
ing set possess enough struc
tural diversity to span the range 
of “chemistry space” associated 
with the biological activity under 
study. It is important to n ote that 
most toxicity data do not meet 
all these criteria because of the 
nature of toxicological research, 
in which care should be taken in 
interpreting QSAR results. 

(2) Descriptor selection 	- There are 
many types of chemical struc
ture descriptors available from 
commercial software. Obtaining 
a statistically robust model is 
very much dependent on how 
well the selected descriptors can 

Volume 1, Issue 3 

encode the variation of activity 
with structure. The more that is 
known at the molecular level 
about the biological mechanism 
of action of the chemicals, the 
better the chemist is able to s e
lect among the wide variety and 
types of specific structural de
scriptors. Commercially available 
molecular modeling programs 
often include statistical tools to 
help in evaluating which descrip
tors best encode structure-
activity variation. Some of these 
tools include the genetic algo
rithm (GA) in its various incarna
tions, which employs the evolu
tionary rules of natural selection 
to select the optimal (i.e., fittest) 
subset of descriptors amongst 
its wide set for a particular prob
lem. 

(3) Statistical methods – It is also 
critical that the QSAR method 
selected to develop the structure-
activity correlation be suitable. 
Although the relationship be
tween a structural descriptor and 
biological activity may be linear 
or non-linear, it is still common 
practice today to employ linear 
approaches such as
multivariate) linear  
(MLR) or partial le
(PLS) regression to construct the 
QSAR model. For non-linear 
modeling, the Polynomial Neural 
Network (PNN) offers an alterna
tive that combines the best fea
tures of Artificial Neural Networks 
(ANNs) and MLR/PLS by provi d
ing the inherent non-linearity of 
the ANN with the desired analyti
cal regression equation furnished 
by MLR and PLS (38). The most 
common scenario encountered in 
practice is for the number of pos
sible descriptors to exceed the 
number of chemicals, a situation 
that can lead to chance correla
tion. Fortunately, soft modeling 
methods, such as PLS, reduce 
the risk of encountering chance 
correlation by transforming the 

(Continued on page 5) 
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Regulatory 
QSAR Models 

Initial data from 
literatures 

Assays Prediction 

Internal and 
External 

Validation 

QSAR 
Modeling 

Figure 1. Depiction of the recursive process used by NCTR to develop QSAR models for predicting estrogen receptor binding. The proc
ess starts with an initial set of chemicals from literatures for QSAR modeling. Next, the preliminary QSAR models are used pro
spectively to define a set of chemicals that will further improve model’s robustness and predictive capability. The new chemicals 
are assayed, and these data are then used to challenge and refine the QSAR models. The process output is the models for use 
in toxicological regulation. Validation of the model is critical, particularly with respect to confirming minimal false negative predic
tions. 

(Continued from page 4) 

dimensionality of the regression 
problem from chemical-descriptor 
space to so-called chemical-
principal components (PCs) 
space.

     QSAR models are useful in re
search for purposes beyond predic
tion (39). Additional benefits that may 
accrue include: (1) leveraging existing 
structure-activity data; (2) providing 
insights into mechanism or identifying 
an alternative mechanism (e.g., m e
tabolism) of action; (3) identifying i m
portant chemical structure character
istics; (4) suggesting new design 
strategies and synthetic targets; (5) 
narrowing the dose range for a 
planned assay; (6) assisting in gen
eration of new hypotheses to guide 
further research; and (7) revealing 
chemicals that deviate from the 
QSAR model. 

The NCTR 
Model Development Process 

In the past few years, a number of 
QSAR models have been developed 
for ligand binding to the ER (8-11, 40

44). Most of these QSAR models 
were constructed using the Compara
tive Molecular Field Analysis 
(CoMFA). Although a predictive 
QSAR model is dependent on a num
ber of factors, a training set with a 
broad representation over the chemis
try space is critical to ensure its pre
dictive capability for a large number of 
diverse chemicals. Unfortunately, 
most QSAR models for ER binding, 
developed previously, were based on 
data sets available in the literature, 
which to date had been small data 
sets with limited structural diversity 
( 8, 42, 43). Although these models 
yield good statistical results and e x-
plain some structural determinants for 
ER binding, they have limited applica
bility in predicting the ER-ligand bind
ing affinity of chemicals that, in fact, 
cover a wide range of structural diver
sity.

 In order to obtain an adequate 
training set to develop a more robust 
QSAR model for regulatory purpose, 
a recursive process (Figure 1) has 
been adopted at NCTR by integrating 
assay and QSAR modeling to deter
mine chemicals for the training set 
(12, 45) along with the model con

struction. The process is highly inter
disciplinary, involving computational 
chemists, biologists and experimental 
toxicologists. As depicted in Figure 1, 
the process starts with an initial set 
of chemicals from literatures for 
QSAR modeling. Next, the prelimi
nary QSAR models are used pro
spectively to define a set of chemi
cals that will further improve model’s 
robustness and predictive capability. 
The new chemicals are assayed, and 
these data are then used to challenge 
and refine the QSAR models. Through 
this process, we identified and as
sayed ~230 chemicals for final model 
construction. This NCTR data set 
contains chemicals that were se
lected to cover the structural diversity 
of chemicals (Figure 2a) that bind to 
ER with an activity distribution rang
ing over six orders of magnitude 
(Figure 2b), which is an essential r e
quirement for a robust predictive 
model for structurally diverse estro
gens. The NCTR data set is a highly 
consistent data set for use in develop
ing models for estrogens.

 The assay used in the process to 
provide ER binding data is a rat uter

(Continued on page 6) 
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ine cytosol ER competitive binding 
assay that is considered the gold 
standard for  in vitro ER assays (14, 
15). We found a strong linear correla
tion for ER binding affinities among a 
diverse group of chemicals assayed 
with ER derived from our rat uterine 
cytosol and human ERa (46). Further
more, the rat ER binding data also 
correlated strongly with the results 
from assays measuring estrogenicity 
using a downstream event, i.e., a 
yeast-based reporter gene assay and 
MCF-7 cell proliferation assay. Impor
tantly, chemicals positive in uterotro
phic responses (in vivo estrogenic 
activity) are also positive in the ER 
binding assay, indicating that binding 
affinity is a good predictor of  in vivo 
activity with few false negatives ob
served (47). These findings demon
strate that ER binding is the major 
determinant for estrogenic EDCs, and 
the prediction of the rat ER binding 
affinity provides  an important piece of 
information for priority setting. 

 In this process, a model validation 
step is specifically emphasized to 
ensure the model’s predictive value for 
priority setting purposes (12). Internal 
and external validation were included 
in the process; each provides a differ
ent level of confidence for the model’s 
predictivity. Generally, the model is 
first validated using leave -one-out 
cross validation. In this method, each 
chemical in the training set is sys
tematically excluded once from the 
data set, after which its activity is pre
dicted by a model derived from the  
remaining chemicals. This internal 
validation assesses the model’s ex-
trapolation within the training set. 
Sometimes, we employ leave -N-out 
cross-validation to achieve more ro-
bust internal validation; a procedure 
similar to leave -one-out, but in this 
one, we systematically exclude one 
group of chemicals after randomly 
dividing the training set into N groups. 
When additional data are available, 
the model is used to predict other 
chemicals not used in the training 
set, but which have known activities 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

 
(the testing set). This external valida-
tion assesses the model’s predictive 
capability for untested chemicals. 

Several benefits accrue from the 
integration of the experimental and  

modeling efforts. Immediate feedback 
can be given to the experimentalists 
so that suspected problems can be  
rapidly investigated. Also, as the pre
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(Continued from page 6) 
dictive and diversity models evolve, 
the modelers can select the chemi
cals for subsequent testing, based on 
considerations of structural diversity 
and the activity range. While cross 
validation using the training set re
mains an important part of the model 
validation, each new data point di
rectly from the lab become a chal
lenge to the evolving model, the re
sults of which can then be assessed 
by the joint team of the modeler and 
experimentalist. 

Each time the model is chal
lenged, the result is either further con
firmation of its validity, identification of 
a limitation or an outlier prediction. 
Failure of the model will, in turn, pro
vide important information. This may 
include identification of the need for 
new data based on a rational under
standing of the dependence of activity 
on structure. Alternatively, it may help 
elucidate which of many mechanisms 
may play an important role in a spe
cific chemical’s response; for exam
ple, delineating agonists from antago
nists, or defining where metabolism 
may be important. Regardless of the 

Figure 3. Overview diagram of the NCTR “Four-Phase” approach for priority setting. In 
Phase I, chemicals with molecular weight <94 or >1000 or containing no ring 
structure will be rejected. In Phase II, three types of approach (structural 
alerts, pharmacophores, and classification methods) with total 11 models 
are used to make a qualitative activity prediction. In Phase III, a 3D QSAR/ 
CoMFA model is used to make a more accurate quantitative activity predic
tion. Phase IV, an expert system is expected to combine information gained 
from Phase II and Phase III and other sources to make a decision on priority 
setting. Different phases are hierarchical; different methods within each 
phase are complementary. 
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Figure 4. Plot of CoMFA-calculated log relative binding affinity (logRBA) versus ob
served logRBA for the NCTR data set. r2= 0.91; q2=0.76. 
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cause of model failure, in essence, a 
research hypothesis is spawned that 
should lead to new data and/or an 
improved training set, and an improve
ment to what is a living model. 

The NCTR 
“Four-Phase” 

System 

Priority setting using QSAR is 
widely applied in the process of drug 
discovery. The objective of priority 
setting in pharmaceutical industry is 
to increase the chance of finding a c
tive chemicals or "hits" that are more 
likely to be developed into "leads". 
Hence, false positives are of great 
concern. In contrast, a good priority 
setting method for regulatory applica
tion should generate a small fraction 
of false negatives (chemicals pre
dicted to fail to bind to their receptor, 
but which actually bind). False nega

(Continued on page 8) 
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(Continued from page 7) 
tives constitute a crucial error be
cause they will receive a relatively 
lower priority for evaluation, in Tier 1, 
and may remain in use for many 
years. Furthermore, the methods 
should provide reasonable quantitative 
accuracy for true positives, as those 
with higher affinities will generally be 
of higher priority. Based on these 
considerations, we have developed an 
integrated computational system that 
rationally combines different QSAR 
models into a sequential "Four-
Phase" scheme according to the 
strength of each type of model (Figure 
3). A progressive Phase paradigm is 
used as a screen to reduce the num
ber of chemicals to be considered in 
each subsequent Phase. Therefore, 
these four phases work in a hierarchi
cal way to incrementally reduce the 
size of a data set with increasing pre
cision of prediction. Within each 
phase, different models have been 
selected to work complementarily in 
representing key activity-determining 
structure features to minimize the 
rate of false negatives. For predicting 
ER binding affinity, the models com
prised of these four phases were: 
•	 Phase I: Filtering – Two rejection 

filters, molecular weight < 94 or 
>1000 and no-ring structure, were 
used to significantly, and with 
high confidence, eliminate those 
chemicals considered unlikely to 
bind ER (17). These two filters 
were validated on ~2000 chemi
cals whose ER activities were 
available from the literature. 

•	 Phase II: Active/Inactive Assign
ment – The chemicals passing 
through Phase I were assigned 
as YES/NO for ER binding using 
three different methods, i.e., 
structural alerts, pharmacophore 
searching and classification mod
els. While structural alerts iden
tify key 2D structural features a s
sociated with ER binding, phar
macophore search identifies 3D 
sub-structure important for ER 
binding. Classification models 

Figure 5. Fold differences for experimental measurements and CoMFA predicted results. 
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Experimental Results 

use pattern recognition to qualita
tively categorize chemicals into 
active and inactive subsets on the 
basis of their similarity in phys
icochemical properties. In its cur-
rent form, this Phase employs in 
parallel 11 models, three struc
tural alerts, seven pharmaco
phores, and one classification
model to discriminate active from 
inactive chemicals. To ensure a 
lower false negative rate in this 
Phase, a chemical predicted to 
be active, by any of these models
is subsequently evaluated in the 
Phase III, while only those pre-
dicted inactive, by all 11 models,
will be eliminated for further 
evaluation. Since each method 
incorporates and weighs differ-
ently the various structural fea
tures that endow a chemical with 
the ability to bind the ER, the 
combined outputs derived from 
the three approaches are comple
mentary in minimizing false nega
tives. Moreover, combining the 
outputs of these 11 models pro-
vides a rational means to rank 
order the chemicals in decreasing 
order of potential activity (17).  

• Phase III:  Quantitative Predic
tions – In this Phase, a CoMFA 
model is used to make a more  
accurate quantitative activity pre
diction for chemicals from Phase 
II. Chemicals with higher pre-
dicted binding affinity are given  
higher priority for further evalua
tion in Phase IV. The CoMFA  
model demonstrated good statis
tical reliability using both internal 
and external validation (16). A  
plot of the CoMFA-predicted ver
sus experimental RBAs (as logs), 
computed for the training-set 
compounds, is given in Figure 4. 
The conventional  r2 and cross-
validated q2 are 0.91 and 0.76, 
respectively, indicating that the  
CoMFA model is both internally 
consistent and highly predictive. 
Figure 5 shows two different dis-
tributions: 1) the range of fold-
differences for individual experi
mental data points and 2) the  
range of fold-differences for  
CoMFA predicted and experimen
tal means. The predictions fall in 
a similar range to the experimen
tal data points.  

(Continued on page 9)  
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(Continued from page 8) 
•	 Phase IV: Rule-Based Decision-

Making System - In this final 
stage of the integrated priority 
setting approach, we propose to 
use a knowledge-based system, 
or expert system, to make a prior
ity setting decision. This is a mul
tidisciplinary effort that includes 
computational chemists, toxicolo
gists and environmental and 
regulatory scientists from different 
agencies. The system is useful 
only after incorporating accumu
lated human knowledge and e x
pertise (i.e., rules). This system 
can make decisions on individual 
chemicals based on the rules in 
its knowledge base, which at this 
juncture include but are not lim
ited to: 
1.	 Information gained at each 

phase of the integrated com
putational approach. 

2.	 Information on human expo
sure, environmental fate and 
other effects, and chemical 
production level. 

3.	 Chemical structure novelty, 
that is, when a structure is 
encountered that is dissimilar 
to all those that have been 
used to train and test the 
models.

 The NCTR “Four-Phase” system 
has been validated by a number of 
existing data sets, including the 
NCTR ER binding data set (14), the E
SCREEN assay data (48), the yeast 
two-hybrid reporter gene assay data 
(49), and other data sets (41, 50-54). 
To date, the system has produced no 

false negatives, which is critical in 
priority setting for regulatory pur
poses. The same integrated scheme 
is being extended to include end
points of other endocrine disrupting 
mechanisms (e.g., AR binding) at 
NCTR. 

Regulatory Application 

The NCTR “Four-Phase” system is 
a primary candidate priority setting 
tool for chemical entry to Tier 1 
screening. The system was recently 
applied to three environmental data 
sets, recognized by EPA, as represen
tative subsets of potential EDCs: 
•	 HPV-Inerts data set – It contains 

623 High Production Volume i n
erts (HPV-Inerts), which is a por
tion of the Toxic Substances 
Control Act (TSCA) Inventory. The 
EPA is including HPV-Inerts in 
version 2 of the Endocrine Disrup
tion Priority Setting Database 
(EDPSD2), and there was a need 
to prioritize HPV-Inerts for further 
experimental evaluation. Of 623 
chemicals, 166 chemicals were 
either mixtures or their structures 
were not available, thus excluding 
them from prediction. Therefore, 
457 chemicals were predicted by 
this system. 

•	 Walker data set - Walker et al. 
developed a database that con
tains a large and diverse collec
tion of known pesticides and i n
dustrial chemicals, as well as 
some food additives and drugs 
(55). The database contains 
92,964 Chemical Abstract Serv-

ice (CAS) Registry numbers of 
chemicals that will probably have 
to be evaluated for their potential 
endocrine disruption. A final data 
set of 58,391 chemicals was 
processed by our system after 
eliminating those chemicals for 
which structures were not avail
able (55) and/or 3D structures 
could not be generated (17). 

•	 Validation data set – To validate 
the NCTR "Four-Phase" system, 
the EPA provided a list of 6,645 
chemicals. The EPA randomly 
selected 200 chemicals from the 
list and 50 chemicals from those 
predicted to be active by the sys
tem for the list. These 250 chemi
cals are going to be assayed. By 
comparing the assay results with 
the prediction, we will be able to 
estimate (assess) the degree of 
false negatives, false positives 
and quantitative accuracy associ
ated with the system. With this 
validation, we hope to establish 
QSARs as a priority setting tool 
for regulatory application.

 Table 1 summarizes the priority 
setting results for these data sets u s
ing the NCTR “Four-Phase” system. 
When only the Phase I and II proto
cols are used, the system dramati
cally reduced the number of potential 
estrogens by some 80-85%, demon
strating effectiveness in eliminating 
these most unlikely ER binders from 
further expensive experimentation. 
The Phase III CoMFA model further 
reduces the data size by about 5
10%. Importantly, the quantitative 

(Continued on page 10) 

Table 1. Size reduction of three environmental data sets processed by 
                the NCTR “Four-Phase” system 

HPV-Inerts Walker Validation 

Original Data Size 457 (100%) 58,391 (100%) 6,645 (100%) 

After Phase I and II 15.7% 12.0% 11.0% 

After Phase III 9.8% —– 4.8% 
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(Continued from page 9) 
binding affinity prediction from Phase 
III provides an important rank-order 
value for priority setting. 

Concluding Remarks 

EDCs have potential adverse ef
fect on human beings and wildlife. 
The potential of chemicals to interfere 
with estrogen functions may be re
lated to their ability to mimic estrogen 
and bind to ER. The potential to 
mimic estrogen and bind to ER can 
be quantitatively predicted using com
putational methods such as QSARs. 
QSARs are an important part of prior
ity setting to determine which chemi
cals should be experimentally evalu
ated first in Tier 1 screening recom
mended by EDSTAC. 

In conjunction with EPA, the 
EDKB project team at the FDA/NCTR 
has developed a number of QSAR 
models for prediction of chemical 
binding to the ER. These models are 
integrated into a “Four-Phase” 
scheme, which we have shown to 
demonstrate efficiency and accuracy 
for priority setting of potential estro
genic EDCs for use, by regulators, at 
EPA. We anticipate that the same 
scheme will be equivalently applicable 

to other mechanisms (e.g., androgen 
receptor binding) involved in endocrine 
disruption and other toxicity end
points. The stringent requirement for 
developing models for toxicity mecha
nisms is appropriately designed train
ing data set similar to the one e m
ployed here for the ER-binding mod
els. Properly validated data allow the 
structural rules that govern activity to 
be determined and used to develop 
robust predictive models. 

While the results presented here 
clearly show both the feasibility and 
utility of using QSARs for priority set
ting, it is important to note that pre
dictions from any model are intrinsi
cally no better than the experimental 
data employed for modeling. Any limi
tations of the assay used to generate 
the training data apply equally to the 
model’s predictions. Moreover, false 
negatives and false positives depend 
on the defined cut-off value to distin
guish active from inactive for the mod
els only providing YES/NO prediction. 
As the cut-off value is lowered, it is 
likely that error will increase even for 
a well designed and executed assay, 
and false positives and false nega
tives will both increase. Similarly, 
more false prediction might be intro
duced for chemicals with activity 

close to the cut-off value. The issue 
for a large number of chemicals, of 
the rate of false positives and false 
negatives in predicted values, must 
be dealt with experimentally by run
ning assays on a sufficiently large 
number of chemicals to characterize 
the rates. Therefore, our current 
model validation process with EPA is 
an important step to ensure the 
model’s quality for regulatory applica
tion. 
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Glossary

     Quantitative structure-activity r e
lationships (QSARs): Technique to 
quantitatively correlate for a set of 
chemicals structural descriptors 
encoding chemical structures or prop
erties with a dependent variable rep
resenting biological activity using, for 
example, regression methods. 

Structural Descriptors: Parame
ters that are used to characterize 
chemical structure. Categories of de
scriptors commonly used in QSAR 
include, but are not limited to, spatial, 
electronic, topological, information-
content, thermodynamic, conforma
tional, quantum mechanical, and 
shape descriptors. 

Regression: Mathematical ap
proaches to generate equations that 
correlate independent variables (e.g., 
descriptors) with dependent vari
ables (e.g., biological activity). The 
equations can be used to predict val
ues of one variable (e.g., biological 
activity) when given values of the oth
ers (e.g., descriptors). Many types of 
statistical regression techniques are 
used to develop QSAR equations. 

Disruption Priority Setting Data
base (EDPSD): A Tool to Rapidly 
Sort and Prioritize Chemicals for 
Endocrine Disruption Screening 
and Testing. In: Handbook on 
Quantitative Structure Activity 

Training set: The set of chemicals 
used to develop the QSAR equation 
for which the biological activity data 
are known. 

Testing set: The set of chemicals 
for which biological activity are known 
that is used to challenge the QSAR 
models developed based on the 
training set. 

Cross-validation (or internal vali
dation): Statistical approaches that 
are often used to determine predictive 
effectiveness of a QSAR model d e
velop based on a particular training 
set. For example, in the leave-one-out 
cross-validation method, each com
pound is systematically excluded 
once from the training set, after which 
its activity is predicted by a model de
rived from the remaining compounds. 
Therefore, the summary of differences 
between the actual and predicted ac
tivity data for each compound can be 
used to assess the predictive effec
tiveness. This process only assesses 
interpolation of the model within the 
training set. Thus, sometimes it is 
called internal validation. Internal 
validation is less rigorous than exter
nal validation. 

External validation: A more con
vincing process to evaluate how well 

Relationships (QSARs) for Pre
dicting Chemical Endocrine Dis
ruption Potentials (Walker, J. D., 
ed). Pensacola, FL:SETAC 
press. 

the QSAR equation generalizes for an 
external testing set. One common 
practice is to divide the original data 
into two groups, the training set and 
the testing set. The training set is 
used to derive a model, and the 
model is then used to predict the a c
tivities of the testing set. The sum
mary of differences between the a c
tual and predicted activity data for the 
testing set can be used to assess the 
predictive effectiveness of the QSAR 
model for those chemicals not in
cluded in the training set. 

Endocrine Disrupting Compounds 
(EDCs): An exogenous agent that i n
terferes with the production, release, 
transport, metabolism, binding, action, 
or elimination of natural hormones in 
the body responsible for the mainte
nance of homeostasis and the regula
tion of developmental processes. 

High Throughput Screening 
(HTPS): A general term referring to the 
automation, often employing robotics, 
of biological assays to achieve a high 
volume of separate tests. 
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NCTR Mission Statement 

The mission of the National Center for Toxicological Research is to conduct 
peer-reviewed scientific research that supports and anticipates the FDA's cur
rent and future regulatory needs. This involves fundamental and applied re
search specifically designed to define biological mechanisms of action underly
ing the toxicity of products regulated by the FDA. This research is aimed at u n
derstanding critical biological events in the expression of toxicity and at develop
ing methods to improve assessment of human exposure, susceptibility and risk. 
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