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Abstract—New techniques and software have enabled ubiquitous use of structure–activity relationships (SARs) in the pharmaceutical
industry and toxicological sciences. We review the status of SAR technology by using examples to underscore the advances as
well as the unique technical challenges. Applying SAR involves two steps: Characterization of the chemicals under, and application
of chemometric approaches to explore data patterns or to establish the relationships between structure and activity. We describe
generally but not exhaustively the SAR methodologies popular in use toxicology, including representation of chemical structure,
and chemometric techniques where models are both unsupervised and supervised. The utility of SAR technology is most evident
when supervised methods are used to predict toxicity of untested chemicals based only on chemical structure. Such models can
predict on both an ordinal scale (e.g., active vs inactive) or a continuous scale (e.g., median lethal dose [LD50] dose). The reader
is also referred to a companion paper in this issue that discusses quantitative structure–activity relationship (QSAR) methods that
have advanced markedly over the past decade.
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INTRODUCTION

In recent years, the pharmaceutical industry has invested a
significant amount of intellectual and monetary capital in com-
binatorial chemistry, high throughput screening (HTS), and
both microarray and protein array systems. These highly au-
tomated technologies have quite literally revolutionized the
drug discovery paradigm in both dimension and scale. By
enabling the rapid synthesis and biological evaluation of new
chemical entities, combinatorial chemistry and HTS have led
to the creation of vast libraries of ‘‘drug like’’ chemicals and
associated biological data [1,2]. Microarray and protein array
systems are just as rapidly discovering genes and proteins,
many of which will serve as the key targets for drugs that treat
unmet medical needs [3–10].

Given the explosion of data culminating from these afore-
mentioned technologies, structure–activity relationship (SAR)
methods have become increasingly essential as tools for or-
ganizing, mining, and interpreting these data to guide further
experimentation and discovery. At the same time, these new
experimental paradigms have made a profound impact in re-
cent years on the practical utility of SAR techniques. Driven
by the mandate to process the continually expanding body of
chemical and biological data, speed is replacing accuracy as
the criterion of paramount importance for SAR techniques.
This trend will surely persist for the foreseeable future [11].

Structure–activity relationship techniques are currently em-
ployed in a wide range of applications, including: In silico
design of virtual chemical libraries that explore molecular di-
versity for subsequent synthesis and screening [1,12–14];
screening proprietary, commercially available, and public da-

* To whom correspondence may be addressed
(rperkins@nctr.fda.gov).

tabases for lead discovery [15–24]; and, mining gene expres-
sion data from microarray experiments for target identification
[25]. It is obvious from these examples that SAR technology
now fulfills expanding roles in handling large and expanding
sources of data. The success of drug discovery efforts within
the pharmaceutical industry depends heavily on utilization of
SAR techniques for these and related purposes.

In contrast to drug discovery, the fields of toxicity screening
and environmental risk assessment have been impacted to a
smaller degree by SAR techniques up to now [26]. In this
review, we explore the status of SAR technology by using
examples to underscore the advances as well as the unique
technical challenges. Our primary objective is to bring a gen-
eral awareness of currently popular SAR technology to the
wider toxicology community. No attempt is made to survey
all available methods or to exhaustively cover the extensive
published literature on this topic. Rather, emphasis is placed
on methods that are representative or that the authors have
learned through direct experience.

Structure–activity relationship technology is based concep-
tually on the ‘‘similar property’’ principle [27], which states
that chemicals with similar structures are likely to exhibit sim-
ilar biological activities. The general procedure in applying
SAR involves two steps: Characterization of the molecules
under investigation using computational, chemical, and bio-
logical methods, and application of chemometric approaches
to explore data patterns or to establish the relationships be-
tween structure and activity (or property).

CHARACTERIZATION OF CHEMICALS

Chemicals can be characterized at three different levels, as
shown in Figure 1: Molecular structure (S); physicochemical
properties (P); and biological activity (A). Molecular structure
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Fig. 1. Three levels of approach to characterize chemicals.

can be represented by a variety of structural descriptors, while
a chemical’s physicochemical properties can be either mea-
sured by experimental methods or calculated using computa-
tional approaches. The biological response induced by a chem-
ical can be tested by a variety of assay techniques. One can
argue from the principles of chemistry that the molecular struc-
ture of a chemical is key to understanding its physicochemical
properties and ultimately its biological activity and influence
on organisms. Because both S and P are associated with the
chemical itself, the relationship between S and P should be
apparent and, therefore, more accessible using SAR tech-
niques. In contrast, the A of a chemical is an induced response
that is influenced by numerous factors dictated by the level of
biological complexity of the system under investigation. The
relationship between S (and P or both S and P) and A is thus
more implicit and thereby poses a more challenging problem
in SAR applications.

It is important to note that these three levels of chemical
information can be used separately or together to predict the
biological effects of chemicals on animals, including humans.
Needless to say, this is an extremely critical yet daunting quest
in toxicological research that deserves, and is now attracting,
considerably more attention. Our experience suggests that no
single level of chemical information is likely sufficient for
assessing or predicting a chemical’s diverse effects on a com-
plex biological system. Rather, this elusive goal will be reached
only by pooling all three levels of chemical information.

Molecular structure (S)

Structural descriptors can be considered the most funda-
mental information about a chemical’s composition. Consid-
erable effort has focused on exploring different paradigms and
techniques to rapidly generate structural descriptors that, hope-
fully, also encode for biological activity. With respect to their
intended application, the computer-generated descriptors can
be divided into two separate, yet related categories: database
searching and SAR applications.

Database searching. Most of the techniques in this category
were developed for managing or mining 2- or 3-dimensional
(2D or 3D) databases of chemical structures. A chemical struc-
ture can be encoded as a binary string called a structural fin-
gerprint (FP). Each element of the FP denotes the absence or
presence of a specific structural feature, which can be either

a 2D substructure or a 3D feature. By representing a chemical
database in terms of structural FPs, we can accelerate structural
searches against queries through similarity comparison. In
most cases, the majority of database entries can be eliminated
from further consideration by simply comparing the structural
FPs of a query with those of each database entry.

Two-dimensional FPs were originally designed for search-
ing 2D structural databases which encode each molecule mere-
ly in terms of atom types and their connectivities. Two-di-
mensional FPs are independent of the molecule’s conforma-
tion, an attribute that greatly facilitates speed in their com-
putation and versatility in their use. Two-dimensional FPs can
be further divided into two subclasses: 2D structural keys and
2D hashed FPs.

With regard to 2D structural keys, the first step is to define
a set of structural keys (i.e., fragments) after which each chem-
ical can be indexed using a binary code (1,0) in terms of the
presence (1) or absence (0) of these keys. The database rep-
resenting the presence or absence of this set of keys is usually
very sparse because most of the data entries are zeros. The
criteria employed in selecting an appropriate set of structural
keys for efficient database searching is a topic of considerable
discussion and debate [28–30]. The MACCS 2D-database sys-
tem from MDL (San Leandro, CA, USA; http://www.mdli.
com/), in which 167 keys have been carefully selected, is
perhaps the widely employed set of 2D structural keys in da-
tabase searching. Another example is Barnard Chemical In-
formation’s Program MAKEBITS (Sheffield, UK), which au-
tomatically generates all possible fragments of user-defined
length and type and then selects a subset through statistical
analysis of the distribution of the keys [31,32]. A drawback
common to all 2D structure-key representations is that practical
limitations in disk storage space impose restrictions on the
number of keys that can be considered out of the almost count-
less possibilities.

Two-dimensional hashed FPs [33] were conceived in part
to solve the storage problem. A hashing algorithm maps each
fragment of a structure to a specific location in the FP. To
apply this method, each fragment of user-defined length (i.e.,
atom count) and atom-type is assigned an integer ID number
that is generated by a cyclic redundancy check (CRC) algo-
rithm [34]. The ID is used to identify the bin in the FP. Each
fragment can turn on one bit, and the resulting FP consists of
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a string of 1’s and 0’s. The length of the FP is usually adjustable
and much shorter than the number of possible fragments from
a typical database of nontrivial chemicals. Therefore, coding
a database of chemicals using hashed FP representation is
much more compact than that using 2D structure-key repre-
sentation. Two of the most widely used hashed FPs are Day-
light’s FP (Mission Viejo, CA, USA; http://www.daylight.
com/) and the Unity 2D FP from Tripos (St Louis, MO, USA;
http://www.tripos.com/). Because each chemical can be de-
composed into many fragments, in most cases each chemical
will set many bits in the hashed FP to the on status. When the
length of the hashed FP is sufficiently long, it is unlikely that
two different chemicals will generate FPs with identical pat-
terns. However, it is not uncommon that different fragments
from the same chemical will set the same bit on; this is the
so-called collision problem. The occurrence of collisions
makes it impossible to establish a one-to-one mapping between
fragments and the settings of the bits. Even if two chemicals
set the same bit on, it is not guaranteed that they share the
same fragments. Because of the collision problem, employing
the 2D hashed FPs for (dis)similarity searching is problematic
[16].

As mentioned above, 2D FPs encode molecular structural
information in only two dimensions. The relative position of
atoms in 3D space is not encoded, even though the 3D con-
figuration of atoms in a molecule is paramount in determining
its biological activity (e.g., through ligand-receptor binding).
Three-dimentional FPs were originally developed mainly for
the purpose of 3D pharmacophore searching [35,36]. The 3D
FP, which is similar in some ways to the 2D FP, primarily
encodes distance information between atoms that are deemed
relevant to biological activity. Information on atom types can
also be encoded. The FP is segmented into bins, with each bin
holding distance information for a specific pair of atom types.
Each bin consists of many bits that determine the distance
range in which the pair belongs. An important step in con-
structing a 3D FP is to define the atom types to be encoded.
It is a time-consuming operation to fingerprint a database of
chemicals and then search the resulting 3D database using a
3D FP. An example of 3D FPs is the Unity 3D FPs from Tripos.

Brown and Martin evaluated the information content of 2D
and 3D FPs relevant to ligand-receptor binding [16]. For their
2D FPs, these workers selected two 2D structural keys
(MACCS keys with 153 bits, SSKEYS with 960 bits) and two
2D hashed FPs (Daylight and Unity). The Daylight 2D hashed
FP hashes fragments with two to seven atom counts to 1040
bits while the Unity 2D hashed FP (http://www.tripos.com)
hashes fragments with two to six atom counts to 992 bits. The
3D FPs examined in the study were: (1) the rigid Unity 3D
FP that encodes distances between pairs of heteroatoms, ring
centroids and normals, and carbonyl extension points; (2) the
flexible Unity 3D FP which is similar to the rigid Unity 3D
FP but allows for rotation of all rotatable bonds; (3) the so-
called ppp pairs that encode distances between pairs of pre-
defined features (e.g., hydrogen bond acceptors and donors,
positive and negative charges, and hydrophobic centroids); and
(4) the ppp triangles that encode all distances between triplets
of features in the ppp pairs. The relevance of these FPs to
ligand-receptor binding were assessed indirectly through ex-
amination of the relationship between the FPs and the binding
force (e.g., hydrophobic, dispersion, electrostatic, steric, and
hydrogen bonding interactions). One of the conclusions from
their study was that 3D FPs did not perform well in separating

active chemicals from inactive chemicals. Their findings by
no means indicate that 3D information is less valuable, but
rather that the current methods for encoding 3D information
leave room for improvement.

The CASE/MultiCASE Program [37,38], a popular tool em-
ployed in computational toxicology, is most closely related to
the concept of structural keys. This program automatically
generates a list of structural fragments embedded in a mole-
cule, in which the keys (biophores or biophobes) have been
preselected based on their relevance to the bioactivity under
consideration. The statistical significance of the distribution
of the substructural keys present in active versus inactive train-
ing chemicals is employed as the selection criterion. Therefore,
(qualitative) knowledge of the biological activity of the train-
ing set is required to derive the set of keys. To obtain a set of
high-quality keys generally requires a large training set of
chemicals.

SAR applications. Although database searching employs
FPs, SAR applications are more interested in abstract descrip-
tors that directly encode 2D and 3D molecular structure in-
formation. The validity of SAR applications will depend heavi-
ly on the quality and information content of these descriptors.
A large number of molecular descriptors have been reported
in the literature, and many commercial software products are
available for calculating scores of descriptors. For example,
the COmprehensive DEscriptors for Structural and Statistical
Analysis (CODESSA) package (http://www.semichem.com/)
calculates more than 400 molecular descriptors, categorized
as: (1) constitutional, (2) topological, (3) geometrical, (4) elec-
trostatic, (5) quantum–chemical, and (6) thermodynamic. Cer-
ius2 from MSI (http://www.msi.com) calculates more than 250
descriptors categorized as: (1) conformational, (2) electronic,
(3) information content, (4) quantum–mechanical, (5) receptor
related, (6) shape related, (7) spatial, (8) thermodynamic, and
(9) topological. The interested reader can find a more detailed
discussion of these descriptors in our companion paper in this
volume, ‘‘Quantitative Structure–Activity Relationship
(QSAR) Methods: Perspectives on Drug Discovery and Tox-
icology’’ (Perkins et al., this issue). These descriptors have
been used for a wide range of applications, including recently
for diversity analysis of combinatorial libraries and for QSAR/
QSPR studies [39–43].

Recognizing the critical role of molecular shape in deter-
mining most ligand–receptor interactions, descriptors based on
the 3D structural information of molecules have proven highly
successful in a variety of applications. Comparative Molecular
Field Analysis (CoMFA), a 3D-QSAR technique, is widely
recognized as a versatile and powerful tool for a broad range
of applications including rational drug design [40,44–47]. The
descriptors generated by CoMFA correspond to the steric and
electrostatic interaction energies between a probe atom (e.g.,
Csp311) and the molecule at every intersection of a 3D grid
within a box that encompasses the molecule.

Physicochemical properties (P)

The physicochemical properties of a molecule are related
to its molecular structure. Unlike the familiar Hammett sub-
stituent constants [48] that describe properties of only part of
a molecule, physicochemical property descriptors are global
in that they describe the nature of the whole molecule. These
properties are generally suitable for characterizing structurally
diverse sets of chemicals, making it possible to conduct QSAR
analysis on noncongeneric datasets. Although some of these
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property data can be measured directly in the laboratory, it is
more common and generally more convenient to compute them
using theoretical calculations. Most molecular structural de-
scriptors used in SAR applications can be broadly defined
under the heading of physicochemical descriptors.

Foremost among physicochemical properties, LogP is rec-
ognized as a key parameter for virtually all biological systems.
A strong correlation between biological activity and LogP is
frequently observed; however, the variation of biological ac-
tivity with LogP for a set of drug-like molecules against a
common target is more often parabolic than linear [49]. This
observation is not unexpected because molecules which are
either too hydrophobic (high LogP value) or too hydrophilic
(low LogP value) are generally not good drug candidates [50].
In a SAR study of a large and diverse set of natural, synthetic
and environmental estrogens, Fang et al. [51] found that LogP
is only important in the estrogen receptor (ER) binding activity
when the key pharmacophores are already present. Where a
direct comparison can be made, strong estrogens tend to be
more hydrophobic. Many studies have been reported which
further our understanding of LogP [52–54].

Direct measurement of LogP requires a tedious and labo-
rious process that includes chemical synthesis followed by wet-
laboratory experiments, a process that is not practical for rou-
tine processing of large numbers of chemicals. Hence, many
methods for estimating LogP computationally based on a
chemical’s structure have been proposed [52,55–69], some of
which are available through commercial software. For ex-
ample, the fragment-based ClogP method developed by
Hansch and Leo [52,55–57] and revised by Rekker [61] is
available in Sybyl (http://www.tripos.com), while the atom-
based AlogP method described by Ghose and Crippen [58–
60] is available in Cerius2 (http://www.msi.com). By virtue of
its accuracy and low price, the atom/fragment contribution
method known as logKow (http://esc.syrres.com/) developed by
Meylan and Howard [70] has also attracted many users within
the toxicology community. A new method for estimating LogP
was recently developed by Tetko et al. [71] that is accessible
online (http://www.lnh.unil.ch/;itetko/logp). The particular
method selected for calculating the LogP when handling large
chemical databases often depends on the desired level of ac-
curacy and applicability of the method to the chemicals under
investigation. Unlike logKow, for example, ClogP encounters
difficulties in decomposing structures into appropriate frag-
ments whose constants are not available. This is often de-
scribed as the ‘‘missing fragment’’ problem [70].

Spectral data, for example, ultraviolet, infrared (IR), nu-
clear magnetic resonance (NMR), and mass spectroscopy
(MS), can be reasonably well predicted from molecular struc-
tures and readily measured experimentally. This type of in-
formation, if accessible, can be used for the characterization
of chemicals in QSAR studies of diverse datasets [72,73].
Using experimentally determined 1H NMR, MS, IR spectra,
and simulated IR and 13C NMR spectra, Bursi et al. [74] per-
formed QSAR studies on 45 diverse progestagens by means
of partial least squares. Beger et al. [75] developed a classi-
fication model for 108 estrogens using experimental 13C NMR
and mass spectrometric data.

Biological activity patterns (A)

Chemicals can be tested across many endpoints, either phar-
macologically or toxicologically. The pattern of activity across
these endpoints encodes information about the biological na-

ture of the tested chemical. The advent of HTS techniques,
together with the large and growing diversity of chemicals
obtained from combinatorial libraries or from other chemical
collections (e.g., natural products), has assured that the vast
arrays of activity data will only grow in importance and fa-
miliarity within both the pharmaceutical industry and the reg-
ulatory agencies. Examples of endpoints include ligand bind-
ing affinities, gene expression profiles, in vitro cell culture
responses, and in vivo animal testing results, each of which
represents a distinct level of biological complexity.

For example, Terrapin Technologies (http://www.
terrapintech.com/), now renamed as Telik (http://informagen.
com/ResourcepInformagen/Full/3349.html), has developed a
method for predicting ligand binding to proteins by affinity
fingerprinting from a small panel of reference proteins [76,77].
Following preliminary testing of over 300 proteins from a
variety of sources, the authors selected panels of 8 to 18 pro-
teins that displayed the broadest binding affinities for a set of
over 5,000 chemicals. Computational surrogates, modeled by
multiple linear regression, were built based on the affinity
fingerprints of a training set of molecules across the reference
set of proteins. These models can be used to predict the binding
potencies of additional chemicals. The affinity fingerprint da-
tabase, which provides a rich source of data defining opera-
tional similarities among proteins, is useful for efficient pre-
screening of a large number of chemicals against target pro-
teins in order to select promising candidates for further study.

Using DNA chip technology [5,6,78–80], changes in gene
expression in a tissue or cell caused by a chemical can now
be measured using cDNA or oligonucleotide microarrays. Such
gene expression profiles provide a significantly large body of
data to understand chemical-dependent toxicity, drug efficacy,
or both. For example, Scherf et al. [25] used cDNA microarrays
to assess gene expression profiles in 60 human cancer cell
lines and to relate these profiles with the activity patterns re-
sponding to drugs. A cluster analysis of this expression data
using K-mean is also illustrated in Figure 2.

One of the most notable examples in this category is the
U.S. National Cancer Institute anticancer drug screening pro-
gram (http://dtp.nci.nih.gov/), in which each chemical is tested
in vitro for anticancer activity against a panel of 60 human
cancer cell lines [81–83]. More than 63,000 chemicals have
been tested in this screening program. The anticancer activity
of each chemical against each of the 60 cell lines is expressed
as 2log(GI50), where GI50 is the concentration in mol/L re-
quired to inhibit cancer cell growth by 50% compared with
untreated controls. The activity pattern for each chemical is
composed of 60 such values. Although cell growth inhibition
for a single cell line is not informative, activity patterns across
the 60 cell lines have been shown to encode critical information
about the molecular and biological properties of tested chem-
icals [42,84–88]. Various statistical and artificial intelligence
methods have been used to mine this large database for the
discovery of anticancer drugs and for studies of the molecular
pharmacology of cancer [42,86–91].

The U.S. National Toxicology Program (http://ntp-server.
niehs.nih.gov/), successor to the National Cancer Institute Bio-
assay Program (1971–1978), initiated long-term animal assays
for carcinogenicity of selected chemicals in 1978. Chemicals
are chosen primarily on the basis of human exposure, level of
production, and chemical structure; selection per se is not an
indicator of a chemical’s carcinogenic potential. Generally,
each chemical is tested in two species (rats and mice) in both
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Fig. 2. Gene expression pattern in the 60 human cancer cell lines used in a drug discovery screen by the National Cancer Institute based on
clustering analysis. The Y-axis contains 60 microarray experiments associated with 60 different cancer cell lines. The X-axis contains the genes
being evaluated in the experiment. Red points indicate the upregulated genes while green points the down-regulated genes. The expression data
is publicly available from http://genome-www.stanford.edu/nci60.

sexes over a period of two years. Earlier studies recorded the
level of carcinogenicity using three levels: Positive, equivocal,
and negative. Since 1983, five categories of evidence of car-
cinogenic activity have been used in the U.S. National Toxi-
cology Program Technical Report series to summarize the
strength of the evidence observed in each experiment: Two
categories for positive results (clear evidence and some evi-
dence); one category for uncertain findings (equivocal evi-
dence); one category for no observable effects (no evidence);
and one category for experiments that because of major flaws
cannot be evaluated (inadequate study). Combined with the
results from mutagenic assays, including the Ames Salmonella
assay, a pattern of carcinogenicity/mutagenicity for each tested
chemical is documented. This pattern characterizes the bio-
logical features of a tested chemical. This rich source of in-
formation should prove important for human health risk as-
sessment [92].

Another example is the ongoing project for the identifi-
cation of endocrine disrupting chemicals (EDCs) coordinated
by the U.S. Environmental Protection Agency (U.S. EPA)
(http://www.epa.gov). Growing concern exists among the sci-
entific community, government regulators, and the public that
EDCs in the environment are adversely affecting the health of
humans and wildlife by disrupting endocrine function [93,94].
The scientific debate surrounding EDCs has grown conten-
tious, in part due to the fact that some suspected EDCs are
economically important chemicals produced in high volume.
The public and regulatory concerns led to government regu-
latory actions and expanded research across Europe, Japan,
and North America [95,96]. In response to Congressional man-
date, the U.S. EPA established the Endocrine Disruptor Screen-
ing and Testing Advisory Committee (EDSTAC); EDSTAC
recommended a plan to screen and test for estrogenic, andro-
genic, and thyroid endpoints for a large number of chemicals.
To accomplish this, chemicals will be screened (Tier I) using
a multiple-endpoint strategy that includes more than 20 dif-

ferent in vitro and in vivo assays recommended by EDSTAC
[97]. Although more than approximately 87,000 chemicals
were initially selected for evaluation, many were polymers or
otherwise unlikely to bind to steroid receptors, leaving about
58,000 chemicals for evaluation in Tier 1. The number that will
progress to the testing step (Tier 2) [98] is not known. Processing
chemicals through both tiers will require many years and ex-
tensive resources (www.epa.gov/scipoly/oscpendo/). It is ex-
pected that a massive amount of assay data across different
levels of biological complexity will be generated through this
project. Researchers at the FDA’s National Center for Toxi-
cological Research (NCTR) have been actively engaged in the
application of various techniques from computational chem-
istry, chemometrics, and chemoinformatics to mine relevant
data currently available from the literature for the purpose of
human risk assessment [47,51,99–105].

CHEMOMETRICS APPROACHES

Chemometrics is the discipline concerned with the appli-
cation of statistical and mathematical methods and methods
based on mathematical logic, to chemistry [106]. This is a
mature discipline and its fundamental theory and methodology
has been fully established in the 1980s. Even though the field
of chemometrics continues to enjoy steady growth, only a few
new methods have been introduced into SAR community in
recent years. Growing demand exists for chemometrics tools
for SAR applications to interpret and mine a larger volume of
data generated by combinatorial synthesis, HTS, and microar-
ray technology. This can be demonstrated by examples in
which recursive partitioning [107] or cluster analysis [108] are
used as part of an integrated process to rapidly model data
and promptly give feedback for HTS in drug discovery.

Most commercial molecular modeling software programs
now include chemometrics tools of some type. A number of
chemometrics methods are also included in bioinformatics
software for analysis and interpretation of microarray exper-
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Fig. 3. Chemistry space of the National Center for Toxicological Research [101] and Walker et al. [111] data sets based on BCUT descriptors.

iments, such as GeneSpring from Silicon Genetics (http://
www.sigenetics.com/) and GeneSight from BioDiscovery
(http://www.biodiscovery.com). In addition, a variety of spe-
cialized chemometrics software products are commercially
available. Even some statistical software programs (e.g., SAS,
S-Plus), more commonly used by statisticians, now feature a
user-friendly interface in addition to their standard command
line operation to attract general users. In light of the growing
popularity and broader utility of SAR techniques, most users
are more interested in applying chemometrics without strug-
gling with details about the theory and process. However, these
techniques should not be viewed as black boxes. In contrast,
sufficient knowledge on underlining principle of chemometrics
tools is crucial for successful use of the SAR techniques to
interpret science.

The focus of most SAR applications in chemometrics is the
development of linear or nonlinear multiple regression models
that relate molecular representations (descriptors) as indepen-
dent variables to an activity (or property) as the dependent
variable. These techniques can be categorized into three gen-
eral classes in terms of their application: Clustering, classifi-
cation, and QSAR models. Clustering applies unsupervised
learning techniques to explore data patterns that may or may
not be associated with the problem in question. In contrast,
classification methods are supervised learning techniques,
which group chemicals into categorical endpoints on the basis
of descriptors. Most applications of QSAR attempt to establish
a quantitative relationship between structure and activity using
multivariate linear regression methods. Quantitative structure–
activity relationship approaches and applications are covered
in this issue by Perkins et al., hence, this review will focus
on data exploratory and classification techniques.

Classification and clustering are two related mathematical
methods for extracting information and knowledge by analyz-
ing data [109,110]. The key distinction between the two meth-
ods is that classification requires a dependent variable (bio-
logical data) for calculation, while clustering does not.

Clustering

Clustering methods, also called exploratory techniques or
unsupervised learning, use the independent variables (X) to
conduct its analysis. Clustering methods are employed pri-
marily to identify patterns or regularities in the dataset. While
not providing categorical information on samples (chemicals),
they are useful as visualization tools in the early stage of data
analysis especially for uncovering key information (e.g., var-
iance) in the original data. In practice, the reasons for using
clustering procedures for grouping or classifying a database
of chemicals are threefold: Selecting a subset of representative
chemicals from a large set prior to conducting costly and time-
consuming biological testing for subsequent QSAR model de-
velopment; obtaining an optimized classification model so that
active chemicals can be effectively separated from inactive
ones; therefore, reasonable prediction of activity can be made
on a larger number of untested chemicals; selecting subsets of
structurally similar chemicals from a diverse database for tra-
ditional QSAR studies which generally give improved results
for congeneric datasets.

Clustering methods are nonsupervised classification tech-
niques in that no preassigned categorical information is re-
quired for the objects to be clustered. Clustering of chemicals
based on molecular structure (dis)similarity has been discussed
in the literature. The most comprehensive discussion can be
found in Willett’s well-known monograph [22]. Several in-
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Fig. 4. Clustering methods. Modified from Barnard and Downs [110].

Fig. 5. A schematic view of a dendrogram from hierarchical clustering
analysis. At the root, all chemicals (samples) are considered to belong
in a single class; at the leaf, each chemical (sample) is considered as
a separate class. The number of clusters can be set anywhere between
these two extremes by adjusting the dash lines.

formative reviews on this topic are also available
[15,17,18,31]. Mirkin has given a comprehensive overview of
clustering algorithms [110]. Within this category, principal
component analysis (PCA) and clustering analysis are the two
most commonly used approaches.

Principal component analysis. For investigations involving
a large number of variables, it is often useful to simplify the
analysis by considering a smaller number of linear combina-
tions of the original variables. Principal component analysis
is a mathematical transformation that finds these linear com-
binations, called principal components (PCs), which are or-
thogonal and taken together explain all the variance of the
original data. The PCA decomposition algorithm ensures that
the first PC explains the maximal amount of variance of the
original data, the second PC explains the maximal remaining
variance in the data subject to being orthogonal to the first
PC, and so on. Principal component analysis performs two
important tasks. First, it provides a way to reduce the dimen-
sionality of the data. Second, it is a powerful visualization
tool to enable graphically representation of intersample and
intervariable relationships for data exploratory analysis.

Even though PCA is not a new technique, it is playing an
increasing role in combinatorial chemistry and HTS. One ap-
plication is to construct chemistry space for chemical selection
using the first three PCs. The BCUT descriptors in the Concord
software (Tripos, St Louis, MO, USA) have been widely used
in the drug discovery community for defining chemistry space.
Once chemistry space is defined for a given database, a small
set of representative chemicals can be selected in this chem-
istry space using several methods. For example, in the cell-
based approach, chemistry space is divided into a number of
cells, then the chemical located closest to the center of a cell
is selected as the representative for the cell. The number of
cells generated depends on the number of chemicals to be
selected.

An important use of PCA is as a visualization tool to com-
pare structural diversity between two or more datasets. Figure
3 illustrates the chemistry space of two datasets: The NCTR
dataset [101] that contains 230 chemicals together with avail-
able ER binding activity data, and the Walker et al. database
[111] containing approximately 58,000 chemicals that require
testing for their estrogenic activity. It appears that the NCTR
dataset of chemicals covers a significant portion of the chem-
istry space circumscribed by the Walker et al. dataset. Active
chemicals tend to cluster together, whereas inactive chemicals
are scattered over the defined space. This PCA analysis thus
provides evidence that SAR and QSAR models constructed
from the NCTR dataset would be statistically valid for esti-
mating the estrogen binding activity of chemicals in the Walker
et al. dataset. In other words, the NCTR dataset constitutes a
representative subset of the larger Walker et al. dataset.

Clustering analysis. Clustering of chemicals based on mo-
lecular structural (dis)similarity has been discussed in the lit-
erature. The most comprehensive discussion can be found in
Willett’s well-known monograph [22]. Several good reviews
on this topic are also available [15,17,18,31]. Mirkin has given
a comprehensive overview of clustering algorithms [110]. A
schematic view of the various clustering approaches mentioned
in the chemical literature is shown in Figure 4 [15]. Clustering
analysis methods can be categorized as hierarchical clustering
analysis (HCA) and nonhierarchical clustering analysis
(nonHCA) based on the structure of output (Fig. 4).

The primary purpose of HCA is to present data in a manner

that emphasizes natural groupings in the original data. In con-
trast to techniques that group samples into pre-existing cate-
gories, HCA seeks to define those categories in the first place.
It groups a dataset of objects into subsets such that a member
in a subset is somewhat more similar to other members in the
same subset than to members in other subsets [109,110,112].

Hierarchical clustering analysis generates a hierarchy about
the relationships among chemicals. The result is generally pre-
sented in the form of a dendrogram known commonly as a
cluster tree (Fig. 5). At the base of the tree (i.e., the root), all
chemicals are considered to belong in a single class; at the
other extreme (leaf), each chemical is considered as a separate
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class. The number of clusters can be set anywhere between
these two extremes without having to rerun the clustering pro-
cedure. Depending on the definition of the clustering process,
HCA methods can be divided into agglomerative and divisive
subcategories. Agglomerative HCA methods have been used
much more widely in chemistry than divisive HCA methods.

Agglomerative HCA proceeds from the leaves to the root
of the tree. Initially, each cluster contains only a single chem-
ical. At each stage the two nearest clusters are merged to form
a single larger cluster. This process continues to aggregate
clusters together until all chemicals have merged into a single
cluster at the root of the tree. Agglomerative HCA methods
differ from each other in the manner used to determine the
distance for merging two groups. For single linkage methods,
it is the minimum distance between any pair in the two groups;
in complete linkage methods, it is the maximum distance. Oth-
er methods employ different forms of averaging. Ward’s meth-
od, for example, minimizes the within-cluster sum of squares
over all variables.

In contrast to agglomerative HCA, divisive HCA proceeds
from the root of the tree to individual leaves by binary splitting
of the dataset into smaller subsets. A set of N chemicals has
2N-1-1 ways to split the dataset. The challenge is to determine
an appropriate way of splitting the dataset. Monothetic divisive
HCA methods use only one descriptor to perform the splitting.
Monothetic methods are much faster than polythetic divisive
HCA methods that use all descriptors to split the dataset and
are very computationally intensive. The fastest algorithm for
polythetic divisive HCA is Guenoche’s minimum diameter
method [113].

An example of HCA is described by Li Xing et al. [114]
in a study of the relative binding affinities for a structurally
diverse series of ligands to the ER a and b isoforms. Hier-
archical clustering analysis was performed on the CoMFA-
generated steric and electrostatic fields for 31 training-set
chemicals. The high-level clustering of these fields is indic-
ative of the rich structural diversity of these training-set chem-
icals. The dendrogram corresponding to the ER-a ligands re-
veals a strong grouping of five ligands with long side chains
(clomifene, tamoxifene, 4-OH-tamoxifen, nafoxidine, ICI-
164384). The largest single cluster is composed of steroidal
and tamoxifen-like structures that are devoid of side chains.
The remaining long spikes, which converge at high levels of
the hierarchical tree, correspond to bisphenol-A, zearanol, cou-
mestrol, genistein, and methoxychlor. This single example il-
lustrates the exceptional ability of clustering methods, HCA
in particular, to clarify the similarities and differences among
a series of chemicals both conceptually and visually.

Unlike HCA, nonHCA methods classify a dataset into a
predefined number of clusters through partitioning [15,110].
Because a systematic evaluation of all possible partitions is
unfeasible, many heuristics have been used to allow the iden-
tification of reasonable, but possibly sub-optimal, partitions.
NonHCA methods are generally much less demanding of com-
putational resources. Within this class, the K-means and Jarvis-
Patrick methods are the most widely used in chemical appli-
cations. Discussion of other methods can be found in Barnard
and Downs [15]. Based on comparison of several clustering
procedures, including Ward’s, group average, Guénoche, Jar-
vis-Patrick and enhanced Jarvis-Patrick, on several datasets
using MACCS keys, Brown and Martin [115] concluded that
Ward’s clustering procedure produces the most accurate pre-
diction, followed by group average and then Guénoche.

Self-Organizing Maps. A discussion on clustering would be
incomplete without at least mentioning the growing role of
artificial neural networks (ANNs), particularly the self-orga-
nizing maps originated by Kohonen [116], as a computational
tool for clustering in many scientific endeavors including re-
cently in chemistry [117], food science [118], drug discovery
[119,120], and microarray technology [121]. The self-orga-
nizing map is particularly well suited to the task of identifying
a small number of prominent classes in a dataset [122]. It finds
an optimal set of centroids around which the data points appear
to aggregate. It then partitions the dataset, with each centroid
defining a cluster consisting of the data points nearest it. Al-
though applications of self-organizing maps and related ANN
techniques are still sparse in the areas of toxicology and en-
vironmental science, they are sure to grow in popularity as
awareness of the power and versatility of these methods be-
comes more widespread.

Classification

Classification methods, a type of supervised learning, use
dependent (activity) and independent (descriptors) variables in
their calculation. A classification model based on a training
set can be used for the prediction of external datasets. Of the
several notable classification methods that fall into this cate-
gory, K-nearest neighbor (KNN), soft independent modeling
of class analogy (SIMCA), decision tree methods, and ANNs
are discussed in this article.

K-nearest neighbor. K-nearest neighbor is a widely used
pattern-recognition technique that can categorize an unknown
chemical based on its proximity to samples already placed in
categories [123]. Specifically, the predicted class (i.e., active
or inactive) of an unknown chemical depends on the distri-
bution of class assignment of its KNNs in the training set,
which accounts for the name of the technique. The nearness
is generally measured by a Euclidean distance metric in an N-
dimensional space of molecular descriptors, although other
distance metrics can be applied. In a fashion analogous to
polling, each of the KNN training set samples votes once for
its class; the unknown chemical is then assigned to the class
with the most votes. With a chosen distance metric, the most
important part of the KNN process is to determine an optimal
K-value for the final model development. In one particular
KNN procedure [104], leave-one-out cross validation is em-
ployed in the following manner to select the optimal K-value:
(1) remove a chemical from the dataset; (2) calculate the dis-
tance metric between the omitted chemical and all remaining
chemicals in the dataset; (3) select K chemicals nearest (or
similar) to the omitted chemical using the calculated distances;
(4) assign the omitted chemical to the activity class corre-
sponding to the majority of the K chemicals; (5) count the
number of misclassifications by comparing the predefined class
with the predicted class of the omitted chemical; and (6) repeat
steps 1 through 5 until each chemical in the dataset is omitted
once for prediction and the rate of misclassification is sum-
marized for the predefined K value. Theoretically, the K value
can vary from 1 to N-1, where N is the size of the dataset.
Normally, repeating steps 1 through 6 for each K value from
3 to 10 should be sufficient to determine the optimal K value
corresponding to the smallest rate of misclassification.

Although KNN is very fast, it is generally less insightful
compared with other classification methods. Shi et al. [104]
evaluated four classification methods, including KNN, SIM-
CA, a decision tree, and ANN (vide infra) to classify 230
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estrogen ligands into active and inactive categories. While
these approaches are different in a number of ways, they gen-
erally produced similar classification results. The nature of the
descriptors used, and more particularly the effectiveness with
which they encode the structural features of the molecules
related to the activity, was far more critical than the specific
method employed.

Soft independent modeling of class analogy. The SIMCA
method was first introduced by Wold [124]. In contrast to
KNN, which is based on distances between pairs of samples,
SIMCA splits the dataset into subsets according to predefined
activity categories. Principal component analysis models are
then constructed for each subset. The categorical activity of
an untested sample (chemical) is determined based on which
PCA model it best fits.

A very attractive feature of SIMCA is its more realistic
prediction options when compared to the rather limited choices
in KNN. K-nearest neighbor assigns every sample to exactly
one class in the training set, regardless of whether this nearest
class is close or far in distance in an absolute sense. Soft
independent modeling of class analogy, however, provides
three possible prediction outcomes: A sample can be assigned
to none, one, or several of the predefined classes. In addition,
because these decisions are made on the basis of statistical
tests, confidence limits can be placed on outcomes.

Reliable classification of untested samples is the ultimate
goal of SIMCA; however, the technique also provides a rich
set of diagnostics that addresses other interesting aspects of
classification. An example is the modeling power parameter,
which measures to what degree a particular variable (i.e., de-
scriptor) contributes to the PCs in terms of class separation.
Another is the Mahalanobis distance, which provides a prob-
abilistic means of identifying and ranking outliers. A third
example is the variance structure of each class, which yields
clues about category complexity and can sometimes reveal the
underlying factors that cause one category to differ from an-
other.

Chemometrics approaches have found utility as pattern rec-
ognition tools for purposes of regulatory monitoring of phar-
maceuticals. In collaboration with the U.S. FDA, Welsh et al.
compared KNN, SIMCA, and ANN techniques in terms of
their ability to determine the sameness and difference between
same-product manufacturers of the over-the-counter supple-
ment L-tryptophan based solely on analysis of their trace or-
ganic impurity patterns obtained from high-performance liquid
chromatography [125–128]. Described as pharmaceutical fin-
gerprinting, the strategies developed were successful in dis-
tinguishing not only among different manufacturers but also
day-to-day, lot-to-lot, and column-to-column variations in
high-performance liquid chromatography data for the same
manufacturer. Various preprocessing schemes were imple-
mented to extract inputs from the high-performance liquid
chromatography data, including wavelet packets [126], an au-
tomatic windowing technique [125], and windowing followed
by pruning to extract the most information-rich data entries as
input for classification [127]. Among the three classifiers test-
ed, ANNs performed better than SIMCA and KNN. Pruning
of the data inputs improved ANN speed and performance. A
highly innovative and more recent approach known as Phase
Space yielded the best performance for this particular appli-
cation [129,130]. The polynomial neural network [131], which
integrates many of the attributes of partial least-squares re-
gression and standard ANNs into a single entity, is only men-

tioned here but is reviewed in detail by Perkins et al. in this
issue.

Decision tree methods. Combinatorial chemistry, HTS, and
computational chemistry are making a profound impact on the
drug discovery process. These technologies enable parallel
synthesis and biological evaluation of hundreds of thousands
of chemicals then simultaneously generate thousands of de-
scriptors for each chemical. Most traditional SAR techniques
are not suitable for such large datasets. For this reason, there
is growing interest in applying decision tree methods for this
purpose [107,132,133]. This technology enjoys several notable
attributes not seen in other SAR techniques: (1) it rapidly finds
a solution; (2) it can identify the most relevant and discrim-
inating descriptors for a particular application; (3) it can handle
noisy data; (4) it is not strongly influenced by missing data;
(4) it is capable of modeling nonlinear problems; and (5) the
rules generated by the decision tree methods are straightfor-
ward and easy to understand by chemists and toxicologists
even those who are not experts in chemometrics and related
areas.

The automatic construction of decision trees dates back to
early 1960s [134]. Breiman et al. [135,136] had a seminal
influence both in bringing the scheme to the attention of stat-
isticians and in proposing new algorithms for constructing
trees. The Classification and Regression Tree (CART) devel-
oped by Breiman et al. and marketed by Salford Systems (http:
//www.salford-systems.com) is widely used in various disci-
plines. Other decision tree methods include automatic inter-
action detection (AID) [134], chi-squared automatic interac-
tion detection (CHAID) [137], and C4.5 [138]. Decision trees,
under the name of recursive partitioning, are typically applied
in drug discovery for mining large datasets [107,132,133].

A decision (classification or regression) tree is composed
of a collection of many production rules, expressed as premise
and conclusion (in the form: IF. . . THEN. . . ) and displayed
in the form of a tree containing only binary branching. For
examples, a simple rule could be IF molecular weight . 300,
then the chemical is active. A decision tree model provides
an alternative to linear and additive models for regression prob-
lems, and to linear and additive logistic models for classifi-
cation problems. Depending on the nature of the activity data
(endpoint), the tree can be constructed for either regression or
classification. Each end node (leaf of the tree) of a regression
tree gives a quantitative prediction, while the classification tree
gives categorical predictions. The classification tree is used
most commonly in data analysis, where the endpoint is usually
binomial (yes/no). The development of a decision model con-
sists of two steps, tree construction and tree pruning. In the
tree construction process, a parent population is split into two
child nodes that become parent populations for further splits.
The splits are selected to maximally distinguish the response
variable in the left and right nodes. Splitting continues until
chemicals in each node are either in one activity category or
can not be split further to improve the model. To avoid over-
fitting the training data, the tree needs to be cut down to a
desired size using tree cost-complexity pruning.

An example of a decision tree model constructed using a
method described by Clark and Pregibon [139] and imple-
mented in the S-Plus software (http://www.insightful.com/) is
illustrated in Figure 6. In this application, a tree-based model
classified 230 chemicals into active and inactive ER binding
categories based on five descriptors. The model identified the
Phenolic Ring Index, which indicates the presence and absence
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Fig. 6. Tree-based model. The model displays a series of YES/NO
(Y/N) rules to classify chemicals into active (A) and inactive (I)
categories based on 5 descriptors: Phenolic Ring Index, LogP, Jurs
PNSA-2, Shadow XY, and Jurs RPCS. The squares represent the rules
while the circles represent the categorical results.

of a phenolic substructure in structure, as the most important
descriptor for ER binding. This finding is consistent with the
understanding that the phenolic ring is often associated with
estrogenic activity [140], and the contribution of the phenolic
ring in binding is much more significant than any other struc-
tural feature [51]. For example, by overlaying the crystal struc-
tures of four ligand-estrogen receptor (ER) complexes (estra-
diol-ER, 4-hydroxytamoxifen-ER, raloxifene-ER, and die-
thylstilbesterol-ER complexes) based on their common protein
residues at the binding site, it was found that the phenolic
rings of all four ligands are similarly positioned within the
binding pocket to allow hydrogen bond interactions with Glu
353 and Arg 394 of the receptor and a highly conserved water
molecule [105]. Chemicals containing a phenolic moiety and
a LogP value larger than 1.49 were more likely to be ER
binders. In contrast, chemicals without a phenolic moiety were
less likely to be ER binders unless they had relatively larger
hydrophobicity (LogP), charge surface area (represented by
the Jurs-PNSA-2 and Jurs-RPCS descriptors [141]), and
breadth of the structure (represented by the Shadow-XY de-
scriptors [142]).

Artificial neural networks. Over the past 10 years an in-
creasing number of scientists have explored the feasibility of
more sophisticated nonlinear regression methods for devel-
opment of SARs. Artificial neural networks are now being
employed for a wide range of applications in such diverse
areas of chemistry, engineering, biology, food science, and
viticulture, and even toxicology and the environmental sci-
ences for purposes of property prediction, pattern recognition,
and data analysis [143]. As their name implies, ANNs attempt
to mimic the structure and function of the human brain. Like
the human brain, the ANN is composed of an interconnected
network of neurons. The most common ANN configuration,
known as feed-forward back-propagation, consists of three lay-
ers: Input layer, hidden layer, and output layer. The input layer
contains the same number of neurons as input variables (i.e.,
descriptors). The output layer usually contains one neuron for

each predicted output (i.e., biology activity, toxicity). The hid-
den layer may consist of several sublayers, each containing a
variable number of neurons.

Training of ANNs is achieved through repeated presenta-
tions of input and output pairs. By back propagating the error
between the ANN-predicted output and the correct output, the
ANN learns to establish and optimize associations between
input and output. Learning is achieved by adjusting the trans-
fer-function weights that modulate the signal between con-
nected neurons in different layers until the error between the
ANN-predicted and correct output values falls below a pre-
assigned convergence criterion. Once trained in this fashion,
the ANN is capable of predicting the output target property
for a set of inputs not yet encountered (e.g., the toxicity of an
untested chemical). Artificial neural networks have found in-
creasing utility in drug design, particularly as a nonlinear ap-
proach to developing QSAR models. Several comprehensive
reviews and commentaries on the subject can be found in the
recent literature [144,145].

MINING GENE EXPRESSION DATA

In recent years, microarray experiments have proved in-
valuable for the study of gene expression patterns in cell lines
induced by chemicals (drugs or toxicants) [25] and in tissues
associated with disease [146]. An extensive bibliography and
comprehensive survey on microarray technology and applications
is maintained online by Shi [147] at http://www.gene-chips.com.
Unlike the traditional biological technologies, such as North-
ern Blot and Southern Blot, microarray technology can monitor
expression of tens and thousands of genes simultaneously in a
single experiment. A major challenge facing microarray tech-
nology concerns the huge amount of data generated from these
experiments, in particular how to use SAR techniques and related
data mining tools to extract knowledge [148]. It is safe to assume
that no single tool is ideal for all problems, even for a single
category of information such as gene expression data. Thus, two
gene expression datasets (http://waldo.wi.mit.edu/MPR/
datapsets.html and http://cellcycle-www.stanford.edu) were re-
cently made available to encourage the multidisciplinary sci-
entific community to evaluate various statistical approaches
for treating these data [149,150]. This effort culminated in a
workshop (December 18–19, 2000) on ‘‘Critical Assessment
of Techniques for MicroArray Data Analysis (CAMDA’00)’’
organized by Duke University (http://www.bioinformatics.
duke.edu/CAMDA/CAMDA.html).

The primary objectives of microarray data analysis are
[151]: To identify statistically significant up- or down-regu-
lated genes; to discern functional groupings of genes by dis-
covering (dis)similarity among genes expression profiles; and
to predict the biochemical and physiological pathways of pre-
viously uncharacterized genes. Today, clustering methods have
been used more often than any other data mining approaches.
Clustering is normally performed on either samples (cell lines
or tissues) or variables (genes). Clustering of samples reveals
similarities among the samples whereas clustering of variables
pinpoints intervariable relationships.

An example of clustering methods taken from an analysis
of gene expression data obtained from microarray experiments
is illustrated in Figure 2. These data were reported by Scherf
et al. as part of a drug discovery screen by the U.S. National
Cancer Institute to identify a pattern between anticancer ac-
tivity and gene expression in 60 human cancer cell lines. Prior
to conducting clustering analysis on the data, no expression
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Fig. 7. Principal component analysis on the data set presented in
Figure 2. Two breast cancer cell lines, MDA-N and MDA-MB-435,
are closely grouped with melanoma cell lines.

Fig. 9. Depiction of the sequential process used by the National Center
for Toxicological Research to develop models for predicting estrogen
receptor binding. The process output is a model for use in toxicological
regulation. Validation of the model is critical, particularly with respect
to confirming minimal false-negative predictions.

Fig. 8. Depiction of the sequential screening process now prevalent
in the pharmaceutical industry where structure–activity relationship
(SAR) development and prediction are integral to the process. The
output of the process is a drug lead that may be further developed.

pattern can be observed. After clustering analysis using the
nonHCA, however, the relationship between genes becomes
apparent from which co-expressed genes could be identified
or new functions for uncharacterized genes discovered. More-
over, the similarity between 60 cell lines can also be examined
by conducting PCA on their gene expression patterns. As
shown in Figure 7, two breast cancer cell lines, MDA-N and
MDA-MB-435, are closely grouped with melanoma cell lines,
indicating that they should behave like melanoma cells rather
than breast cancer cells in biological testing. The findings are
consistent with the recent similarity analysis of the 60 cell
lines in terms of their responses to the 25,023 chemicals in an
in vitro anticancer screening using clustering analysis [89].

TRANSFORMING DATA INTO KNOWLEDGE: THE NEW
PARADIGM

A recursive process combining screening assays and SAR
modeling has become prevalent throughout much of the phar-
maceutical industry. In lead discovery, the process has been
called sequential screening [108] as depicted in Figure 8. The
process starts with assay data for an initial set of chemicals
from an existing chemical library. The resulting data for active
chemicals, and sometimes for inactive chemicals, are then used
for initial SAR modeling. The number of models developed

can vary from one to several. Next, the preliminary SAR mod-
els are used prospectively to define a set of active chemicals.
The new chemicals are assayed, and these data are then used
to refine the set of SAR models. The models can be used to
identify new chemicals in many ways, such as searching a
library of existing chemicals or assisting in the design of a
virtual combinatorial library. The chemical synthesis stage
might employ combinatorial chemistry, and HTS can be em-
ployed for the new bioassays. Whether engaged in lead dis-
covery, lead optimization, or drug development, the process
is essentially the same. As a logical extension of this process,
Neurogen Corporation employs a proprietary scheme by which
high-speed synthesis and screening, as well as SAR devel-
opment, are carried out continuously and in parallel. Results
are updated regularly and available online (www.aidd.com).

The cyclical process now prevalent in the drug industry is
an equally suitable paradigm for toxicology. In fact, the U.S.
FDA at the National Center for Toxicological Research
(NCTR), in a cooperative program with the U.S. EPA, has
adopted this process to develop SAR models that may support
priority setting of tens of thousands of chemicals that will
undergo assessment for potential as EDCs. The NCTR’s En-
docrine Disruptor Knowledge Base Program applies essen-
tially the same cyclical process except, as depicted in Figure
9, a validation step is specifically emphasized [103]. The re-
quirements for accuracy in toxicity predictions, and particu-
larly for minimizing false negative predictions, is stringent for
regulatory purposes compared to requirements in drug devel-
opment [152]. Concomitantly, more rigorous model validation
is required.

In order to make the prediction of potential for ER binding
more tractable for some 80,000 chemicals, the Endocrine Dis-
ruptor Knowledge Base Program has developed a hierarchical
suite of models that progress from the computationally fast,
but less accurate, to the computationally intensive, but more
accurate [153]. In the first level, several rejection filters are
used to exclude chemicals most unlikely to be active. The next
level consists of a set of pharmacophore models, structural
alerts, classification models (each with varied strengths for
certain chemical classes), which are used in combination to
exclude additional inactives and to rank order potential actives
in accordance with likelihood of activity. The models com-
posing the first two levels are constructed in a manner to
minimize false negatives, which is an issue of particular con-
cern in regulatory matters [104]. At the highest level of the
model hierarchy is a robust CoMFA model that provides sta-
tistically robust quantitative prediction of activity [105]. Ap-
plying this procedure, a cyclical process was followed to de-
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sign a training set of data that covers the broad range ligand
structures that bind ER [103]. All data were obtained from a
validated competitive binding assay that used replication of
data points [101,154]. Ultimately, the models will serve to
blind-predict hundreds of chemicals in a validation dataset,
and these data will be used to refine the models where inac-
curacies are encountered.

FUTURE DIRECTIONS AND CHALLENGES

Ongoing efforts at the U.S. FDA and U.S. EPA, such as
those cited above, are demonstrating how SAR technologies
can foster and advance toxicological sciences. At the present
time, serial testing of chemicals in a suite of in vitro and in
vivo assays still remains in large part the prevailing paradigm
in the realm of toxicology. In many cases the resultant data
are disparate across species, endpoints, protocols, and labo-
ratories and, therefore, are often unsuitable for development
of predictive SAR models. However, the extraordinary tech-
nological advances in genomics, in high-throughput synthesis
and screening, and in information technology are now making
a profound and lasting impact on the way toxicology is per-
ceived and practiced.

Toxicogenomics, the study of alterations in gene expression
during toxicity, is emerging as a well-defined subdiscipline at
the interface between the fields of toxicology and genomics
[9]. Experimental genomics methods, in combination with the
rapidly growing body of sequence information, promise to
revolutionize the way cells, cellular processes, and diseases
are studied. These efforts are providing enormous volumes of
data about the state of the cell under both normal and disease
conditions. Computational methods are essential tools for or-
ganizing these data into meaningful information and for guid-
ing the transformation of this information into useable knowl-
edge. In this context, it is hoped that this review has succeeded
in drawing attention to the tremendous utility of SAR and
associated QSAR methods particularly with respect to the field
of computational toxicology.

Within the pharmaceutical industry today, drug discovery
and toxicology are becoming permanently intertwined [155].
The pharmaceutical industry is facing a multitude of significant
challenges, including the need to compress timescales for con-
verting new chemical entities to marketable drugs, the man-
agement of the surfeit of data flowing both from genomics and
from combinatorial chemistry and HTS, and the economic
imperative to fill their pipelines with a large number of safe
yet effective drug candidates. To meet these challenges, more
and more emphasis on the early assessment of absorption,
distribution, metabolism, excretion, and toxicity properties of
potential drug candidates has become routine in many drug
discovery programs. The ultimate goal is to design clinical
candidates packaged with the desired potency, selectivity, bio-
availability, absorption, distribution, metabolism, excretion,
and toxicity properties together with innumerable other re-
quirements, and to achieve this goal in the shortest amount of
time. As a consequence, a growing trend exists in the phar-
maceutical industry toward integrated workflow that empha-
sizes collecting the preclinical data associated with these prop-
erties in time to influence research plans. A salient example
is the confluence of pharmacological and toxicological infor-
mation to guide the drug design process during early lead
optimization. When enough data are collected and correlated
to known mechanisms of action, it should be possible to en-
hance empirical experimentation with computational toxicol-

ogy. In fact, computational approaches make it possible to
apply the acquired knowledge to both real and virtual chemical
collections.

Although environmental toxicology and drug discovery dif-
fer in their ultimate objectives, the computational tools, strat-
egies, and schemes employed are much the same in both dis-
ciplines. This fact attests to the incredible versatility of these
computational tools that span a wide range of disciplines in-
cluding drug discovery, toxicology, and environmental sci-
ence. Still the choice of computational tools, and the precise
way they are implemented, will vary from one discipline to
another.

The utility of SAR-based computational models for a wide
range of tasks, including drug discovery, risk assessment, and
environmental toxicology, will depend on a number of factors,
including knowledge of the SAR methods, understanding of
experimental designs, and the quality of data. Ultimately, it
will highly relay on the quality data available to build the
predictive models. As advocated in recent communications by
Johnson [156] and by Richard [157], this outcome will be
reached more swiftly if the pharmaceutical industry were to
explore and adopt creative policies for sharing in-house gen-
erated toxicological data with the outside scientific community
even if only for the sake of enlightened self-interest.
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