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Abstract

This report describes the asymmetry detection problem for large simulation code outputs.
Three di�erent asymmetry detectors are developed and analyzed. These detectors are compared
based on the computational resources required, sensitivity to sampling and aggregation error,
and ease of use (with respect to the choice of user speci�ed parameters).
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1 Preliminaries

Let v(x; y; z; t) represent the evolution of a uid ow (i.e. the solution to a set of di�erential
equations) at spatial location (x; y; z) (in a rectilinear coordinate system) at time t. The
dependent variable v is generally multidimensional and contains such components as density,
volume fraction, internal energy, and velocity. For simplicity however, we consider a single
dimension (e.g. density), so that v is a scalar. For �xed z; t we obtain a two dimensional slice
through the ow. In this problem we expect v to exhibit radial symmetry within a slice (around
an origin x0; y0).

Consider a single slice and let v(x; y) be the corresponding �eld. Converting to radial
coordinates gives

v(r; �) = v(x� x0; y � y0)

where

r2 = (x� x0)
2 + (y � y0)

2

tan(�) =

�
y � y0
x� x0

�

In the de�nitions below we consider the behavior of the �eld v at �xed radial distances r from
the point of symmetry. For convenience we adopt the notation vr(�) = v(r; �). Note that from
a practical view we may not always have measurements for the full circle of values 0 � � � 2�
at a given radius r. In particular, some experiments consider only half of the ow so that � is
limited to the range 0 � � � �.

De�nition 1. The slice vr(�) is radially symmetric if, for every r,

vr(�) = cr; 0 � � � 2�

where cr is constant.

Note that cr may vary with r, but must be constant over �. Let the cumulative distribution
of �eld values at radius r be

Pvr (�) =
1

2�

Z
2�

0

I(vr(�) < �) d� (1)

where I(�) is the indicator function that equals 1 when its argument is true and 0 otherwise.
The corresponding density function is given by

pvr(�) =
@Pvr (�)

@�
(2)

Note that when Pvr is discontinuous, pvr(�) is de�ned in terms of impulse functions. Let qr(�)
be the fraction of �eld values concentrated at v = �,

qr(�) = lim
�!0

[Pvr(� + �) � Pvr(�� �)] (3)
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and let ~vr be a value with the largest concentration

~vr = argmax
�

qr(�) (4)

and ~pr be its concentration fraction

~pr = max
�

qr(�) (5)

Corollary 1. The slice vr(�) is radially symmetric i�, for every r, ~pr = 1:0.

To detect an asymmetry we can simply check for a violation of the condition above, i.e. we
check to see that vr(�) is constant along the arc (r; [0; 2�]). By checking this condition for each
r we can locate the radii where asymmetries occur. But to determine the positions in � where
the asymmetry occurs requires more work. First we must de�ne what it means for a speci�c
point vr(�), ((r; �) �xed), to be asymmetric. The de�nition below is one possibility. It is based
on the assumption that asymmetric points are those that di�er from the \typical" value. The
\typical" value is de�ned to be the value taken by more than half the points along the arc. If
there is no value taken by more than half the points then no value along the arc is considered
typical, and all points are considered to be asymmetric.

De�nition 2. If ~pr � 0:5 and vr(�) 6= ~vr then the point (r; �) is asymmetric. Otherwise, if
~pr < 0:5 then (r; �) is asymmetric for all � 2 [0; 2�].

2 Discretization

Computer simulations generate a discretized approximation to v(x; y). Initially we consider
discretizations on a rectangular grid where individual data points represent (approximations
to) the �eld values v(xi; yj) where

xi = x1 + (i� 1)�x; i = 1; 2; :::; Nx

yj = y1 + (j � 1)�y; j = 1; 2; :::; Ny

for some (x1; y1) and some �xed �x and �y. Since the actual value of the x and y coordinates
are irrelevant to our work we adopt the notation v(i; j) = v(xi; yj) where i; j are integral (and
start at 1). Also we let (i0; j0) be the \indices of symmetry", i.e. they correspond to the indices
of the point at location (x0; y0). If the discretization does not contain the point at (x0; y0),
then we assume that it lies half way between discretized points so that the fractional part of the
indices i0 and/or j0 is 0.5. This assumption is essential for the P-squared detector described
in Section 3.

This (uniform) discretization over (x; y) maps to a (nonuniform) discretization over (r; �).
This mapping has the property that a relatively small number of �eld values are present at
any given radius r. For example consider the discretized value at location (i; j), with rij =p
(i� i0)2 + (j � j0)2. The set of locations at the same distance rij from the origin (i0; j0) is

given by

Sij = fm;n : (m� i0)
2 + (n� j0)

2 = r2ijg
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It is easy to see that the following 8 locations are in this set

(i; j) (j; i)

(�i; j) (�j; i)
(i;�j) (j;�i)
(�i;�j) (�j;�i)

(6)

We call these points Pythagorean Partners, and depending on the boundaries of the simulation
there may be as few as 2 and as many as 8 available in the discretization. The set Sij may
contain other locations as well. For example, suppose i0 and j0 are integral, and consider all
the addends of r2ij (i.e. all a; b such that a + b = r2ij). Any pair of addends that are both
perfect squares contributes another member to Sij . As an example let (i0; j0) = (0; 0) and
(i; j) = (3; 4). Then r2 = 25, and the Pythagorean Partners are

(3; 4) (4; 3)

(�3; 4) (�4; 3)
(3;�4) (4;�3)
(�3;�4) (�4;�3)

But r2 = 25 has an addend pair other than (32; 42) that contains perfect squares, namely
(0; 25). Thus, Sij contains the four additional locations

(0; 5) (5; 0)

(0;�5) (�5; 0)

The exact number of addend pairs that form perfect squares depends on the value of r2. The
�rst few values of r2 that have more than one such pair are listed in the table below.

r2 addend pairs that are perfect squares

25 f (9,16), (0,25) g
50 f (1,49), (25,25) g
65 f (1,64), (16,49) g
100 f (36,64), (0,10) g

Even though Sij may contain additional entries, only those in (6) are grouped together as
Pythagorean Partners (see the illustration in Figure 1). There are two reasons for this. First,
consider a slice that contains a radially symmetric �eld. Suppose we place a rectangular grid
on this slice. This breaks it into a collection of rectangular boxes. The boxes indexed by the
Pythagorean Partners are perfect rotations of one another, but the boxes indexed by the other
members of Sij generally are not. Thus, a detection scheme based on Pythagorean Partners
should not produce false alarms when the simulation is truly symmetric. The second reason
is that it is simpler to code the Pythagorean Partners than the members of Sij . This is not a
strong consideration however, since the the members of Sij can be identi�ed e�ciently using
a pre-computed look-up table. Nevertheless, a look-up is not needed to e�ciently identify the
Pythagorean Partners.
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Figure 1: Example of Pythagorean Partners (indicated by dark circles) and other points that
lie at the same radius (indicated by open circles).

The \P-squared" detector below determines asymmetry by comparing points with their
Pythagorean Partners. However, detectors based solely on these points may be subject to
\sparse sampling" error (which we discuss below). On the other hand, we often expect near-by
arcs to have similar �eld values, suggesting that we may be able to mitigate sparse sampling
error by developing asymmetry detectors that use an aggregation of samples from near-by arcs.
This is accomplished by aggregating �eld values into \R-lists" and implementing a detection
scheme on the values in an R-list as if they all belong to the same arc. An R-list is a list of
�eld values whose radii quantize to the same value. More speci�cally the R-list vR is de�ned
as

vR = fv(xi; yj) : brc = Rg

where r =
p
(i� i0)2 + (j � j0)2 and R 2 f0; 1; :::; Rmaxg. Values in the R-list are arranged

in no particular order and are indexed using the notation vR[k] to refer to the kth entry. The
aggregation performed by the R-list approach may lead to detection errors, particularly in
areas of the simulation where near-by arcs do not have similar �eld values (e.g. near material
boundaries).

Inputs to the asymmetry detectors below are slices from a computer simulation of the ow,
discretized on a rectangular grid. Outputs are slices on the same discretized grid with a '1'
at each location where an asymmetry is detected and a '0' otherwise. To keep track of the
correspondence between R-list entries and their (i; j) coordinates on the rectangular grid we
build a look-up table. Algorithm 1 builds a look-up table that maps from R-list entries (R; k)
to the rectangular coordinates (i; j), and Algorithm 2 uses this table to perform the mapping.
The run time of the Build-Rlist2Rect-LUT is T � p2max(Nx; Ny) +NxNy. Note that this
same look-up table is used to process every slice from every time step of the simulation, and
so its run time is inconsequential to the overall run time of the detectors described in the next
section.
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Algorithm 1 Build-Rlist2Rect-LUT: Build Rlist-to-rectangular look-up table.

INPUTS:

Nx; Ny: size of discretized slice
i0: index of symmetry for x coordinate
j0: index of symmetry for y coordinate

OUTPUTS:

ix[R; k]: x coordinate index i of kth sample in R-list R.
iy[R; k]: y coordinate index j of kth sample in R-list R.
Size[R]: number of samples in R-list R.

Rmax  maxi;j

n
b0:5 +

p
(i� i0)2 + (j � j0)2c

o

fInitialize list sizes.g
for ( R = 0 to Rmax ) do
Size[R] 0

end for

fFor each sample: determine R-list and insert indices.g
for ( i = 1 to Nx ) do
for ( j = 1 to Ny ) do
R b0:5 +

p
(i� i0)2 + (j � j0)2c

ix[R;Size[R]]  i
iy[R;Size[R]]  j
Size[R] Size[R] + 1

end for

end for

Algorithm 2 Rlist2Rect: Convert from R-list to rectangular coordinates.

INPUTS:

R; k: indices of the kth entry in R-List R

OUTPUTS:

(i; j): the rectangular coordinate indices

i ix[R; k]
j  iy[R; k]
return(i; j)

To perform asymmetry detection on the entire 3d simulation we run one of these detectors
over each slice in turn. Since the computations from one slice to the next are decoupled, the
detection process can be parallelized quite naturally by placing di�erent slices (or parts of
slices) on di�erent processors.

5
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3 Asymmetry Detectors

In this section we describe three asymmetry detectors. The primary sources of errors for
these detectors are sampling error and aggregation error. Sampling error is the error due to
incomplete knowledge about the �eld values along an arc (i.e. we have only a �nite number
of samples along any given arc). Aggregation error refers to the error that results from the
aggregation of values from di�erent arcs into a single R-list.

The three detectors will be compared using the following criteria.

1. computational cost

2. user speci�ed parameters, (how many, how easy are they to choose, and how robust is
the algorithm to them)

3. sensitivity to sampling error

4. sensitivity to aggregation error

5. ability to tune their sensitivity to the size/magnitude of the asymmetry

In addition, we will use speci�c (synthetic) examples of �eld values along an arc, and their
distributions, to make comparisons. These examples are provided in Figures 2-9, and will be
used to illustrate strengths and weaknesses of the three detectors. According to De�nition 2,
Figures 2, 3 and 5 represent situations where the arc has a symmetric component. In the other
�gures the arcs are entirely asymmetric. In some simulations however, small asymmetries may
be unavoidable and we may want detectors that can be made insensitive to them. For example,
the situation in Figure 9 may be acceptable if the width (or variance) of the distribution is
small compared to the range of values taken by the data in the full simulation. The same can
be said about Figures 6-8. In the same vein, we may wish to classify the values corresponding
to the dominant mode in Figure 4 as symmetric. Finally, note that Figures 6-8 show how three
di�erent arcs can lead to the same uniform density.

Pythagorean Partners Detector (also called the P-squared method) This detector makes
a decision at each discretized point using only points that lie at exactly the same radius
from the point of symmetry. These points are called Pythagorean partners and are de�ned
in equation (6). Recall that there are at most 8 such points at any given radius (see Figure
1). Note that these points are symmetric with respect to lines passing through the origin
x0; y0 at angles 0, �=4, �=2 and 3�=4. That is, if we were to fold the slice at these angles
then P-squared partners will be aligned in pairs on top of one another. The advantage of
this detector is that it has zero aggregation error. That is, errors made by this detector
are not due to aggregation. Consequently, the accuracy of this detector is not degraded
near material boundaries in the simulation.

The detector works as follows. Suppose there are 2 � q � 8 Pythagorean partners. Then
for each point v we compute the absolute di�erence between v and its q � 1 partners.
De�nition 2 suggests that if v is a symmetric point then at least half of these di�erences
will be zero. On the other hand, if v is an asymmetric point then at least half of these
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0 �

vr(�)

� �

pvr(�)

Figure 2: Bimodal A.

0 �

vr(�)

� �

pvr(�)

Figure 3: Bimodal B.

0 �

vr(�)

� �

pvr(�)

Figure 4: Bimodal C.

0 �

vr(�)

� �

pvr(�)

Figure 5: Bimodal D.

di�erences will be nonzero. So we use the median of the di�erence values as a measure
of asymmetry. Pseudo code for this procedure is shown in Algorithm 3. The double loop
indexes through each sample in one octant of the slice, and gathers the q � 1 (up to 7)
partners for each sample in the formation of V . Then, all q(q � 1)=2 pairwise absolute
di�erences are computed, each of which will be referenced q times in the \for all" loop
that follows. This loop sorts the distance values for each value v(m;n) in V , computes
the median, and compares it to a threshold. The run time of this procedure is

TP � c(1=qmax)NxNy

�
0:5qmax(qmax � 1) + q2max log(qmax)

�
= cNxNy (0:5(qmax � 1) + qmax log(qmax))

where qmax is the maximum value of q in the simulation and c is a small positive constant.

This detector has a single user de�ned parameter, the asymmetry threshold. This value
should be chosen in the range 0 � AsymThold � (maxi;jfv[i; j]g �mini;jfv[i; j]g).
Smaller thresholds make the detector more sensitive. For example, if the goal is to
detect asymmetries of all magnitudes then AsymThold should be set to a value that is
on the order of the machine precision. On the other hand, if the goal is to detect asym-
metries that are large in magnitude, say roughly 10% of the range of the data values,
then AsymThold should be set to 0:1 � (maxi;jfv[i; j]g �mini;jfv[i; j]g).
The advantages of the Pythagorean Partners (referred to as \P-squared") method are that
it is simple, computationally e�cient, and has zero aggregation error. Its disadvantage
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0 �

vr(�)

� �

pvr(�)

Figure 6: Uniform A.

0 �

vr(�)

� �

pvr(�)

Figure 7: Uniform B.

0 �

vr(�)

� �

pvr(�)

Figure 8: Uniform C.

0 �

vr(�)

� �

pvr(�)

Figure 9: Unimodal.

is that it can make decisions are not always consistent with De�nition 2. Errors come
in two forms; missed detections and false alarms. This method is more likely to produce
false alarms than missed detections. Missed detections seem unlikely since they require a
radially asymmetric arc to exhibit local symmetries with respect to points at the folding
angles. For example, the arc in Figure 8, which is locally symmetric about the points at
angles �=4, �=2 and 3�=4, represents a worst-case scenario for the P-squared detector in
that it will label the entire arc as symmetric, even though it should be labeled asymmetric.
At the same time however, the P-squared detector will perform quite well on the arc in
Figure 6 which has essentially the same distribution. Generally speaking the special
symmetries that \fool" the P-squared detector are expected to be rare.

Errors from the P-squared algorithm are more likely to come in the form of false alarms,
i.e. detections at points where no asymmetry is actually present. The worst case scenario
is when q is even, and half the points are sampled from the symmetric part of the arc
while the other half are from the asymmetric part. In this case all samples will be
declared asymmetric. This situation is more likely when the asymmetry is concentrated
around one (or more) of the \folding angles", 0; �=4; �=2; 3�=4; �; 5�=4; 3�=2; 7�=4. For
example, the arc in Figure 7, where the asymmetry is folded around � = �=2, represents
a worst-case scenario in this regard.

The P-squared detector should perform quite well on the other examples in Figures 2-9.
Note that we can tune the sensitivity of this detector to the desired magnitude of the

8
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Algorithm 3 PathagoreanPartners: This routine implements the P-squared asymmetry de-
tector that compares the 4 � q � 8 samples from a rectangular grid that lie at precisely the
same distance from the point of radial symmetry. The function H() below is the heaviside
function that returns a '1' when its argument is � 0 and a '0' otherwise.

INPUTS:

fv[i; j]g: a discretized slice of �eld values, i = 1; 2; :::; Nx, j = 1; 2; :::; Ny

i0: index of symmetry for x coordinate
j0: index of symmetry for y coordinate
AsymThold: Asymmetry threshold, 0 � AsymThold � maxi;j jv[i; j]j

OUTPUT:

h[i; j]: detection array with a '1' where an asymmetry is detected and a '0' otherwise

for ( i = 0 to max(di0e; Nx � di0e) ) do
for ( j = 0 to i ) do

fForm the set of pathagorean partners.g
V = fv(m;n) : m;n 2 fdi0e � i; dj0e � jg; 1 � m � Nx; 1 � n � Nyg

fCompute absolute di�erences.g
D  set containing all p(p� 1)=2 pairwise absolute di�erences of values in V

fCompute detection value for each point.g
for all v(m;n) in V do

Dm;n  subset of D containing all (p� 1) absolute di�erences involving v(m;n)
M  median(Dm;n)
h[m;n] H(M �AsymThold)

end for

end for

end for

asymmetry through our choice of AsymThold.

Finally, since the P-squared algorithm makes decisions using a relatively small number of
samples (i.e. 2 � q � 8) it is subject to sampling error. Arcs that are actually asymmetric
may be sampled in such a way that the samples appear to be symmetric. Obviously this
type of error is less frequent for the larger values of q.

Outlier Detector This approach is motivated by the intuition that asymmetries should ap-
pear as outliers in the distribution of points along an arc. Outliers are points that are
unlikely to have been drawn from the \model" distribution. To perform outlier detection
from sample data alone we need a way to produce a reliable estimate of the sample distri-
bution. There are many possibilities. For example, if the model distribution is Gaussian,
then a robust estimate of its mean and standard deviation can often be determined from
a sample data set (which contains outliers) by computing a trimmed mean and standard
deviation. Trimming discards a fraction � of the largest and smallest samples (i.e. the

9
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samples most likely to be outliers). Once the trimmed estimates are in hand, outlier
detection can be performed by computing (v � �)=� and thresholding this value.

In our problem the intuition is that the trimmed mean will be a good representative of
the value ~vr. With appropriate choice of � this will certainly be the case for the arcs in
Figures 2, 3 and 5. Figure 4 can be interpreted as a \noisy" version of Figure 3, where
there is no ~vr with ~pr � 0:5, but the trimmed mean continues to play the role of the
\typical" or \most likely" value along the arc.

Pseudo code for the outlier detector is shown in Algorithm 4. Values in the R-list are �rst
sorted so that trimming can be accomplished by simply skipping values at the beginning
and end of the list. Next the (trimmed) mean and standard deviation are computed, and
then the detection formula is applied for each value in the R-list. The run time of this
procedure is

TO � c

RmaxX
R=0

Size(R) + Size(R) � log(Size(R))

for some small positive constant c. Using the approximation Size[R] � 2�R and Rmax �
N =

q
N2
x +N2

y gives

TO � 2�c

NX
R=1

R+R � log(2�R)

Simpli�cation yields

TO � 7cN2(1 + log(7N))

This detector has two user de�ned parameters, the trim fraction � and the asymmetry
threshold AsymThold. Since over half the samples take a value ~vr when symmetry is
present, � can be chosen quite large (i.e. very close to 0.5) without signi�cantly degrading
performance, and so this is recommended. In the ideal case, when the trimmed mean
represents ~vr, the asymmetry threshold should be very close to zero (since any value that
di�ers from the mean is asymmetric by de�nition). Larger values of AsymThold can be
used if we want to be insensitive to small asymmetries in the simulation. In any case
however, it seems unlikely that AsymThold should ever be chosen larger than 1.0.

This detector will make errors any time the mean does not represent the value where
more than half the arc is concentrated. For example, regardless of the choices for � and
AsymThold, this detector will make errors (missed detections) on the arcs in Figures 4-9.
On the other hand, in situations where we want to be insensitive to small asymmetries
in the simulation itself, this detector can be quite e�ective. In this case, with the proper
choices of � and AsymThold, this detector can perform quite well on the arcs in Figures
2-5, 9.

Mode Concentration Detector (clustering)

This detector represents an approximation to the direct implementation of De�nition 2.
Note that a direct implementation would require us to compare points along the arc with

10
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Algorithm 4 OutlierDetection: This routine detects asymmetric locations along an
arc (R-list) by comparing values in the list to the trimmed mean. It assumes that the
Build-Radial2Rect-LUT routine has already been used to initialize the Rlist-to-recangular
look-up table. The function H() below is the heaviside function that returns a '1' when its
argument is � 0 and a '0' otherwise.

INPUTS:

fv[i; j]g: a discretized slice of �eld values, i = 1; 2; :::; Nx, j = 1; 2; :::; Ny

i0: index of symmetry for x coordinate
j0: index of symmetry for y coordinate
� : the trim fraction (from each side of the distribution) (0 � � < 0:5)
AsymThold: the standard deviation threshold (AsymThold > 0)

OUTPUT:

h[i; j]: detection array with a '1' where an asymmetry is detected and a '0' otherwise

for ( R = 0 to Rmax ) do

fForm the R-list and sort.g
vR  fv[i; j] : b0:5 +

p
(i� i0)2 + (j � j0)2c = Rg

~vR  Sort(vR)

fCompute trimmed mean and standard deviation.g
sum 0
sum2 0
for ( i = max(1; b� � Size[R]c) to bSize[R] � (1� �)c ) do
sum sum+ ~vR[i]
sum2 sum2 + ~v2R[i]

end for

N  max(1; bSize[R] � (1� 2�)c)
�R  sum=N

�R  
q
(sum2=N)� �2R

fCompute detection values.g
for ( k = 1 to Size[R] ) do
(i; j)  Radial2Rect(R; k)
h[i; j]  H(jvR[k]� �Rj �AsymThold � �R)

end for

end for

~vr, the value where at least half of the arc is concentrated. We employ a clustering routine
to determine value(s) where the data is concentrated. More speci�cally, we cluster the
data from an R-list using a routine that automatically determines the number of clusters
and the cluster membership with a single pass through the data. The cluster with the
largest number of entries determines our approximation to ~vr (the mode). If this cluster

11
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contains less than half the total number of points then all points in the R-list are declared
asymmetric, otherwise points in the clusters with less than half the data are declared
asymmetric.

Pseudo code for this procedure is shown in Algorithm 5. The �rst value in the R-list
forms the representative for the �rst cluster. For each successive sample we determine
the closest cluster, and then assign the sample to that cluster if it is within BinSize of
the cluster representative. Otherwise we create a new cluster and use the current sample
as its representative. Once clustering is �nished it is a simple matter to determine which
samples belong to clusters with less than half the points.

The run time of this procedure is determined as follows. The number of steps required
to cluster a single R-list is no less than Size[R] and no more than Size[R] � C[R], where
C[R] is the �nal number of clusters for R-list R. Then it takes Size[R] steps to compute
the detection values, so the total run time TC for one slice of data is bounded by

c1

RmaxX
R=0

Size[R] � TC � c2

RmaxX
R=0

(1 + C[R]) � Size[R]

for small positive constants c1 and c2. The lower bound simpli�es to

c1

RmaxX
R=0

Size[R] = c1NxNy

For the upper bound let

NC = max
0�R�Rmax

(1 +C[R])

be the maximum number of clusters formed over all the R-lists. With this we have

TC � c2

RmaxX
R=0

NC � Size[R] = NCNxNy

Note that we can bound NC in terms of Nx and Ny as follows,

NC � max
R

Size[R] � b2�min(Nx; Ny)c

so that TC is clearly less than 7c2NxNymin(Nx; Ny). In summary we have

c1NxNy � TC � 7c2NxNymin(Nx; Ny)

This detector has only one parameter called BinSize. BinSize controls the sensitivity
of the method. A sample must be closer to the cluster representative than BinSize to be
treated as part of that cluster. Ideally, in the absence of noise and numerical imprecision,
individual clusters would represent individual values and we would set BinSize = 0. In
practice however, if we wish to be robust to errors introduced by numerical imprecision we
should set BinSize equal to the magnitude of the maximum simulation error we expect
to see due to this imprecision (this magnitude usually increases as the simulation moves
forward). In addition, we may wish to be insensitive to small amounts of noise due to
aggregation, or small asymmetries that occur naturally in the simulation. In this case
we would chose an even larger BinSize. With appropriate choice of BinSize the \Mode
Concentration" detector will perform quite well on all the examples in Figures 2-9.

12
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Algorithm 5 ModeConcentrationDetector: This routine detects asymmetric locations along
an arc by clustering points from an R-list and then declaring all points that belong to a cluster
with less than half the points to be asymmetric. It assumes that the Build-Rlist2Rect-LUT
routine has already been used to initialize the Rlist-to-recangular look-up table.

INPUTS:

fv[i; j]g: a discretized slice of �eld values, i = 1; 2; :::; Nx, j = 1; 2; :::; Ny

i0: index of symmetry for x coordinate
j0: index of symmetry for y coordinate
BinSize: size of the 'bin' (i.e. interval) for a cluster

OUTPUT:

h[i; j]: detection array with a '1' where an asymmetry is detected and a '0' otherwise

for ( R = 0 to Rmax ) do
fForm the R-list.g
vR  fv[i; j] : b0:5 +

p
(i� i0)2 + (j � j0)2c = Rg

fProceed only if the R-list has more than 1 entry.g
if (Size[R] > 1) then
fCluster the samples in the R-list.g
(i; j)  Radial2Rect(R; 1)
Create a new cluster with v[i; j] as its representative
for (k = 2 to Size[R]) do
(i; j)  Radial2Rect(R; k)
c index of cluster that is closest to v[i; j]
if (jv[i; j] �Representative[c]j � BinSize) then
Add v[i; j] to cluster c

else

Create a new cluster with v[i; j] as its representative
end if

end for

fCompute detection values.g
for (k = 1 to Size[R]) do
(i; j)  Radial2Rect(R; k)
c index of cluster to which v[i; j] is assigned
N  number of points in cluster c
if (N < Size[R]=2) then
h[i; j]  1

else

h[i; j]  0
end if

end for

end if

end for

13
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4 Run Time Summary

The table below summarizes the run time bounds for the three asymmetry detectors.

Detector Run Time

Pythagorean Partners TP � cNxNy (0:5(qmax � 1) + qmax log(qmax))

Outlier TO � 7c(N2
x +N2

y )(1 + log(7
q
N2
x +N2

y ))

Concentration c1NxNy � TC � 7c2NxNymin(Nx; Ny)

A plot of these bounds is shown in Figure 10. To obtain the curves in this plot we have set the
parameters as follows:

c = c1 = c2 = 1

qmax = 8

Nx = Ny

The horizontal axis in Figure 10 corresponds to the size N of a 2d slice (where N = NxNy),
and the vertical axis is the run time bound. The run time of the Mode Concentration detector
depends on the number of asymmetries present in the simulation, so Figure 10 shows two curves
for this detector; a best case and a worst case (note that the best case curve C has such a small
slope relative to the others that it appears to fall on top of the horizontal axis). While the
best case for the Mode Concentration detector is superior to the other two, its worst case is
signi�cantly slower. Overall, the run times scale like N , N log(

p
N), and [N;N3=2] for the

Pythagorean Partners, Outlier and Mode Concentration detectors respectively.

The analysis above provides bounds on the number of steps required to process a single
slice. Bounds for the full 3d simulation (at one time step) can be obtained by multiplying
by Nz (the number of slices). A single time step from a 3d simulation can be processed in
parallel by distributing the slices uniformly across processors. We have employed this strategy
to develop parallel algorithms for all three detectors. To determine their actual run times and
to test scalability of the code the following experiments were performed. Arti�cial data was
generated in a cube of size Nx � Ny � Nz, where Nx = Ny = Nz, and Nx ranges from 100
to 600. The data was generated with random �eld values drawn from a uniform distribution
(this creates a scenario that leads to a near worst case run time for the mode concentration
detector). The results of these experiments are shown in Figures 11 and 12. Figure 11 shows
the actual run time verses the problem size. These run times are in close agreement with the
bounds in Figure 10 (note that the horizontal axis in Figure 10 is NxNy while in Figure 11 it
is Nx). The P-squared method is clearly the fastest of the three, and the mode concentration
method is the slowest (on this problem). More speci�cally, the P-squared method is roughly
an order of magnitude faster than either of the alternatives for all problem sizes in this study.
Note also that it takes only 3 minutes to run the largest problem (600 � 600 � 600). Figure
12 shows the speed-up verses the number of processors for the 600 � 600 � 600 problem. The
formula for speed-up in this plot is

speed up for P processors =
run time on 20 processors

run time on P processors

14
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Figure 10: Run Time Comparison: (A) Pythagorean Partners, (B) Outlier, (C) Mode Concen-
tration (lower bound), and (D) Mode Concentration (upper bound). Note that C
has such a small relative slope that is appears to fall on top of the horizontal axis.

Note that we have used a nonstandard de�nition of speed-up in that the numerator corresponds
to the run time on 20 processors instead of 1. This de�nition is used here because we were unable
to run this problem on a single processor (because of its size). The results in Figure 12 suggest
that all three algorithms scale reasonably well. They fall short of the \ideal" linear speed-up
primarily because of the overhead associated with distributing the data onto the processors
up front, and collecting the results at the end. In fact, since the P-squared algorithm has the
fastest run time it also has the worst speed-up simply because the process of distributing the
data up front and collecting the results at the end represents a larger fraction of the overall
run time.

5 Empirical Results

In this section we provide detection results for a simple 3d simulation involving a cylindrical
puck and a rectangular plate. The simulation is computed in a rectangular cube with physical
coordinates (in centimeters)

�10 � x � 10

0 � y � 10

�10 � z � 10

A rectangular plate of size 20 � 10 � 1 cm is placed in the middle of the cube (i.e. the center
of the plate is at location z = 0), and a cylindrical puck with diameter 2.5 cm and thickness 1
cm is centered 2 cm above the plate. This experiment is discretized to a 200 � 100� 100 grid
(listed in the order x; y; z) for simulation.
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Figure 11: Run time verses problem size for the three detection methods using 120 CPUs.
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Figure 12: Speed-up (relative to the run time on 20 CPUs) for the three detection methods.

In the simulation the puck moves towards the plate at a very high velocity until it slams into
the plate. The simulation is terminated once the puck has produced a large indentation in the
plate. Although the simulation code produces several �elds, the results here are for the density
�eld only. In addition, the simulation code provides output data �les for the puck and the plate
separately. The results below are for the plate. We provide results for two di�erent simulations;
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one that is intended to be symmetric and one that is purposefully asymmetric. In the symmetric
simulation we simply slam the puck squarely into the plate, and in the asymmetric simulation
we tilt the puck slightly so that the indentation is formed asymmetrically.

As we shall see, all three of our detectors discovered asymmetries in the symmetric sim-
ulation! This suggested that there was an error in the simulation code. Indeed, the error
was traced to a bug in the code, which has now been �xed. It turns out that the bug was in
the formation of the cylindrical puck. That is, the puck was not perfectly symmetric at the
start of the simulation and so once it made contact with the plate it introduced unexpected
asymmetries. Although these asymmetries started out small, they grew rapidly and ended up
as large as the asymmetries produced by the asymmetric simulation. We compare the results
from this \symmetric" simulation and those for the asymmetric simulation below.

Our �rst set of results are for the symmetric simulation, and we start by examining two
global statistics; the scale and the size of asymmetry at each time step. The scale statistic is
represented by the maximum asymmetry value at each time step, where the asymmetry value
a for each boxel is de�ned as follows for each of the three detectors:

1. P-Squared Detector: a = median(D), where D is the set of absolute di�erences between
the �eld value of this boxel and the �eld values of its pythagorean partners. This value
falls in the range 0 < a < (maxi;jfv[i; j]g �mini;jfv[i; j]g).

2. Mode Concentration Detector: a =
�
jRj�Nc

jRj

�
where jRj is the number of entries in the

R-list, and Nc is the number of entries that end up in the same cluster as the �eld value
for the current boxel. Note that 0 � a < 1, where a = 0 for a perfectly symmetric R-list
and a is close to 1 for an asymmetric R-list with uniformly distributed �eld values.

3. Outlier Detector: a =
�v��

�

�
where v is the �eld value for the boxel and � and � are the

trimmed mean and standard deviation. This asymmetry measure satis�es a � 0 and can
be interpreted as the number of standard deviations from the mean.

The maximum value of a at each time step for each of the three detectors is shown in Figures
13-15. The parameters for these detectors where set as follows,

� P-Squared Detector: no parameter required

� Mode Concentration Detector: Binsize = 10�10

� Outlier Detector: � = 0:4 (trim fraction)

Note that asymmetry was detected at the same time step by all three methods, and remains
at an easily detectable level for the remainder of the simulation. It is no surprise that the
initial detections occurred at the precise time step when the puck �rst contacts the plate. The
maximum asymmetry value for the P-squared detector in Figure 13 exhibits a curious behavior
in that it dips dramatically for a few time steps after its initial rise. This behavior is absent in
the plots for the other two methods, and was not attainable by simply changing the parameters
of these methods (e.g. BinSize and �). This curious behavior is currently unexplained, and
worthy of further investigation. The plot for the Mode Concentration detector in Figure 14
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shows a maximum asymmetry that remains very close to 1 once the asymmetry is introduced.
This suggests that the distribution of �eld values for the maximum asymmetry are roughly
uniform (i.e. the asymmetry is probably not due to a single (small) isolated phenomenon).
The plot for the Outlier detector in Figure 15 shows extremely large asymmetry values, i.e. it
has �eld values that are several hundred standard deviations from their mean. This is due to
the fact that some of the standard deviations are very small (near zero), which is more likely
when the trim factor is large (i.e. close to 0.5).

The maximum asymmetry values provides a narrow view of the simulation in that this
asymmetry value may not be representative of the rest of the simulation. In Figure 16 we show
the distribution of asymmetry values verses time for the P-squared method. This �gure tells
us that while the maximum is on the order of 101, most of the asymmetries fall in the range
[10�4; 10�2].

To obtain a global size statistic we run the three asymmetry detection algorithms and count
the number of detected boxels. The parameters for these algorithms were set as follows,

� P-Squared Detector: AsymThold = 10�10

� Mode Concentration Detector: Binsize = 10�10

� Outlier Detector: � = 0:4 (trim fraction), AsymThold = 10�10

Figures 17-19 show the fraction of boxels that are detected at each time step. These plots show
that the size of the asymmetry grows monotonically with time, and ends up occupying over 1%
of the simulation boxels. It is interesting that such a large asymmetry can result from a very
small error in the setup code. The plots for the P-squared and Mode Concentration detector
are virtually identical, but the Outlier detector appears to be missing some detections picked
up by the other two. This can be explained in part by the fact that asymmetric boxels will go
undetected along any asymmetric arc where the trimmed mean is equal to one or more of the
�eld values. That is, the outlier detector will often miss detections when the mean value along
an arc corresponds to an asymmetric point.

Finally, to get a better sense of how the three detection methods compare we view their
asymmetry values from one slice of the rectangular cube at several time steps from the sim-
ulation. Each slice from each time step is displayed as an image, and the asymmetry values
from each slice are scaled so that the relevant features are visible. The slice we have chosen
is z = 100, which is (roughly) in the middle of the plate. The time steps we have chosen
correspond to cycles 52, 65 and 96. Cycle 52 is the �rst cycle where an asymmetry appears
in this slice. Cycle 65 is a few time steps later, and 96 is towards the end of the simulation.
The results are shown for Cycle 52 in Figures 20-25, Cycle 65 in Figures 26-31, and Cycle 96
in Figures 32-37. Each set of results shows 6 images. The �rst two are the density �eld at two
di�erent scales; the �rst is the scale at which the simulation would be viewed when displayed as
a movie (i.e. it is scaled so that the density values fall in the range 0-255 over the course of the
simulation), and the second is a scale (and o�set) that is chosen to amplify the di�erences at
the current time step so that the e�ect of the puck on the plate can clearly be seen. The third
and fourth images show asymmetry values for the Outlier method and the Mode Concentration
method, each scaled so that detections can be seen (note that the Mode Concentration values
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Figure 13: Maximum P-Squared Asymmetry vs Time for Symmetric Simulation.
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Figure 14: Maximum Mode Concentration Asymmetry vs Time for Symmetric Simulation.
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Figure 15: Maximum Outlier Asymmetry vs Time for Symmetric Simulation.

are always scaled by 25, so their image values fall in the range [0; 250]). The last two images
show the asymmetry values for the P-squared method; the �rst is shown at the same scale and
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Figure 16: Asymmetry Scale Distribution vs Time for the P-squared method on the Symmetric
Simulation. The horizontal axis represents time, where simulation time increases
from left to right. The vertical axis represents bins into which the asymmetries at
di�erent scales are placed. More speci�cally it is indexed from top to bottom by
i = �14;�13; :::; 1; 0; 1 where the scale of the asymmetry is 10i. The intensity of
the image represents the relative number of asymmetry values that occur at a given
scale and time step.

o�set as the �rst density image (i.e. the scale that would be used when viewing these values
as a movie), and the second is scaled so that the detections can be seen.

Cycle 52 is the �rst time step at which the puck penetrates this slice, and although its
e�ect on the density �eld cannot be seen at a normal scale, the half circle corresponding to
the indentation made by the puck is clearly present when the density is properly scaled. The
Outlier detector does not detect an asymmetry in this slice at this time step, but the other
two detectors make it clear that an asymmetry is present. The P-squared values reveal three
regions where the asymmetry is largest. The region at the tip of the half circle corresponds
to the position on the puck where the asymmetry was introduced by the setup code. The
two regions near the edge are (probably) false detections that occur because the asymmetry at
the tip falls squarely on one of the folds (recall that an asymmetry that falls directly on one
of the fold angles can lead to false detections as discussed earlier). The Mode Concentration
method is very sensitive in this simulation (since the bin size is so small), and its output
suggests that the asymmetries have spread across a signi�cant range of radii. Although some
of these asymmetries may be very small, this detector does not distinguish small from the
large (its output is a function of the �eld value distribution along an arc, not the scale of these
values). The asymmetries detected by the Mode Concentration detector are also present in the
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Figure 17: P-squared Asymmetry Size vs Time for Symmetric Simulation.
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Figure 18: Mode Concentration Asymmetry Size vs Time for Symmetric Simulation.
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Figure 19: Outlier Detector Asymmetry Size vs Time for Symmetric Simulation.

P-squared output, but cannot be seen at this scale.

At Cycle 65 (Figures 26-31) the puck has penetrated the plate to the point where its e�ect
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on the density can be seen at a normal scale. Asymmetries are now visible in all three methods.
Again, the Mode Concentration method clearly reveals the full extent of asymmetry locations,
while the P-squared method gives a better feel for the scale of the asymmetries and how they
are spatially distributed. The results from the Outlier method are harder to interpret, but it
has clearly detected asymmetries in the same region as the other two.

The results at Cycle 96 (Figures 32-37) are qualitatively similar to those at Cycle 65. The
density pattern is more varied by this point, and the asymmetry locations have continued to
spread. The results from the P-squared detector suggest that the largest asymmetries remain
in the neighborhood of the arc where they originated.

Figure 20: Symmetric Simulation: Den-
sity at Cycle 0052
(o�set 0,scale 25).

Figure 21: Symmetric Simulation: Den-
sity at Cycle 0052
(o�set -8.93,scale 100000).

Figure 22: Outlier value at Cycle 0052
(o�set 0,scale 4000000,�=.4).

Figure 23: Mode Concentration value at
Cycle 0052
(o�set 0,scale 250,Bin 10�10).

Figure 24: P-squared value at Cycle 0052
(o�set 0,scale 25).

Figure 25: P-squared value at Cycle 0052
(o�set 0,scale 4000000).
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Figure 26: Symmetric Simulation: Den-
sity at Cycle 0065
(o�set 0,scale 23).

Figure 27: Symmetric Simulation: Den-
sity at Cycle 0065
(o�set -8.93,scale 150).

Figure 28: Outlier value at Cycle 0065
(o�set 0,scale 15,� = :4).

Figure 29: Mode Concentration value at
Cycle 0065
(o�set 0,scale 250,Bin 10

�10).

Figure 30: P-squared value at Cycle 0065
(o�set 0,scale 25).

Figure 31: P-squared value at Cycle 0065
(o�set 0,scale 40000).

Now we present results for the asymmetric simulation. The maximum asymmetry values
verses time for the three detectors are shown in Figures 38-40. Once again we see that all three
methods detected the asymmetry as soon as the puck hit the plate, and that the asymmetry
remains at an easily detectable level for the remainder of the simulation. Note that we do not
see the dip in the maximum asymmetry value for the P-squared detector that we saw in the
previous simulation.

Figure 41 shows the distribution of asymmetry values verses time for the P-squared method.
The asymmetries are more tightly concentrated than the previous simulation, and most fall
in the range [10�2; 100], which is roughly two orders of magnitude larger than the previous
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Figure 32: Symmetric Simulation: Den-
sity at Cycle 0096
(o�set 0,scale 25).

Figure 33: Symmetric Simulation: Den-
sity at Cycle 0096
(o�set -8.00,scale 200).

Figure 34: Outlier value at Cycle 0096
(o�set 0,scale 5,� = :4).

Figure 35: Mode Concentration value at
Cycle 0096
(o�set 0,scale 250,Bin 10�10).

Figure 36: P-squared value at Cycle 0096
(o�set 0,scale 25).

Figure 37: P-squared value at Cycle 0096
(o�set 0,scale 1200).

simulation.

The global size statistic is shown in Figures 42-44. Although the shape of these curves is
the same for all three detectors, the outlier detector once again appears to be missing some of
the boxels detected by the other two methods. Note also that the shape of these curves bears a
striking resemblance to those for the previous simulation, but the actual size is roughly 4 times
as large as the previous simulation.

Finally, the asymmetry values from slice z = 100 at cycles 48, 51, 61 and 120 are shown
in Figure sets 45-50, 51-56, 57-62, and 63-68 respectively. Cycle 48 is the �rst cycle where the
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Figure 38: Maximum P-squared Asymmetry vs Time for Asymmetric Simulation.
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Figure 39: Maximum Mode Concentration Asymmetry vs Time for Asymmetric Simulation.
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Figure 40: Maximum Outlier Asymmetry vs Time for Asymmetric Simulation.

puck's penetration a�ects the density values in this slice, and it is obvious that the puck is
tilted so the the right tip makes �rst contact. The asymmetry introduced by this penetration is
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Figure 41: Asymmetry Scale Distribution vs Time for the P-squared method on the Asymmetric
Simulation. The horizontal axis represents time, where simulation time increases
from left to right. The vertical axis represents bins into which the asymmetries at
di�erent scales are placed. More speci�cally it is indexed from top to bottom by
i = �14;�13; :::; 1; 0; 1 where the scale of the asymmetry is 10i. The intensity of
the image represents the relative number of asymmetry values that occur at a given
scale and time step.

small, but easily detected by the Mode Concentration and P-squared methods. Note that the
Mode Concentration method produces small (but non-zero) values at symmetric positions along
the asymmetric arcs. These values are all less than 0.5, and would not be labeled asymmetric
by this method. They are non-zero simply because the asymmetries at one location along

the arc make the quantity a =
�
jRj�Nc

jRj

�
non-zero at the other locations. Three time steps

later, at Cycle 51, the asymmetry has grown, but is still undetected by the Outlier method.
At this point the Mode Concentration values suggest that the asymmetry has grown in size
to the point where it occupies nearly half of the positions along the arcs. So (based on our
de�nition) these arcs will very soon become entirely asymmetric. This is made clear by the
Mode Concentration values at Cycle 61. The density images at Cycle 61 also make this clear.
In addition, the Outlier method has detected asymmetries at Cycle 61, with the largest values
falling along the right side of the arcs located near the radius where the tip of the puck �rst
contacted the plate. The P-squared values present a di�erent picture, and one that is more
closely aligned with the Mode Concentration method. The pattern displayed by the P-squared
method at this cycle is somewhat curious. This last set of images are for Cycle 120, which
is near the end of this simulation. The density images suggest that the puck has punched
all the way through this slice, leaving a hole in the middle with zero density. No signs of
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Figure 42: P-squared Asymmetry Size vs Time for Asymmetric Simulation.
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Figure 43: Mode Concentration Asymmetry Size vs Time for Asymmetric Simulation.
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Figure 44: Outlier Asymmetry Size vs Time for Asymmetric Simulation.

asymmetry are present from any of the detectors in this middle region. Once again the Mode
Concentration method clearly identi�es all regions of asymmetry, and the P-squared method
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reveals their scale. The Outlier method provides results similar to the P-squared method, but
has larger values near the boundaries. This may be due to the aggregation process that is used
to form the R-lists.

Figure 45: Asymmetric Simulation: Den-
sity at Cycle 0048
(o�set 0,scale 25).

Figure 46: Asymmetric Simulation: Den-
sity at Cycle 0048
(o�set -8.93,scale 2000000).

Figure 47: Outlier value at Cycle 0048
(o�set 0,scale 2000000,� = :4).

Figure 48: Mode Concentration value at
Cycle 0048
(o�set 0,scale 250,Bin 10�10).

Figure 49: P-squared value at Cycle 0048
(o�set 0,scale 25).

Figure 50: P-squared value at Cycle 0048
(o�set 0,scale 2000000).

In summary, all three methods demonstrated an ability to detect asymmetries, although it
appears that the Outlier method may often miss asymmetries detected by the other two. All
three methods detected asymmetries that appear at such a small scale (at least initially) that
they would go undetected by a simple visual inspection (i.e. a movie). In the �rst simulation
(the \symmetric" simulation) the asymmetries remained at a scale that was small enough that
they may never have been detected by visual inspection. The Mode Concentration method is
good at locating asymmetries, but provides little information about their scale. On the other
hand, the P-squared method is good at both location and scale.
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Figure 51: Asymmetric Simulation: Den-
sity at Cycle 0051
(o�set 0,scale 25).

Figure 52: Asymmetric Simulation: Den-
sity at Cycle 0051
(o�set -8.93,scale 9000).

Figure 53: Outlier value at Cycle 0051
(o�set 0,scale 10000,� = :4).

Figure 54: Mode Concentration value at
Cycle 0051
(o�set 0,scale 250,Bin 10�10).

Figure 55: P-squared value at Cycle 0051
(o�set 0,scale 25).

Figure 56: P-squared value at Cycle 0051
(o�set 0,scale 10000).
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Figure 57: Asymmetric Simulation: Den-
sity at Cycle 0061
(o�set 0,scale 25).

Figure 58: Asymmetric Simulation: Den-
sity at Cycle 0061
(o�set -8.93,scale 150) .

Figure 59: Outlier value at Cycle 0061
(o�set 0,scale 10,� = :4).

Figure 60: Mode Concentration value at
Cycle 0061
(o�set 0,scale 250,Bin 10�10).

Figure 61: P-squared value at Cycle 0061
(o�set 0,scale 25).

Figure 62: P-squared value at Cycle 0061
(o�set 0,scale 200).

30



LANL Technical Report: LA{UR{00-5203 5 Empirical Results

Figure 63: Asymmetric Simulation: Den-
sity at Cycle 0120
(o�set 0,scale 25).

Figure 64: Asymmetric Simulation: Den-
sity at Cycle 0120
(o�set 0,scale 25).

Figure 65: Outlier value at Cycle 0120
(o�set 0,scale 10,� = :4).

Figure 66: Mode Concentration value at
Cycle 0120
(o�set 0,scale 250,Bin 10�10).

Figure 67: P-squared value at Cycle 0120
(o�set 0,scale 25).

Figure 68: P-squared value at Cycle 0120
(o�set 0,scale 2500).
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