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ABSTRACT 

Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of 

vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, 

numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa 

(Skukuza: 25.0°S, 31.5°E). A third soil sample, number 3, was obtained from Etosha Pan, 

Namibia (19.20oS, 15.93oE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from 

tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown 

how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole 

leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species 

(poplar versus acacia), and vegetation’s biochemical composition. As a demonstration of the 

application of the results of this study, airborne BRDF measurements acquired with NASA’s 

Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter 

samples were obtained are compared to the laboratory results. Good agreement between 

laboratory and airborne measured BRDF is reported. 

Index Terms—BRDF, metrology, optical instrumentation and measurements, remote 

sensing, vegetation. 



 

1 

I. INTRODUCTION 

THE monitoring of land surface is a major science objective in Earth remote sensing. A major 

goal in land remote sensing is to identify major biomes and to map and distinguish the changes 

in their composition introduced by anthropogenic and climatic factors. Currently, deforestation 

and desertification are the most important land cover area processes of scientific interest. These 

processes play a major role in climate variation particularly with respect to clouds and rainfall. 

Understanding the spatial characteristics of the properties of biomes will help in predicting the 

changes in major Earth biomes and their impact on climate variation and hence, lead to 

formulation of better site-specific management plans. 

The bidirectional reflectance distribution function (BRDF) describes the reflectance of 

optical materials as a function of incident and scatter angles and wavelength. It is used in modern 

optical engineering to characterize the spectral and geometrical optical scatter of both diffuse and 

specular samples. The BRDF is particularly important in the characterization of reflective and 

transmissive diffusers used in the pre-flight and on-orbit radiance and reflectance calibration of 

Earth remote sensing instruments [1]. Satellite BRDF measurements of Earth scenes can be used 

as a sensitive tool for early detection of changes occurring in vegetation canopies, soils, or the 

oceans [2]. For example, water content changes in soil and vegetation can be detected and 

monitored using BRDF. 

In this paper, we analyzed laboratory-based BRDF data of vegetation leaves, leaf litter, and 

soil samples to study, on a small-scale, the effects of spatial and spectral variability in the 

reflectance of natural biome samples. The samples measured in the laboratory included leaf 

litter, predominantly from acacia trees, and two different composition regolith soils collected 

from the savanna biome of Skukuza, South Africa, Fig. 1a. A third soil sample was collected 

from Etosha Pan, Namibia, Fig. 1b. In addition, BRDF of fresh and dry leaves from tulip poplar 

tree (Liriodendron tulipifera), poplar hereafter and acacia tree (Acacia greggii) located in 

Maryland, USA were studied. The laboratory-based BRDF of all samples was analyzed in the 
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principal plane at 340, 470, and 870 nm, at incident angles of 0° and 67°, and at viewing angles 

from 0° to 80° for all samples, except the sample from Etosha Pan. The latter has been measured 

at 412, 555, 667, and 869 nm and at incident angles of 0o, 30o and 60o. BRDF dependence on the 

sample particle size was investigated by measuring the following three different samples: whole 

leaves, samples with leaf particle sizes between 4 and 4.75 mm, and samples with leaf particle 

size between 1.7 and 2 mm. All the BRDF values were measured using NASA Goddard Space 

Flight Center’s (GSFC’s) Diffuser Calibration Laboratory (DCL) scatterometer (cf. Fig. 2a). The 

typical measurement uncertainty was 1% (k = 1) or better, where k is the coverage factor. The 

results presented are traceable to the National Institute of Standards and Technology’s (NIST’s) 

Special Tri-function Automated Reference Reflectometer (STARR). 

The DCL has participated in several round-robin measurement campaigns with domestic and 

foreign calibration institutions in support of Earth and space satellite validation programs [3]. 

The facility has characterized many types of diffusely reflecting samples including Spectralon, 

aluminum diffusers, barium sulfate, radiometric tarps, and Martian regolith simulant [4], [5]. 

The laboratory results were compared to BRDF measurements with an airborne radiometer, 

Cloud Absorption Radiometer (CAR), which was developed at GSFC (c.f. Fig. 2c) and described 

by King et al. [6]. The CAR is designed to scan from 5° before zenith to 5° past nadir, 

corresponding to a total scan range of 190°. Each scan of the instrument lies across the line that 

defines the aircraft track and extends up to 95° on either side of the aircraft horizon. The CAR 

field of view is 17.5 mrad (1°), the scan rate is 1.67 Hz, the data system has 9 channels at 16 bit 

and it has 382 pixels in each scan line. CAR’s 14 channels are located between 335 and 2344 

nm. The CAR channels’ exact wavelengths and bandpass widths are shown in Table 1. These 

bands were selected to avoid atmospheric molecular absorption bands in the near and shortwave 

infrared. In the normal mode of operation, data are sampled simultaneously and continuously on 

nine individual detectors. The first 8 data channels between 335 and 1296 nm are always 

simultaneously and continuously sampled on eight individual detectors, while the ninth data 
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channel is registered for signal selected from the six remaining channels on a filter wheel 

between 1530 and 2344 nm. The filter wheel can either cycle through all six wavelengths at a 

prescribed interval usually changing filters every fifth scan line or lock onto any one of them, 

mostly 1656, 2103, or 2205 nm, and sample it continuously. Data are collected through the 190° 

aperture that allows observations of the earth–atmosphere scene around the starboard horizon 

from local zenith to nadir while the CAR scan mirror rotates 360° in a plane perpendicular to the 

direction of flight. 

In this study, the CAR data were obtained over Skukuza, South Africa (25.0°S, 31.5°E) and 

Etosha Pan, Namibia (19.20°S, 15.93°E), which are core sites for validation of the Earth 

Observing System (EOS) Terra satellite instruments. These BRDF measurements are reported in 

Gatebe et al. [7]. A distinct backscattering peak in the principal plane characterizes the BRDF 

over Skukuza, whereas the BRDF over Etosha pan is more enhanced in the backscattering plane 

and shows little directional variation. 

 

II. METHODOLOGY 

The definition and derivation of BRDF are credited to Nicodemus et al., [8] who 

presented a unified approach to the specification of reflectance in terms of both incident and 

reflected light beam geometries for characterizing both diffuse and specular reflecting surfaces of 

optical materials. He defined the BRDF as a distribution function relating the irradiance incident 

from one given direction to the reflected radiance in another direction. Thus, the BRDF is 

presented in radiometric terms as the ratio of the radiance Lr reflected by a surface into the 

direction (θr, φr) to the incident irradiance, Ei,  on a unit surface area from a specified direction 

(θi, φi) at a particular wavelength, λ, expressed mathematically as: 

  ( )
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where the subscripts i and r denote incident and reflected light respectively, θ is the zenith angle, 

and φ is the azimuthal angle. The BRDF units are sr-1. 

Nicodemus further assumed that the incident beam has uniform cross section, the 

illumination on the sample is isotropic, and all scattering comes from the sample surface and 

none from the bulk. The bidirectional reflectance corresponds to directional-directional 

reflectance and ideally means both incident and reflected light beams are collimated. Although 

perfect collimation and diffuseness are rarely achieved in practice, they can be used as a very 

useful approximation for reflectance measurements. In practice, we deal with real sample 

surfaces that reflect light anisotropically and the optical beams used to measure the reflectance 

are not perfectly uniform. Hence, from a practical consideration, Stover [9] presented the BRDF 

in a convenient form for measurement applications. The BRDF is defined in radiometric terms as 

reflected surface radiance in a given direction divided by the incident surface irradiance from 

another or the same (i.e. retro) direction. The incident irradiance is the radiant flux incident on 

the surface. The reflected surface radiance is the light flux reflected through solid angle Ω per 

projected solid angle: 

 
ri

r

P

P
BRDF

θcos
Ω= ,                                                (2) 

where Pr is the reflected radiant power, Ω is the solid angle determined by the area of detector 

aperture, A, and the radius from the sample to the detector, R. The solid angle can be computed 

as Ω = A/R2. Pi is the incident radiant power, and θr is the reflected zenith angle. The cosθr factor 

is a correction to account for the illuminated area, when viewed from the detector direction. 

BRDF has units of inverse steradians and can range from very small numbers (e.g. off-specular 

black samples) to very large values (e.g. highly reflective samples at specular reflectance). 

Following Stover’s concept, the BRDF defining geometry is shown in Fig. 3a, where the 

subscripts i and r refer to incident and reflected quantities, respectively. Note that the BRDF is 

often called cosine-corrected, when the cosθr factor is not included.  
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In the case of CAR measurements, the spectral BRDF (Rλ) is expressed following van de 

Hulst [10] formulation (see also Fig. 3b): 

Rλ(θ,θ0,Φ) =
πIλ θ,θ0,Φ( )

μ0Fλ

,                                         (3) 

where Iλ is the measured reflected intensity (radiance), Fλ is the solar flux density (irradiance) 

incident on the top of the atmosphere, θ and θ0 are respectively the viewing and incident zenith 

angles, Φ is the azimuthal angle between the viewing and incident light directions and µ0 = 

cosθ0. The Rλ is equivalent to bidirectional reflectance factor (BRF) as defined by Nicodemus, 

which is dimensionless and numerically equivalent to BRDF times π. 

The DCL scatterometer was used to measure the BRDF at different wavelengths and at 

different source and detector angular configurations. Although a more detailed design review on 

the scatterometer is published by Schiff et al., [11], we include here some basic information. The 

scatterometer is located in a class 10000 laminar flow cleanroom. It is capable of measuring the 

BRDF and bidirectional transmission distribution function (BTDF) of a wide range of samples 

including white and gray-scale diffusers, black painted or anodized diffusers, polished or 

roughened metal surfaces, clean or contaminated mirrors, transmissive diffusers, liquids, and 

granular solids. The operational spectral range of the instrument is from 230 to 900 nm. The 

scatterometer can perform in the principal plane and out-of the principal plane BRDF 

measurements. It consists of a vertical optical source table, a sample stage, a detector 

goniometer, and a computer system for positioning control, data collection and analysis. 

The optical table can be rotated around its horizontal axis located at the table center to 

change the incident angle, θi, relative to the sample normal (cf. Fig.2a). The optical source table 

contains two light sources—a 75 W xenon short-arc lamp coupled to a Chromex 250SM 

scanning monochromator and a replaceable coherent source in the operational spectral range. 

The scattered light from the sample is collected using an ultraviolet-enhanced silicon photodiode 

detector with output fed to a computer-controlled lock-in amplifier. The sample is mounted on a 

sample stage in the horizontal plane. The sample stage allows proper positioning of the sample 
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with respect to the incident beam. It can be moved in X, Y and Z linear directions using three 

motors. The sample stage provides sample rotation in the horizontal plane around the Z axis, 

thereby enabling changes in the incident azimuthal angle, φi. The standard scatterometer sample 

stage can accommodate samples as large as 45 cm square and up to 4.5 kg in weight. However, 

larger samples have been measured using custom designed sample adapters. As shown in Fig. 2a, 

the detector assembly moves along the arc providing the ability to make reflectance 

measurements as a function of the viewing zenith angle, θr. The arc rotates 180° around the 

vertical Z axis which determines the viewing azimuthal angle, φr. The center of the illuminated 

spot on the surface of the sample has to be positioned at the cross point of the three perpendicular 

goniometer rotation axes, X, Y, Z, coinciding with the center of a sphere with radius equal to the 

distance between that point and the detector assembly’s cover aperture. 

The illuminated area on the sample underfills the FOV of the measurement detector. All 

measurements in the current study were made for polarizations of the incident beam parallel, P, 

and perpendicular, S, to the plane of incidence. The BRDF for each polarization was calculated 

by dividing the net signal from the reflected radiant flux by the incident flux and the projected 

solid angle from the calibration item to the limiting aperture of the detector. The BRDF values 

for both polarizations were then averaged to yield the BRDF for unpolarized incident radiant flux 

and the values of the unpolarized scattering case are reported in this paper. The operation of the 

scatterometer is fully computerized. Customized software controls all motion, data acquisition 

and data analysis. 

 

III. MEASUREMENTS 

For the study described in this paper, we studied vegetative and soil samples from 3 different 

locations. The first location was Skukuza, South Africa, the second Etosha Pan, Namibia, and the 

third Maryland, USA. 
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Skukuza (see Fig. 1a) is a well foliaged rest camp on the southern banks of Sabie River in 

southern in Kruger National Park. The site exhibits typical savanna ecosystem characteristics: 

more-or-less continuous vegetation cover with trees and shrubs in varying proportions. The 

differences in the composition, structure and density of plant communities are attributable to the 

influence of the moisture in the area, as well as differences in the terrain: altitude and slope, as 

well as soil type and the prevalence of fires. The environment and vegetation of the flux 

measurement site near Skukuza is best described by Scholes et al. [12]. The vegetation is 

dominated by savanna grass and knob thorn trees (Acacia nigrescens) with their flat, relatively 

narrow crown and sparse canopy. They grow 5 to 18 m in height, are fire-resistant, and are eaten 

by giraffes and other animals. The leadwood (Combretum imberbe) is also common. It normally 

grows up to 20 m, has a spreading, rather sparse, roundish to slightly umbrella-shaped crown, 

and a single, thick trunk. 

The Skukuza samples shown in Fig. 4a were a <2 mm diameter fraction of soil and dry leaf 

litter. The leaf litter is predominantly from acacia trees and savanna grass. The soil sample S1 is 

a coarse loamy-sand soil with dominant grass roots from the top of the organic horizon, layer 

depth of 0–30 cm. The soil sample S2 is an exposed coarse loamy-sand soil from the mineral 

horizon, layer depth 30–40 cm. 

The Etosha Pan (see Fig. 1b) is 4590 square kilometers in area and 120 x 72 km in extent 

situated in northern Namibia. It is desert like, white in color, and dry salt pan without any 

vegetation. During rainy years, however, Etosha pan becomes approximately a 10 cm deep lake 

and becomes a breeding ground for thousands of flamingos. Etosha Pan has unique reflective 

characteristics. Its reflectance spectra are high in the blue, around 440 nm. This explains the 

apparent white color of the pan as brighter objects in the blue part of the visible spectrum appear 

whiter to the human eye. The Etosha Pan mineralogy is dominated by four compounds, (i) 

feldspar and mica, (ii) feldspar and sepiolite, (iii) silicates, and (iv) calcite and dolomite which 

determine the pan’s reflectance spectra. The Etosha pan surroundings are dominated by mopane 
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and acacia trees and grasslands. We studied four different Etosha Pan soil samples (see Fig. 4b). 

The first Etosha sample, named here as “the rock”, is a solid piece of pan sediment, while the 

other three samples are regoliths with fractional sizes of 0.5 mm or less for Etosha Pan sample 1 

hereafter EP1, between 1 and 2 mm for EP2, and a sub millimeter fraction for EP3. 

In addition to Skukuza and Etosha Pan, samples from Maryland, USA consisting of whole 

and crushed, fresh and dried acacia and poplar tree leaves were studied, as shown in Figs. 4c and 

d. All samples were air dry at the time of this study except the fresh acacia and poplar samples. 

The samples were placed in square 50 × 50 × 5 mm black plastic holders with the sample 

surfaces well flattened. Care was taken for uniform particle distribution through the entire 

surface area. The holders were mounted horizontally on the sample stage and aligned with the 

scatterometer axes of rotation. 

The laboratory study of Skukuza samples was done at the same wavelengths, incident and 

view angles as the CAR instrument airborne measurements over Skukuza. The incident angles 

for the Skukuza samples were 0° and 67°, the zenith view angles were from 0° to 80° with data 

acquired in steps of 5°, the azimuthal angles were 0° and 180° corresponding to the principal 

plane measurement geometry. The measurement wavelengths were 340, 470, and 870 nm, again 

based on CAR operating wavelengths. The top and bottom of the leaves were measured to 

account for structural differences such as smoothness and glossiness. 

Similarly, Etosha Pan samples were studied at wavelengths, incident and view angles 

comparable to the airborne measurements over Etosha Pan. The Etosha Pan samples were 

characterized in the DCL at incident angles of 0°, 30° and 60° and zenith view angles from 0° to 

80° in steps of 5°. The DCL measurement wavelengths were 412 nm, 555 nm, 667 nm, and 869 

nm. However, only 667 nm and 869 nm correspond to the CAR’s operational wavelengths. 

The CAR instrument was flown aboard the University of Washington Convair CV-580 

research aircraft during the Southern Africa Regional Science Initiative 2000 (SAFARI 2000) 

dry season campaign. The airborne CAR data from a vegetation rich surface was recorded over 
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Skukuza during the dry season in August 2000 for view angles from –80° to 80° and at a number 

of wavelengths. The BRDF of the savanna surface was acquired at 67° incident angle and 

viewing angles from –80o to 80o in 8 spectral bands from 0.34 to 1.27 µm. A hot spot or 

retroscatter signal was seen at about –70o. The airborne computed BRDF shows backscattering 

properties of the vegetation covered soil surface. 

 

IV. RESULTS AND DISCUSSION 

A. Laboratory-based BRDF of Savanna Samples, Skukuza 

The laboratory-based BRDF at normal incidence for the two soils, S1 and S2, and a savanna 

leaf litter sample is shown in Fig. 5a at 870 nm. The BRDF at 340 and 470 nm is not shown in 

this paper as the spatial distribution is similar for those wavelengths. In addition to BRDF 

measurements, the Skukuza samples’ spectral reflectance was measured with an Analytical 

Spectral Device (ASD) spectroradiometer in-plane at 0° incident angle and 60° viewing angle 

from 350 to 2500 nm. The results are compared in Fig. 5b, where the reflectance spectrum for 

fresh acacia leaf taken at the same measurement geometry is also included. The leaves’ complex 

biochemical composition made up of chlorophyll, pigments, proteins, starches, waxes, water, 

lignin, and cellulose is apparent in their reflectance spectra. The chlorophyll and pigments 

influence the spectra in the visible region. The water content and leaf structure contribute to the 

reflectance in the near-infrared, while the proteins, lignin and cellulose contribute in the 

shortwave-infrared, Kokaly et al. [13] 

The difference in BRDF of dry and fresh acacia and poplar tree leaves at normal incidence is 

shown in Fig. 6a at 340 nm, and in Fig. 6b at 470 nm. The overall reflectance of the acacia dry 

leaves is higher at all wavelengths. However, the fresh poplar leaves have a higher BRDF in the 

backscattering direction. Both fresh and dry poplar leaves have higher BRDF than the acacia 

leaves at smaller scatter zenith angles (i.e. 0° to 30°) and lower BRDF at larger scatter zenith 
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angles (i.e. 30° to 80°). The difference in BRDF between the two species illustrates the 

importance of accurate identification of the types of vegetation in airborne data recording. The 

difference is higher at scatter zenith angles from 5° to 45° and decreases at larger angles. 

However, the percent difference of the BRDF varies between 20% and 60% depending on the 

wavelength. The data at 340 and 470 nm are in the spectral region where mainly pigments 

dominate the leaf reflectance, whereas the BRDF at 870 nm is affected largely by the water 

content and leaf structure. For all leaves, there is also a difference in BRDF between the top and 

bottom sides of the leaves. On average the bottom BRDF of the acacia was always higher: 34% 

at 340 nm, 48% at 470 nm, and 4% at 870 nm due to the leaves’ surface structure. 

In order to address the vegetation canopy remote sensing scaling problem we measured the 

BRDF of cut fresh leaves and crushed dry leaves. The reflectance of a scene as seen from 

airborne sensor depends on the reflectance of its components and their composition. It was 

estimated that for airborne BRDF measurements of land surfaces from a 600 m altitude, the 

average footprint, 4 to 5 m in diameter of a typical savanna tree, would correspond to a leaf 

particle size in the laboratory of ~ 4 mm, whereas the footprint of a typical savanna bush 

footprint, 1.5 to 2 m would correspond to a size of ~ 2 mm. The BRDFs of 2 and 4 mm in size 

leaves particles (cut fresh, crushed dry) and whole fresh and dry leaves were compared. 

The differences in the case of poplar leaves at 340 nm are shown in Fig. 7a at normal 

incidence. Significant differences had been observed between the measured BRDFs of whole and 

crushed leaves at small viewing angles from 5° to 45°. The percent differences between the 

BRDF of whole leaves and crushed leaves having a 4 mm particles size are up to 55% at 5° 

viewing angle and up to 59% for the 2 mm sample. The differences at scatter angles from 45° to 

80° are on the order of 27% at 80° viewing angle for whole leaves versus 4 mm crushed leaves 

and 18% for whole leaves versus 2 mm crushed leaves. The possible explanation for this is that 

the scatter from the whole leaf has a strong specular component leading to higher reflectance at 

small scatter angles. The scatter from the crushed leaves is more diffuse resulting in much lower 
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BRDF at small angles. The second reason for the different BRDF is the shadowing effect that 

takes place when the surface of a sample is not flat but consists of small particles. In the crushed 

leaf BRDF sample the scattering between the individual leaf particles is a significant contributor 

to the reflected distribution of scattered light. The BRDF of the 4 mm sample is higher than the 

BRDF of the 2 mm sample. The smaller particles exhibit less extensive shadowing when 

illuminated, however the light obscuration effect when viewing by the detector is stronger. The 

difference in the BRDF of 2 mm and 4 mm samples is relatively small and is not a strong 

function of increasing scatter angle. We observed the same BRDF relation at other wavelengths 

as well. 

Whole, 2 mm, and 4 mm poplar leaves were measured at an incident angle of 67° as shown 

in Fig. 7b, which shows data acquired at 870 nm. For non-normal illumination geometries, the 

leaves exhibit strong forward scattering at all wavelengths for both fresh and dry samples. The 

backscattering is stronger for the dry samples. The BRDF of fresh and dry poplar leaves at 67o 

incident angle were compared at 340, 470, and 870 nm. The BRDF is lower at shorter 

wavelengths; however, the scattered light spatial distribution pattern is largely independent of 

wavelength. The glossy surface of a whole leaf has a well-pronounced specular component, 

whereas the crushed samples show predominantly diffuse scattering. The shadowing effect of the 

sample particles is also evident at 67° incident angle. 

The soil and leaf litter samples’ BRDF are shown in Fig. 8 at 340 nm and 870 nm. The 

BRDF distribution depends strongly on the nature of the sample (i.e., soil versus leaf) and the 

viewing angle. The soil samples, S1 and S2, exhibit enhanced optical backscattering. The leaf 

litter sample, L, however, behaves differently. The L sample exhibits equal forward scattering at 

340 nm as seen in Fig. 8a and enhanced backscattering at 470 and 870 nm, Fig. 8b, (470 nm data 

is not shown). The enhanced backscattering in the L sample is seen to increase with increasing 

wavelength. Although the BRDF at θi = θs could not be measured due to the relative geometries 

of the scatterometer source optics and detector, the BRDF for all samples show evidence of a 
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significant opposition effect represented by increased light being retroscattered back in the 

direction of the incident beam. 

In order to compare the laboratory-based BRDF with the airborne measurements, we 

calculated a composite laboratory-based BRDF from the following laboratory measured BRDF 

of four different samples: fresh and dry acacia leaves, crushed leaf litter, and soil samples. The 

ratio of each sample used to produce the composite laboratory-based BRDF was determined by 

the distribution of the four components as seen by the CAR instrument during its airborne 

missions. From a careful examination of photographs taken over Skukuza during SAFARI 2000, 

we estimated that the vegetation cover was 90% (80% fresh, 10% dry), 5% exposed leaf litter, 

and 5% exposed soil. The vegetation includes tree canopies as well as savanna grass. The 

simulated scene BRDF from the fractional laboratory-based BRDF measurements and CAR 

airborne data are presented in Fig. 9. 

The same general shape of the BRDF of the laboratory-measured samples and airborne 

measurements can be seen in the data of Fig 9. The BRDF matches very well from 0° to 60° 

viewing angle at 470 nm and from -15° to 60° viewing angle at 870 nm. However, there is a 

significant deviation between the laboratory and airborne data at increasingly negative scatter 

angles, corresponding to backscatter directions. The identification of the sources of differences in 

laboratory and airborne BRDF measurements through quantification of their effects on measured 

BRDF is an on-going goal of this research. 

 

B. Laboratory-based BRDF of salt pans, Etosha Pan 

The laboratory-based BRDF at 30o incidence for the four Etosha Pan samples is shown in 

Fig. 10 at 667 nm. The rock sample’s BRDF is higher as the particulate incident light shadowing 

and scatter light obscuration effects are the smallest. The finest structure sample, No.1 has 

distinctively higher BRDF than the two other larger fractions, samples No. 2 and 3. It is worth 
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noting that the shape of the BRDF curve for the rock sample is different than the shape of the 

regolith samples. It is also very important that all samples have apparent backscattering 

properties. Although the BRDF at θi = θs could not be measured due to the relative geometries of 

the scatterometer source optics and detector, the BRDF for all samples shows evidence of a 

significant opposition effect represented by increased light being retroscattered back in the 

direction of the incident beam. Sample No.2, with particle sizes between 1 and 2 mm, has the 

lowest BRDF. In addition to BRDF measurements, the samples’ spectral reflectance was 

measured with an Analytical Spectral Device (ASD) spectroradiometer in-plane at 30° incident 

angle and 30° angle from 350 to 2500 nm (see Fig. 11). The ASD reflectance spectra present a 

full reflectance picture for the VIS-NIR spectral range providing additional information on the 

Etosha Pan sample’s reflectance properties. 

In order to correctly compare the laboratory-based BRDF with the airborne measurements, 

we calculated the composite laboratory-based BRDF from the laboratory measured BRDF of the 

three different Etosha Pan samples. The ratio of each sample in the calculated laboratory-based 

BRDF was determined by the distribution of the three components as seen by the CAR 

instrument during the airborne measurements. From a careful examination of photographs of 

Etosha Pan the components were determined to be 25% EP1, 50% EP2, and 25% EP3. The 

simulated fractional laboratory-based data is compared to the CAR airborne data in Fig. 12. 

The same general shape of the laboratory-measured samples and airborne measurements can 

be seen in Fig. 12. The data matches well into the uncertainty for both wavelengths all over the 

viewing angular range with the exception of -80o where the CAR measured data are slightly 

higher. However, the airborne data at those two wavelengths are very close. The laboratory 

based data at 667 and 869 nm do show a larger difference than the CAR data at those 

wavelengths. 
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V. CONCLUSIONS 

This work is intended to describe more completely the BRDF of savanna vegetation and soil 

samples from Skukuza and soil samples from Etosha Pan measured in a laboratory environment. 

In addition, the laboratory results are compared to remote sensing measurements of these areas 

by the CAR instrument. In the laboratory measurements, the BRDF depends on the incident and 

viewing angles, on the nature of the sample (i.e., crushed versus whole leaf), on the sample status 

(fresh versus dry), on the sample biochemical composition for Skukuza samples, and on the 

particle size fraction for Etosha Pan samples. The analysis shows strong spectral dependence of 

the BRDF data on the leaf biochemical composition. The BRDF of the acacia whole leaf bottom 

was always higher than the BRDF of the top of the same leaf, due to the surface physical 

structure. The difference in BRDF between the two plant species, acacia and poplar, can be as 

high as 100%, illustrating the importance of knowing the vegetation type for airborne 

measurements. The difference between the BRDF of whole leaves, 4 mm, and 2 mm crushed 

leaves can be as high as 55% at 5° scatter zenith angle due to a strong specular component for 

the whole leaf sample and the presence of incident light shadowing and scattered light 

obscuration for the crushed leaves samples. The laboratory-based BRDF of Etosha Pan samples 

depend on sample fraction. It is highest for the rock sample and lowest for the larger size 

particles regolith sample. 

Laboratory-based and CAR airborne data sets were compared at 470 and 870 nm for 

Skukuza. They matched very well from 0° to 60° viewing angle at 470 nm and from -15° to 60° 

viewing angle at 870 nm. However, there is a discrepancy between the laboratory and airborne 

data at negative viewing angles, particularly at higher angles. We examined the difference 

between the optical scattering properties of fresh and dried vegetation in an effort to identify 

possible source for this difference. The degree of senescence of vegetation is one potential 

source for this difference. Laboratory-based and CAR airborne data sets from Etosha Pan were 

compared at 682 and 870 nm for the airborne data and 677 and 869 nm for the laboratory data, 
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respectively. The BRDF curves have the same general shape, and the data matches well into the 

uncertainty for both wavelengths over all viewing angular range. However, the airborne data 

show smaller BRDF differences between the two wavelengths than the laboratory-based data. 

The effects of atmospheric absorption and scattering from CAR measurements could be a source 

of uncertainty. We believe the laboratory results are going to be of great use to the remote 

sensing community in their modeling and correction efforts of airborne data. 
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Table I 

CAR SPECTRAL CHANNELS 

8 Continuously Sampled Channels 6 Filter Wheel Channels 

Spectral Channel Wavelength (FWHM) 

(nm) 

Spectral Channel Wavelength (FWHM) 

(nm) 

1 340 (9) 9 1556 (32) 

2 381 (6) 10 1656 (45) 

3 472 (21) 11 1737 (40) 

4 682 (22) 12 2103 (44) 

5 870 (22) 13 2205 (42) 

6 1036 (22) 14 2302 (43) 

7 1219 (22)   

8 1273 (23)   
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FIGURE CAPTIONS 

Fig. 1. a) Skukuza, b) Etosha Pan. 

Fig. 2. a) Scatterometer goniometric part, b) Scatterometer optical setup, c) CAR instrument. 

Fig. 3. Angular conventions: a) BRDF, b) BRF. 

Fig. 4. Skukuza leaf litter (L) and soil samples (S1) and (S2), b) Etosha Pan samples EP1, EP2, 

and EP3, c) Fresh acacia and dry poplar tree leaves and d) 2 mm and 4 mm cut poplar 

tree leaves. 

Fig. 5. a) Laboratory-based BRDF of S1, S2 and L samples at normal incidence and 870 nm. b) 

ASD reflectance spectra of leaf litter, soil and cut leaves. 

Fig. 6. a) Laboratory-based BRDF of acacia and poplar trees dry and fresh leaves at normal 

incidence and: a) 340 nm, b) 470 nm. 

Fig. 7. BRDF of whole, 4 mm, and 2 mm cut poplar leaves at a) normal incidence and 340 nm. 

b) 67° incidence and 870 nm. 

Fig. 8. BRDF of soil and leaf litter at 60° and a) 340 nm, b) 870 nm. 

Fig. 9. Simulated scene BRDF from the fractional laboratory-based BRDF measurements and 

CAR airborne data at 470 and 870 nm. 

Fig. 10. BRDF of Etosha Pan samples at 30o incident angle and 667 nm. 

Fig. 11. ASD reflectance of Etosha Pan samples at 30o incident angle and 30o scatter zenith 

angle. 

Fig. 12. Etosha Pan simulated scene BRDF from the fractional laboratory-based BRDF and CAR 

airborne data. 
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Fig. 1: a) Skukuza, b) Etosha Pan 
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Fig. 2: a) Scatterometer goniometric part, b) Scatterometer optical setup, c) CAR instrument 



GEORGIEV et al.: LABORATORY BRDF MEASUREMENTS OF VEGETATION AND SOIL 25 

 

 

a) b)

 
 

 

 

Fig. 3: Angular conventions: a) BRDF, b) BRF. 
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Fig. 4: a) The leaf litter (L) and soil samples (S1) and (S2), b) Etosha Pan samples, c) Fresh 

acacia and dry poplar tree leaves and d) 2 mm and 4 mm cut poplar tree leaves. 



GEORGIEV et al.: LABORATORY BRDF MEASUREMENTS OF VEGETATION AND SOIL 27 

 

 

0

10

20

30

40

50

60

70

80

Re
fle

ct
an

ce
(%

)

Wavelength (nm)

Leaf litter
Cut dry 2 mm
Cut dry 4 mm
Soil 1
Soil 2

Water

b)

0.00

0.05

0.10

0.15

0.20

0.25

BR
D

F 
(s

r-1
)

Viewing Angle (°)

Soil 2
Soil 1
Leaf Litter

a)

-60

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

-50 -40 -30 -20 -10 0 10 20 30 40 50 60

Protein, lignin,
and cellulose

Chlorophyll and
other pigments

Water and leaf structure

 
 

 

Fig. 5. a) Laboratory-based BRDF of S1, S2 and L samples at normal incidence and 870 nm. 

b) ASD reflectance spectra of leaf litter, soil and cut leaves at normal incidence and 60 deg 

viewing angle. 
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Fig. 6. a) Laboratory-based BRDF of acacia and poplar trees dry and fresh leaves at normal 

incidence and: a) 340 nm, b) 470 nm. 
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Fig. 7. BRDF of whole, 4 mm, and 2 mm cut poplar leaves at a) normal incidence and 340 

nm. b) 67° incidence and 870 nm. 
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Fig. 8. BRDF of soil and leaf litter at 60° incidence; a) 340 nm, b) 870 nm 
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Fig. 9. Simulated scene BRDF from the fractional laboratory-based BRDF measurements and 

CAR airborne data at 470 and 870 nm. 
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Fig. 10. BRDF of Etosha Pan samples at 30o incident angle and 667 nm. 
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Fig. 11. ASD measured reflectance of Etosha Pan samples at 30o incident angle and 30o 

scatter zenith angle. 
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Fig. 12. Etosha Pan simulated scene BRDF from the fractional laboratory-based BRDF and CAR 
airborne data. 

 


