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1 Introduction 
The Network for Earthquake Engineering Simulation (NEES) project aims to advance 
collaborative earthquake engineering research in the United States by improving facilities 
for physical and computational earthquake simulations and encouraging the sharing of 
data, facilities, and computational models. 
 
Traditionally, earthquake engineers have simulated the effects of ground motion on 
structures using one of two basic approaches:  using computational simulations or using 
physical simulations.  More recently, earthquake engineers have begun doing hybrid 
experiments:  coupled computational and physical simulations in which one part of a 
structure is modeled computationally and another part is modeled as a physical 
experiment.  The computational and physical simulations are run simultaneously; the 
results of both the computational and physical component for one time-step are used to 
determine the inputs to each for the next time-step.   Hybrid experiments have generally 
been tightly coupled, with the computational system and the physical control system 
communicating via a shared-memory backbone. 
 
We have designed and implemented the NEESgrid Teleoperations Control Protocol 
(NTCP)1 protocol and service to support distributed hybrid experiments that may include 
several computational simulations and several physical experiments.  The initial version 
of NTCP supports only “slow” hybrid experiments (experiments without strict 
performance requirements). 
 
Several of the design goals of NTCP were driven by properties of physical experiments: 
the specimens involved are often very large (weighing tens of tons) and take months to 
construct and install, and it is often difficult or impossible to “undo” a physical action 
(applying a force to an experiment specimen may cause a permanent, significant change 
to the properties of that specimen; the only way to reverse that change may be to 
construct and install a new specimen). 
 
One design goal for NTCP was to support a common protocol for both physical 
experiments and computational simulations; this allows for development and testing of 
computational components while the physical components are being constructed, for 
simulation-only dry-runs of experiments, and for the possibility of replacing a physical 
experiment with a computational simulation in the event of a fault (such as a network 
partition) during a distributed experiment run. 



Another design goal was to support fault recovery to the greatest extent possible:  a 
distributed simulation should not fail because of a momentary network interruption or 
because a system hosting a client or computational simulation crashed; for this reason, we 
chose to implement at-most-once execution semantics in NTCP. 
 
A final design goal was to allow for separate negotiation and execution phases, to allow a 
client application to verify that the actions proposed for a time-step are acceptable to all 
sites involved, before actually sending a request to take any physical action. 

2 The NTCP Service 
The NTCP service performs actions on control points.  In general, a control point is a 
simply a point at which an action may be taken (or simulated).  In a physical experiment, 
a control point is a physical point on the experiment specimen at which forces may be 
applied by actuators.  In a physical experiment, there is often a many-to-one relationship 
between actuators and control points (for example, there may be actuators positioned to 
move the same control point along different axes). 

2.1 Protocol and State Model 
The NTCP protocol is transaction-based, and the three primary requests in the NTCP 
protocol (propose, execute, and cancel) manage the state of a transaction: 
 
 

 
Figure 1:  Transaction life-cycle 

A transaction may be in one of three possible states:  accepted, executing, or terminating.  
Transactions are created with the NTCP propose request, in which the client sends a 
proposal, consisting of a new transaction name, a set of control points and associated 
parameters that specify the proposed actions, and three timeout values.   In a typical time-
step, the client sends a propose request, which the server accepts, creating a new 



transaction in the accepted state and replying to the client. The client then sends an 
execute request to the server, which will change the transaction’s state to executing , 
begin the action (or computation) specified in the transaction, and reply to the client.  
Finally, when the action (or computation) is complete, the server will change the 
transaction’s state to terminated.  The execute request does not return the transaction 
results to the user (because it returns when execution is initiated, not when it completes); 
instead, transaction results are communicated to the user via service data. 
 
Other circumstances may cause the transaction to become terminated:  the server may 
reject the proposal (and create the transaction in the terminated state); the client may send 
a cancel request; the site’s policies may change between the time that the transaction was 
created and the time the server receives the execute request. 
 
The timeout values included in the proposal are the proposal timeout (if the proposal is 
received after this time, the server will ignore the proposal), the transaction timeout (if 
this time passes and no execute request has been received for this transaction, the 
transaction will time out and become terminated), and transaction state timeout (the time 
until which the server is expected to remember the transaction’s state). 
 
The server will reject duplicate requests:  propose requests in which the transaction name 
is the same as the name of an existing transaction, and execute requests in which the 
named transaction is not in the accepted state. 
 

 
Figure 2: Control point state transitions 

Control points have their own associated state; a control point may be either reserved 
(associated with a transaction that is not terminated) or available.  A control point may 
not be associated with two active transactions at once; a proposal for a transaction 
involving a reserved control point will be rejected. 
 
This state model guarantees that,  for each control point, at most one transaction 
involving that control point is executing at any time, and that any two transactions that 
are executed on one control point are executed in the same order in which they were 
accepted.  We do not make any guarantees about the order in which the actions involved 
in a single transaction are executed (e.g., if a transaction involves control points A and B, 
the action involving A may be executed before, at the same time as, or after the action 
involving B) or about what happens in the time between two transactions involving the 



same client; if the latter kind of guarantee is desired, it could be provided via a 
community scheduler. 
 
A typical time-step in a distributed experiment using NTCP includes a negotiation phase, 
in which the client sends proposals to all the NTCP servers involved in that time-step 
and an execution phase in which the client sends execute requests to those NTCP servers, 
and a verification phase in which the client receives the final results from the transactions 
(and possibly additional sensor readings from external sources) and calculates the desired 
behavior for the next time-step.  If a proposal is rejected during the negotiation phase, the 
client may choose to cancel some of the outstanding proposals and send new proposals 
with different request parameters, repeating that process until a satisfactory set of 
proposals has been accepted. 
 
There are several additional NTCP requests:  setParameters and getParameters to set and 
query experiment parameters, openSession and closeSession to bring the control system 
associated with the server to a well-known state, and getControlPoint (to query the status 
of a control point, which may involve sending a request to a control system or 
simulation). 

2.2 Service Data Elements 
The state of each transaction is kept as a service data element that is created when the 
transaction is created and updated whenever the transaction changes state: 
 
This service data element includes the transaction name, control point parameters, and 
timeouts that were specified in the proposal that created this transaction, the transaction 
state (accepted, executing, or terminated), and the name of the authenticated user who 
created the transaction.  If the transaction entered the executing state, the time of that 
state transition is included; similarly, if the transaction is terminated, the transaction’s 
termination time is also recorded.  Finally, if the transaction executed successfully, the 
measured (or calculated) results. 
 
NTCP maintains a SDE for each transaction (until that transaction’s transaction state 
timeout has passed, and an additional SDE that contains this information about the 
transaction that was most recently created or changed. 

3 Application Experience:  the MOST Experiment 
The first real test of NTCP was the Multi-site Online Simulation Test (MOST) 
experiment, designed by earthquake engineers at the University of Illinois at Urbana-
Champaign and the University of Colorado2.  The MOST experiment modeled part of a 
the frame from the interior of a (hypothetical) building, and involved a physical 
experiment at UIUC (with a full-scale model of a frame column), a physical experiment 
at the University of Colorado (with a full-scale model of another frame column) and a 
computational simulation at NCSA (modeling the rest of the partial frame).  The full 
MOST experiment consisted of 1500 time-steps, which ran for approximately 5.5 hours.  
The computational simulations were written by earthquake engineers at UIUC and 
modified to use NTCP by an earthquake engineer at USC.  The original simulations were 



provided to us early, while we were still in the process of designing NTCP, and resulted 
in the addition of some NTCP requests (including the requests to set and query 
experiment parameters) that had not been part of our original design. 
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Our implementation of NTCP is based on the Globus Toolkit, version 3.0, and consists of 
a server that provides the core functionality (state management, etc.) and calls out to a 
control plugin (a Java class that implements the NTCP Control Plugin Interface3) and 
handles communication to the (site-specific) control system or backend simulation. 
 
The MOST experiment involved a single client, called the simulation coordinator, which 
communicated with three NTCP servers:  an NTCP server at UIUC configured to use a 
custom control plugin to control a Shore Western servo-hydraulic system, an NTCP 
server at NCSA configured to use a control plugin (called the Mplugin) to communicate 
with a Matlab simulation, and an NTCP server at the University of Colorado configured 
to use the Mplugin to communicate with a Matlab simulation, which in turn used 
Matlab’s xPC product to control a servo-hydraulic system.  The simulation coordinator 
was written in Matlab; it made calls to a Matlab toolbox (a library of Matlab functions) 
which in turn made calls to the NTCP Java client API. 
 
For pre-experiment testing, we also ran a fourth NTCP server:  a server at UIUC 
configured to use the Mplugin to communicate with a Matlab simulation that emulated 
the physical experiment at UIUC.  We were thus able (by configuring the simulation 
coordinator to use one or the other of these NTCP servers) to switch between using a 
physical experiment or computational simulation at UIUC.  We were also able to switch 
between physical and computational modes at Colorado by changing a parameter on the 
Colorado simulation; thus, we could test with any combination of physical and 
computational simulations at UIUC and Colorado.  We did the vast majority of pre-
experiment testing using only computational simulations. 
 
A dry-run of the MOST experiment (using servo-hydraulics at UIUC and Colorado and a 
computational simulation at NCSA) ran successfully to completion in about 5.5 hours.  
The MOST experiment itself ran to step 1494 (of 1500), at which point an NTCP request 
timed out, and the simulation coordinator terminated the simulation.  In fact, we had 
outlined a strategy for client-side retries in the event of such a timeout but have not yet 
implemented that strategy. 
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4 Security Considerations 
The possible risks associated with a physical experiment are higher than the risks 
associated with most computing applications – accepting a “bad” request from a 
malicious (or simply broken) remote application could damage equipment or experiment 
systems, or in some cases even lead to serious injury.  Our implementations of NTCP and 
related software were built using commonly-availably tools and run on commodity 
operating systems, and thus cannot be guaranteed to be completely secure.  We have 
recommended that the equipment sites should have appropriate non-software-based 
controls and procedures in place to safeguard their equipment and personnel. 

5 Future Work 
The NEES project is in the planning stages of a program of “experiment-based 
deployment” of NTCP, in which the experiment sites will install NTCP, integrate it with 
their local systems, and test it in MOST-like multi-site experiments. 
 
We plan to implement more fault-tolerance features, including persistent state in the 
server, retries in the client API; we are also plan to provide tools and guidance for 
developers of plugins and backend systems to improve the fault-tolerance throughout the 
system. 
 
NTCP has some obvious parallels to OGSI-Agreement4:  the propose/accept exchange is 
essentially the creation of an agreement; however, NTCP agreements would be much 
shorter-lived than agreements for most other services.  We plan to investigate the 
possibility of migrating NTCP to the OGSI-Agreement framework. 
 
The current version of NTCP supports “slow” hybrid experiments but does not support 
“fast” experiments with near-real-time performance requirements.  We are working now 
with earthquake engineers to try to support these experiments; in the NTCP model, this 
will involve putting some fine-grained experiment control logic into the backend system 
(that is, the local control system). 
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