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Abstract

In TREC Genomics a question/answering task has been proposed. A
set of questions with a specific entity of interest is proposed and a set of
passages from a collection of full text documents has to be selected from
the document collection provided. We have used a two step approach:
the first one is recall-oriented retrieval, and the second is an information
extraction system that is intended to provide higher precision. We rely
on well known techniques like query expansion and resources like MeSH
and UMLS. The information extraction techniques are part of the infras-
tructure of the Text Mining Group at European Bioinformatics Institute.

Using standard information retrieval techniques has been found more
beneficial than using more complex processing. Having analyzed the re-
sults we find that the performance of query expansion varies for different
topics. There are several reasons. Terminological resources may contain
ambiguous synonyms or synonyms whose textual usage patterns differ
from the usage of the original query terms. On the whole our performance
was similar to the mean results from the three performance measures.

1 Introduction

In TREC Genomics a question/answering task has been proposed. A set of
questions with a specific entity of interest is proposed and a set of passages
from a collection of full text documents has to be selected from the document
collection provided. Query/answering systems have been evaluated using differ-
ent strategies. In TREC Genomics the strategy is closer to a retrieval system
since we have been asked to retrieve specific passages from the document collec-
tion. The specific answer to the question is not required to be extracted from
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the spans. We used a two step approach: the first step is a recall oriented re-
trieval and the second is an information extraction approach that is intended to
increase the precision of the retrieved set. In the following section we introduce
the different techniques used, then we present the results and an analysis of the
different factors in our system and finally we draw some conclusions.

2 Description

2.1 Indexing

The documents are provided by Highwire Press 1 and are in HTML format.
The documents have been divided into spans of text. These spans are identified
by the p tag. Since there are several sections in the documents that are not
interesting (e.g. references or authors list) or passages that are too short to
contain any interesting information; we have filtered spans based on regular
expressions and spans under 300 characters. The remaining spans are indexed.

Our index is based on Lucene 2. We have proposed an improvement on the
scoring function of Lucene 3 based on Singhal et al.[4] because we realized that
Lucene gives more relevance to very frequent terms in the documents. This
lead to the undesired effect that some spans where ranked higher because they
contained frequently the occurrence of one specific term from the topic; as in
the case of cancer. We introduced modifications to the tf (term frequency)
function and the lengthNorm function in the DefaultSimilarity class of Lucene.
The slope and pivot are 0.2 and 300 repectively. The other variables like freq

and numTerms are provided by Lucene.

tf = 1.0 + log(freq) (1)

lengthNorm =
1

(1.0 − slope) ∗ pivot + slope ∗ numTerms
(2)

Even though the integration of Lucene into an IT solution is easy, the pos-
sible improvements to the score function are limited by the information made
available to the functions in the Similarity abstract class. For instance, if we im-
plement or override the tf function the only information is the term frequency.
It is not possible to know any other information from the document or any
other statistic from the Lucene index. An assessment of the default similarity
function provided by Lucene and the modified scoring function can be found
in the Results section. The spans have been split into word tokens and these
tokens are converted into their singular form and filtered using standard stop
word list.

1http://www.highwire.org
2http://lucene.apache.org
3http://lucene.apache.org/java/2 2 0/api/org/apache/lucene/search/Similarity.html
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Entity Type Source

ANTIBODIES MeSH
BIOLOGICAL SUBSTANCES Not considered
CELL OR TISSUE TYPES MeSH
DISEASES MeSH
DRUGS DrugBank
GENES SwissProt
MOLECULAR FUNCTIONS GO
MUTATIONS MeSH
PATHWAYS Not considered
PROTEINS SwissProt
STRAINS Not considered
SIGNS OR SYMPTOMS MeSH
TOXICITIES UMLS
TUMOR TYPES MeSH

Table 1: Entity types and knowledge source selected

2.2 Retrieval

In our approach we combine information retrieval and information extraction.
In the retrieval part we used an entity recognizer to link the topic with the
query expansion procedure. The recognized entity is identified in a datasource
and is used to expand the topic with the synonyms. The retrieved spans are
postprocessed with an entity recognizer to identify the entities. These entities
are matched with the entities in the topic and a boosting factor depending on
the matching with the topic is applied.

2.2.1 Entity Recognizer

The entity recognizer allowed us to identity specific entities occurring in text
from a diverse set of entity types. The output of the recognizer is used by the
query expansion mechanism and by the boosting of the documents. Table 1
shows that although we considered several terminological resources we have not
been able to cover the full range of entity types due to time constraints.

The set of terms provided by the different sources has been processed to
avoid different types of ambiguities. We have removed terms from a stop word
list, terms with less than two characters or only numbers and very common
English terms identified from the Brown Corpus. This processing does not
require domain knowledge and removes very ambiguous cases.

We have built the named entity recognizers based on a dictionary look-up
approach4 that offers quite flexibility since we only require the terminology for
each semantic type. Ambiguity between the entity types is solved based by
prioritizing terms[1].

4http://monqjfa.berlios.de
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2.2.2 Query Expansion

In order to increase the recall of the set of retrieved passages, we have exper-
imented with three different query expansion techniques. The lexical resource
used for this purpose was a term repository developed as part of the Bootstrep
project. It currently contains terms denoting genes, protein, chemicals, species
as well as other semantic types imported from several bio-ontologies. Some ini-
tial filtering and normalisation of terms was applied on the repository56. We
compare the results obtained with the different query expansion techniques and
their combinations in the Results section.

Staightforward Expansion The first technique is based on simply fetching
synonymous terms from the term repository and translating them into sets
of variants joined with the boolean operator OR. The synonymy relationship
between the query terms and variants found in the repository is taken at face
value. In other words, if a variant is recognized as a synonym of a query term
in the repository, it is appended to the query term with an OR operator.

Filters In the second technique, we apply some restrictions on certain types
of terms that can be used to expand queries. In particular we filter out some
gene and protein names, largely due to the fact that these terms tend to be
polysemous. The following restrictions were applied:

1. Very short and potentially polysemous or irrelevant gene/protein names
matching patterns such as ”[a-zA-Z0-9]{1,2}-[0-9]{1,2}” were discarded
altogether.

2. Only synonyms which were likely to be expanded or abbreviated forms of
original query terms were selected. This was decided on the basis of string
similarity based on [3]. Thus, arbitrary synonyms which are more likely
to coincide with terms with other meanings were not included.

Term Boosting The third technique is meant to depress the significance of
big synsets based on the intuition that a large set of synonyms for one of the
query terms might bias the whole query towards that term. Thus, we have
attached a boosting factor to each term which we obtained with the following
formula:

1

(log(n) ∗ alpha) + 1
(3)

where n is the number of synonyms obtained for a given topic term and
alpha = 0.5. Thus, if a protein name such as ’PSD-95’ gets expanded into the
following set of potentially synonymous sets:

5http://www.bootstrep.org
6ftp://ftp.ebi.ac.uk/pub/software/textmining/bootstrep/termrepository/20092007
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(Dlg4 OR ”Discs large homolog 4” OR Sap90 OR Psd95 OR PSD95 OR
”Synapse-associated protein 90” OR DLG4 OR ”Postsynaptic density protein
95” OR ”SYNAPSE-ASSOCIATED PROTEIN 90” OR dlg4 OR ”postsynaptic
density protein 95” OR ”discs large homolog 4” OR PSD-95 OR SAP90 OR
Dlgh4)0.42

The set of expanded synonyms gets a relatively low boosting factor of 0.42,
as it might contain polysemous terms which could affect the precision of the
results retrieved.

2.2.3 Document Boosting

The document retrieval is expected to provide a ranked list of documents with
high recall. Due to the term ambiguity some documents are ranked higher even
if the words are not relevant to the topic. This has been covered partially in
the query expansion, where some abbreviations for proteins have been correctly
identified and expanded to the long form.

We propose to analyze the documents and boost the passages that make an
explicit reference to the entities identified in the topic. The first 3000 documents
are retrieved and annotated. Then the matching entities in the topic and the
document are counted and this count (boosting factor) is combined with the
score provided by the retrieval system using a linear combination.

span score = α ∗ lucene score + β ∗ boosting factor (4)

The factors α = 1.0 and β = 0.2 have been tuned using 2006 TREC Ge-
nomics Gold Standard.

2.3 Minimum Span locator

The spans retrieved may contain information irrelevant to topic. To identify the
interesting pieces of text in a given span we propose to look for the sentences
that are more similar to the topic and keep them. We use a bag-of-words
representation of the topic and the span sentences. Then the first sentence for
which the similarity was higher from a given threshold is collected. The same
technique is used to identify the last sentence that may contain interesting
results. The approach is quite conservative since we want to avoid removing
interesting parts of the text. The similarity is based on the cosine similarity.
The values of the vectors for the sentences and the topic are based on the term
frequency and the inverted document frequency obtained from the index built
for the spans. The threshold is estimated based on the 2006 TREC Genomics
Gold Standard.

cos(v1, v2) =
v1 · v2

|v1| × |v2|
(5)
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RUN DOCUMENT ASPECT PASSAGE2

Maximum .3286 .2631 .1148
Median .1897 .1311 .0377
Mean .1862 .1326 .0398
EBI1Lucene .1799 .1513 .0404
EBI2Fusion .1768 .1470 .0401
EBI3Boosting .1522 .1247 .0339
Lucene .1634 .1340 .0386

Table 2: Average DOCUMENT, ASPECT and PASSAGE2 for the Maximum,
Median, Mean and our official runs

3 Results

We submitted three runs. EBI1Lucene used the modified Lucene index and
the minimum span locator (no query expansion or boosting has been applied).
EBI3Boosting used the modified Lucene index with query expansion, boost-
ing and the minimum span locator. EBI2Fusion combines EBI1Lucene and
EBI3Boosting by doing the sum of the scores for each span, reranking with the
new score and taking the first 1000 spans. In table 2 we see the performance of
each of our three runs and the maximum, mean and median of the automatic
runs in the TREC Genomics.

EBI1Lucene provided the best performance for the three runs that we have
submitted. Our runs have a performance comparable with the average of the
other participants in TREC. In table 3 we can compare the different approaches
with the maximum and median for each one of the individual topics from the
automatic runs. As we can see for some topics EBI3Boosting outperformed
EBI1Lucene but globally the performance is either the same or worst. In the
following sections we will identify the issues for which query expansion and
boosting did not have the expected performance.

We have proposed some improvements on Lucene’s Similarity class (ref. In-
dexing section). On table 2 we can find the performance of the standard Lucene
and our modified version (EBI1Lucene). The modified version outperforms the
standard Lucene in almost all the topics.

We have evaluated the minimum span Locator with the PASSAGE2 measure
and EBI11Lucene run with and without the minimum span locator. We found
and increase of 7.23% in the PASSAGE2 measure. In most of the cases our
approach improved the performance based on just delivering the span without
any further processing. On the other hand the PASSAGE2 measure is depen-
dent on the span ranking. This means that PASSAGE2 has a dependency on
the DOCUMENT measure and it is difficult to compare the behaviour of the
different algorithms provided by the participants.

Table 4 summarizes the results obtained for the abovementioned query ex-
pansion techniques and their combinations. Filtering out potentially polysemous
gene and protein names without term boosting gave the best results, although
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Topic Max Median EBI1Lucene EBI2Fusion EBI3Boosting

200 .449/.360/.292 .253/.097/.015 .1991/.1332/.0412 .2944/.1788/.0558 .3366/.1873/.0624

201 .612/.324/.227 .222/.063/.016 .3615/.1728/.0315 .2014/.0594/.0116 .0398/.0062/.0015

202 .131/.129/.017 .024/.002/.001 .0182/.0043/.0006 .0181/.0047/.0008 .0181/.0047/.0008

203 .648/.54/.312 .451/.161/.013 .4784/.3482/.0430 .5260/.3606/.0471 .5143/.3506/.0483

204 .674/.664/.414 .444/.318/.02 .2926/.3177/.0089 .2907/.3517/.0088 .2903/.3553/.0088

205 .269/.115/.016 .067/.03/.004 .1408/.0684/.0145 .1424/.0695/.0145 .1432/.0700/.0147

206 .644/.602/.106 .424/.102/.039 .3796/.1658/.0423 .3954/.1692/.0416 .3954/.1692/.0413

207 .261/.075/.001 .057/.006/0 .0312/.0111/.0008 .0308/.0103/.0008 .0300/.0101/.0007

208 .449/.203/.086 .285/.031/.016 .1249/.0221/.0049 .1299/.0223/.0037 .1295/.0222/.0037

209 .508/.641/.562 .209/.222/.127 .0258/.0461/.0286 .0258/.0462/.0277 .0258/.0463/.0276

210 .246/.184/.057 .08/.032/.008 .1083/.0323/.0098 .1095/.0325/.0084 .1077/.0317/.0084

211 .574/.141/.08 .322/.039/.011 .3631/.0770/.0128 .4110/.0931/.0139 .3677/.0693/.0120

212 .47/.472/.278 .233/.277/.098 .3030/.4071/.1112 .3039/.4036/.1111 .3048/.4039/.1112

213 .698/.673/.179 .432/.198/.077 .3715/.4013/.0884 .3712/.4001/.0892 .3709/.4001/.0897

214 .742/.709/.221 .325/.335/.077 .3361/.5431/.0976 .3254/.5224/.0924 .2960/.4864/.0770

215 .504/.332/.159 .322/.118/.051 .4191/.2679/.1266 .3283/.2345/.0933 .2265/.1651/.0610

216 .156/.192/.014 .046/.015/.002 .0685/.0550/.0029 .0578/.0466/.0026 .0101/.0075/.0005

217 .061/.046/.023 .008/.003/.001 .0163/.0086/.0026 .0123/.0066/.0020 .0016/.0007/.0003

218 .366/.24/.181 .241/.096/.033 .2036/.1490/.0783 .2047/.1494/.0833 .2046/.1491/.0833

219 .204/.324/.06 .014/.005/.001 .0686/.0636/.0167 .0070/.0039/.0003 .0685/.0634/.0369

220 1/1/.549 .27/.312/.066 .2415/.2381/.0134 .1848/.1508/.0025 .0058/.0034/.0001

221 .681/.521/.318 .509/.272/.086 .5675/.4169/.1821 .5704/.4301/.2213 .3626/.3755/.1462

222 .338/.338/.12 .054/.124/.025 .0477/.1746/.0825 .0477/.1746/.0825 0/0/0

223 .315/.157/.052 .146/.079/.005 .0488/.0074/.0009 .0491/.0147/.0016 .0490/.0147/.0016

224 .673/1/.724 .003/.002/0 .0005/.0011/.0001 0/0/0 0/0/0

225 .333/.333/.084 .018/.006/.001 0/0/0 0/0/0 0/0/0

226 .754/.68/.156 .215/.147/.013 .0984/.2422/.0078 .1070/.2437/.0076 .1113/.2502/.0078

227 .366/.416/.161 .187/.095/.032 .2820/.1824/.1156 .2862/.1889/.1166 .2855/.1934/.1140

228 .099/.216/.013 .01/.004/.001 .0140/.0114/.0006 .0143/.0102/.0007 .0141/.0100/.0007

229 .643/.804/.247 .278/.293/.044 .2074/.2568/.0343 .3448/.2932/.0647 .3844/.3292/.0759

230 .367/.466/.249 .213/.187/.091 .2264/.2747/.1951 .2129/.2705/.1914 .1969/.1527/.1716

231 .277/.248/.047 .059/.024/.001 .0465/.0289/.0003 .0322/.0528/.0004 .0042/.0016/0

232 .28/.211/.028 .081/.019/.002 .1640/.0945/.0086 .1780/.1073/.0083 .1412/.0754/.0056

233 .215/1/.065 .04/.029/.001 .0745/.1429/.0084 .0564/.125/.0062 .0294/.0714/.0028

234 .221/.24/.103 .077/.073/.01 .0054/.0048/.0003 .0054/.0048/.0003 .0054/.0048/.0003

235 .442/.364/.34 .117/.064/.012 .1422/.0764/.0405 .0885/.0612/.0310 .0063/.0079/.0021

Table 3: DOCUMENT, ASPECT and PASSAGE2 for the Maximum, Median
and our official runs per topic
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Expansion DOCUMENT ASPECT PASSAGE2

EBI1Lucene (no expansion) .1799 .1513 .0404
No filtering, no term boosting .1455 .1162 .0293
Filtering, no term boosting .1511 .1242 .0337
No filtering, term boosting .1352 .1130 .0290
Filtering, term boosting .1453 .1200 .0317

Table 4: Average DOCUMENT, ASPECT and PASSAGE2 for the EBI1Lucene
and the different query expansions

on average they were still worse than the baseline modified Lucene score. Fig-
ure 1 shows the biggest increments and decrements in the document per query
score after applying query expansion. The biggest depression of performance
was noted for topic 201. This could be due to the fact that one of the query
terms cancer was expanded into several apparent synonyms such as tumor or
neoplasm. Although their denotative meaning is similar from the point of view
of an abstracted lexical resource (MESH in this case), in real textual usage
cancer, tumor and neoplasm may have a complementary distribution. As an
example, the term tumor could denote any increase of the size of a tissue or
an organ, such as the enlargement of a gland. Neoplasm typically refers to
the generation of new tissue, whereas cancer has the additional characteristics
of invading surrounding tissues, dislocating and forming neoplasms elsewhere
(metastasis). Because all these different senses are bundled together under one
MESH entry and thus the expansion of the term cancer leads to a very dispersed
query. Topic 200 is an example of a successful expansion. The term lupus was
expanded with its rarer full form lupus vulgaris, whose exact occurrences in
some of the passages produced a better idf score than could have been obtained
if only the occurrences of the more frequent short form lupus were considered.

We have applied boosting in EBI3Boosting after query expansion. As we can
see in figure 1 boosting increased slightly the DOCUMENT measure for a large
number of topics but decreased the performance from some of the topics like 204.
In this topic, the term neurosteroids has not been recognized so documents that
were more specific to nervous system and brain have been given more relevance.
The effectiveness of the method requires high precision and recall information
extraction and a high coverage of the biomedical terminology. The variety
of topics does not allow further tuning as proposed in [2] where a template-
dependent selection of entities provided higher effectiveness.

4 Conclusion

Modification of Lucene has provided our best run, although the Lucene scoring
function can be further improved. These improvements are limited by the way
the Lucene package is designed. We expected this run to be the baseline for
our other two runs. We have found that query expansion and boosting had
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Figure 1: Increment of DOCUMENT per query using the query expansion ap-
plying filtering and no term boosting and document boosting versus the modified
Lucene

Figure 2: Increment of DOCUMENT per query using document boosting versus
the query expansion applying filtering and no term boosting

very different behaviour for the different topics and this may indicate that it
is difficult to use a unified technique for different topics [5]. In addition, ex-
panded terms can have a different distribution of usage as in the case of MeSH
synonyms for cancer. The document boosting suffered from the coverage of the
entity recognizer since in some cases a relevant entity was not detected and the
spans containing the other recognized entities were prefered. The fusion run
(EBI2Fusion) did not provide the desired effect and this may be due to the fact
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that the two runs used for the fusion were based on the same retrieval engine and
the variations like query expansion and boosting applied in one of the runs did
not provide a positive effect thus decreasing the performance of the combined
run.
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