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FIRE is a “Modest” Extrapolation in Plasma Confinement

ωcτ
ρ* = ρ/a
ν* = νc/νb
β

Dimensionless
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Transport Issues/Benefits from a Major Next Step Tokamak Experiment

•  Predicting confinement and performance is a central issue for a next step
experiment that challenges our understanding and predictive capability.

•  Methods Available

1.  0-D Statistical based models (eg ITER scalings for H-Mode)
dimensionless variables ala wind tunnel
projections from individual points(Barabaschi) or similar points(DM)

2.  1 1/2-D (WHIST, TSC, Baldur, ASTRA)
profiles and time evolution

3.  “First Principles” based core transport models
- gyrokinetic/gyrofluid (GLF 23)
- multi-mode model

•  What experimental capabilities or features in a next step experiment are
needed to better resolve and understand transport issues?
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4.  Edge Pedestal and density limit models



Guidelines for Estimating Plasma Performance

Confinement (Elmy H-mode) - ITER98(y,2) based on today's data base

τE = 0.144 I0.93 R1.39a0.58 n20
 0.41 B0.15Ai

0.19  κ0.78 Pheat
-0.69

Density Limit -  Based on today's tokamak data base

n20 ≤ 0.8 nGW  =  0.8 Ip/πa2,  

Beta Limit - theory and tokamak data base

β ≤ βN(Ip/aB),     βN < 2.5 conventional, βN ~ 4 advanced

H-Mode Power Threshold - Based on today's tokamak data base

Pth  ≥  (2.84/Ai) n0.58 B      Ra        ,  same as ITER-FEAT   

Helium Ash Confinement τHe = 5 τE,       impurities = 3% Be, 0% W
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Understanding is mainly empirical.  Better understanding is needed from existing experiments with improved simulations, and a benchmark in alpha-dominated  fusion plasmas is needed to confirm and extend the science basis.
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Comparison Operating Ranges of ITER-EDA, 
ITER-FEAT and FIRE with JET H-Mode Data

Extension of JET parameter domain 
leading to simultaneous realization of 
H98(y,2) = 1,  n/nGW>0.9 and βN>1.8  
using different approaches and
   

In addition Plasma purity as required for 
ITER: Zeff ~ 1.5

For quasi-stationary phases of several 
seconds

 

Adaptation of Vg shown by  J. Ongena      at 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira       18 - 22 June 2001 
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•  A more extensive study of the operating range with the latest public data base DB3v10 will be done for Snowmass.  Also Cordey EPS paper showing H(n/nGW,    , n(0)/<n>, etc
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Projections to FIRE Compared to Envisioned Reactors
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An analytic expression for the TAE/EPM stability boundary is being developed.
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Parameters for H-Modes in Potential Next Step D-T Plasmas
ITER-FEAT (15 MA): Q = 10, H = 0.95,  FIRE*(7.7 MA): Q = 10, H = 1.03,  JET-U (6 MA):  Q = 0.64, H = 1.1
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1 1/2-D Simulation of Elmy H-Mode in FIRE (TSC)

•  ITER98(y,2) scaling with H(y,2) = 1.1, n(0)/<n> = 1.2, and n/nGW = 0.67

•  Burn Time ≈ 20 s  ≈ 21 τE ≈ 4 τHe ≈ 2 τskin  

Q ≈ 12

DMeade
Q = Pfusion/(Paux + Poh)
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DIII–D

GLF23 Transport Model With Real Geometry
ExB Shear Shows Improved Agreement With

L- and H-mode and ITB Profile Database

· Statistics computed incremental stored energy (subtracting pedestal
region) using exactly same model used for ITB simulations
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Pedestal Temperature Requirements for Q=10

Device Flat ne Peaked ne Peaked ne w/ reversed q

IGNITOR

FIRE

ITER-FEAT

5.0 5.15.1

4.0 3.44.1

5.6 5.45.8

*

* n    / n      = 1.5 with n      held fixed from flat density caseeo ped ped

11.4 MW auxiliary heating

l

l 50 MW auxiliary heating

v

v 10 MW auxiliary heating

w

w flat density cases have monotonic safety factor profile
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GLF23 Predicts an Internal Transport Barrier in FIRE as a  Result of Shafranov-Shift Stabilization of the ITG Mode
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•  Barrier only forms if some density peaking is present.
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•  Diamagnetic component of ExB shear helps after ITB is formed.



1 1/2 D Simulation of a Burning (Self-Drive > 50%) Plasma in FIRE

•  χχχχ(r) matching exp't data,  H(y, 2) = 1.6,   other models available (eg. GLF23)

•   ββββN = 3.0,  fBS = 64%, reversed shear, qmin ≈≈≈≈ 2.7 at r/a ≈≈≈≈ 0.8 ,  3/2,5/2 NTM stable

64% self-current drive

60 % self-heated

PLoss

partial wall for n= 1

TSC -C. Kessel APS-DPP



Confinement Status and Needs Regarding FIRE

•  Present confinement understanding provides a reasonable estimate of burning
plasma performance.  However, the desire to reduce size (cost) drives one to
reduce the margin.

•  A combined experimental, theoretical and simulation initiative with the goal of
improving the predictions for a Next Step Experiment, such as FIRE, would 
serve to highlight and focus effort on this area.  The VBPX.

•  What capabilities are needed in a Next Step Experiment to help resolve the
confinement issues critical to understanding and predicting the performance of
a fusion plasma?  How does one characterize the plasma boundary in terms of
dimensionless or dimensional parameters

•  Fusion reactors of the future would benefit from improvements such as H≈ 1.2,
modest peaking and n ≈ nGW as well as advanced tokamak features.  The NSO
should be able to explore these areas.
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•  The effort in preparation for the Snowmass Summer Study 2002 will energize    the effort on confinement issues.


