SWCNT NanoCompass for High Spatial Resolution Magnetometry

Outline

Carbon Nanotube-based Magnetometer

- Background: Carbon Nanotubes
- Electromechanical Properties of SWCNTs
- Magnetometer design and fabrication
 - Fe(NO₃)₃ catalyst
 - Thin film Fe catalyst
- Measurements:
 - Magnetoresistance
 - Temperature Dependence
- Conclusions and Future Work

Carbon Nanotubes

Characterized by chirality, diameter

Courtesy Fuhrer Group, Univ Maryland, College Park

Electronic Properties: CNTs

Metallic or Semiconducting

Radial Boundary Conditions

 \rightarrow Wavevector quantization

Discrete Bands

- ✤ Metallic
- Semiconducting

 Difficult to control → trend towards CNT network devices

S. A. Getty

CNT Strain Sensor

Modulation of conductance by mechanical deformation

CNT versus Silicon

The relative change of the plezor

CNTs $\Delta \sim 4$ orders of magnitude for $\theta \sim 25^{\circ}$

Maiti et al., PRL (2002)

Y. Su et al., J. Micromech. Microeng. (1996)

The deflection of the cantilever paddles(um)

Silicon piezoresistors $\Delta \sim 12\%$ for $\theta \sim 30^{\circ}$

70

20KU ND 46MM S 00000 P 00000

341X

NASA Headquarters

10

20

Technological Motivation

Applications:

- Magnetospheric Science
- Spacecraft Orientation
- Planetary Geomagnetism

*Fluxgate Magnetometer:*High sensitivity (nTesla)

- Low noise but
 - cm-scale resolution
 - Limited materials supply

M. H. Acuna, Rev. Sci. Inst. 73, 3717 (2002)

March 19, 2007

S. A. Getty

Projected Specifications

	NanoCompass (estimated)	UCLA fluxgate (ST5)
Max Op Temp	~450°C	100°C
Sensor Dimensions	10⁻⁵ cm x 10⁻⁵ cm on Si (scalable)	4 cm x 4 cm x 6 cm
Sensor [Array] Mass	1 g	75 g
Sensor Op Power	10 ⁻³ - 10 ⁻² mW	50 mW

NanoCompass Design

Single-Walled Carbon Nanotubes

Au Electrodes

March 19, 2007

S. A. Getty

- Ferromagnetic Needle
 - Mech coupled to SWCNTs
 - Deflected in Magnetic Field NASA Headquarters

Vapor-Liquid-Solid Growth

 Feedstock gas → liquid alloy → solid nanostructure

SWCNTs:

- Catalyst = Fe(NO₃)₃:IPA
- Feedstock = CH_4 and C_2H_4
- $T_G = 850^{\circ}C$

- Catalyst = thin film Fe
- Feedstock = CH_4 and C_2H_4
- $T_G = 950^{\circ}C$

Fe(NO₃)₃ Catalyst

Thin Film Fe Catalyst

- High density
- Improved cleanliness

March 19, 2007

S. A. Getty

NanoCompass Fabrication

NanoCompass

NanoCompass Fabrication (to step 4)

Materials can be robust to fabrication process

Next steps:

- Reduce electrode spacing
- Reduce needle width
- Increase trench depth

Future Work: Variability in Processing

- SWCNT device electrically intact
- During magnetic field testing, continuity lost
- Next prototype in progress

Precursor Device – Bound to Substrate

- Catalyst = $Fe(NO_3)_3$
- $T_G = 850^{\circ}C$
- Cr/Au electrodes

Magnetic Field Measurements

Catalyst = thin film Fe

SWCNT resistance
 insensitive to low magnetic field
 Fe catalyst oxidized, well spaced
 March 19, 2007
 S. A. Getty

 Magnetometer operation : Strain mechanism will dominate NASA Headquarters

Temperature Dependence

- Strong low-T dependence
- Barrier(s) present
 - Tube-tube junctions \widehat{G}
 - Electrodes
- Stable operation
 - T > 100 K – Minimal thermal
 - control requirements

Conclusions and Future Work

- Magnetoresistance, temperature
 dependence of precursor SWCNT device
 - No inherent magnetoresistive response for base material
 - Strain mechanism will dominate during operation
 - Operating temperature range T > 100 K
 - Minimal thermal control requirements for most targets of interest
- Magnetometer prototype fabrication complete
 - Materials are compatible with processing
 - Next prototype under development

March 19, 2007