Snapthru Buckling of a Composite Magnetometer Boom

Wayne Chen/542 NASA/GSFC

ST5 Magnetometer Boom

- * Dimensions
 - Length of ~ 28 in, diameter of 0.75 in
- * Construction
 - Single 0.005" thick T300/977–6 ply
 - Windows cut out at 3 places along length to form "tape spring hinges"
- * Snapthru buckling at each hinge location when boom is stowed; each hinge straightens out when deployed
- * Primary areas of interest are stresses in composite when stowed and during deployment
 - Assembly, handling, and testing show that booms are quite fragile

ST5 Magnetometer Boom (Stowed)

ST5 Magnetometer Boom (Deployed)

Analysis Procedures

- * Because of snapthru and postbuckling behavior, regular linear statics solution sequences not adequate
- * For simplicity modeled one hinge location

- * Initially attempted nonlinear analysis with MSC/NASTRAN, then tried ANSYS, then went back to MSC/NASTRAN
- * After much trial and error able to model physical behavior of boom segment by enforcing rotations at ends

Analysis Results – Enforced Rotation of 22.50° at Ends (Deformed Shape)

Analysis Results – Enforced Rotation of 25.00° at Ends (Deformed Shape)

Analysis Results – Enforced Rotation of 27.50° at Ends (Deformed Shape)

Analysis Results – Enforced Rotation of 30.00° at Ends (Deformed Shape)

Analysis Results – Enforced Rotation of 35.00° at Ends (Unrealistic Deformed Shapes)

Analysis Results – Enforced Rotation of 22.50° at Ends (von Mises Stresses)

* Stress distribution under investigation

Summary

- * Continuing to learn different nonlinear analysis codes and techniques
- * Primary goal is to be able to perform and have confidence in nonlinear stress analyses
- * Testing of boom coupon segments planned to supplement analysis