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Abstract. Combinatorial algorithms have long played a crucial, albeit
under-recognized role in scientific computing. This impact ranges well
beyond the familiar applications of graph algorithms in sparse matri-
ces to include mesh generation, optimization, computational biology and
chemistry, data analysis and parallelization. Trends in science and in
computing suggest strongly that the importance of discrete algorithms
in computational science will continue to grow. This paper reviews some
of these many past successes and highlights emerging areas of promise
and opportunity.

1 Introduction

Combinatorial scientific computing (CSC) is a new name for research in an inter-
disciplinary field that spans scientific computing and algorithmic computer sci-
ence. Research in CSC comprises three key components. The first component
involves identifying a problem in scientific computing and building an appro-
priate combinatorial model of the problem, in order to make the computation
feasible or efficient. Developing the right combinatorial model is often critical
to the computation of an efficient solution, and this step could be the most
time-consuming of all. The second component involves the design, analysis, and
implementation of algorithms to solve the combinatorial subproblem. The em-
phasis in this step is on practical algorithms that are efficient for large-scale
problems; an algorithm with a time complexity quadratic in the input size could
be too slow to be useful, if the worst-case behavior is realized. The algorithm
could compute an exact, approximate, or heuristic solution to the problem, and
it should run quickly within the context of the other computational steps in
the scientific computation. The third component involves developing software,
evaluating its performance on a collection of test problems, making it publicly
available, and perhaps integrating with a larger software library. These three



components are illustrated in several examples of research activity in CSC in-
cluded in this paper. Work in CSC is multi-disciplinary in its orientation, and
has the twin emphases of theoretical rigor and practical impact.

While work in CSC has been ongoing for more than three decades, the myriad
roles of combinatorial algorithms are scattered in standard taxonomies of sci-
entific computing. This historical fragmentation has obscured the broad impact
of combinatorial algorithms in scientific computing. Algorithmic researchers in
one niche are often unaware of ongoing work in another, perhaps related niche.
Yet, a developer of computational geometry algorithms for mesh generation is
likely to have more in common esthetically and intellectually with a developer
of sparse matrix algorithms than with a user of the meshes he or she develops.
The CSC community was founded to address this fragmentation and to facilitate
closer interactions among researchers in this field.

The purpose of this article is to briefly highlight the role that combinatorial
algorithms have played in various fields of scientific computing, and to point
to emerging opportunities for the future. The topics discussed include the role
of CSC in parallel computing; differential equations, sparse linear algebra, and
numerical optimization; statistical physics, computational chemistry, bioinfor-
matics, and information sciences.

We are aware of two articles with somewhat similar goals as ours in the related
fields of scientific computing and theoretical computer science. The central role
of algorithms in numerical analysis (we would call it scientific computing) has
been surveyed recently by Trefethen [63]. A report on challenges for theoretical
computer science, as emerging from an NSF-funded workshop circa 2000, was
drafted by Johnson [34].

We view this document as a work in progress, and invite suggestions and
feedback from other researchers both within and outside the CSC community.

2 Parallel Computing

In recent years, parallel computing has become central to scientific and engineer-
ing simulations. The efficient parallelization of scientific computations requires
the solution to a variety of combinatorial problems. Perhaps best known is the
need to partition the data (and attendant work) of a problem amongst the pro-
cessors of a parallel machine. For the past decade, this problem has been com-
monly cast in terms of graph partitioning. Vertices of the graph represent units
of computation, and the edges describe data dependencies. The goal of graph
partitioning is to divide the vertices into sets of approximately equal cardinality
(or weight) while cutting as few edges as possible [31]. Several widely used serial
and parallel graph partitioning tools have been developed for this purpose [32,
36, 37].

Unfortunately, the number of graph edges cut by a partitioning is only an
approximation to the actual communication volume in a parallel calculation. So
minimizing the number of cut edges doesn’t actually minimize communication.
More recently, alternative hypergraph partitioning models has been devised in



which the number of cut hyperedges exactly corresponds to communication vol-
ume [8]. A hypergraph is a generalization of a graph in which a hyperedge can
connect of two or more vertices. As above, vertices represent computation. But
now a hyperedge joins all the vertices that consume a value with the vertex that
produces it. Work is divided amongst processors by partitioning the vertices in
such a way that a minimum number of hyperedges is cut. Based upon this in-
sight, serial and parallel hypergraph partitioning tools have been developed to
facilitate parallel computations [9, 17].

Graph coloring is another important kernel for parallelizing some scientific
operations. A coloring is an assignment of a color to each vertex in such a
way that adjacent vertices have different colors. The goal is to label all the
vertices while using only a small number of colors. Coloring is a useful tool in
parallelizing applications in which an operation on a vertex has side effects on
adjacent vertices. In this case, an operation cannot be simultaneously performed
on neighboring vertices. The coloring identifies sets of vertices (those with the
same color) that can be operated on at the same time. These operations can all
be performed in parallel. Thus, a small number of colors facilitates a fast parallel
calculation. As one example of this idea, Jones and Plassmann use coloring to
identify elements that can be simultaneously refined in an adaptive meshing
application [35].

Parallel computing also requires efficient algorithms for interprocessor com-
munication. This challenge leads to a set of problems that can be addressed
with discrete algorithms. Consider the common situation in which each pro-
cessor needs to send information to a few other processors. This is a recurring
kernel in many scientific problems. The network of wires that carries messages in
a parallel computer is generally sparse, but regular. If the logical communication
pattern in the application can be embedded well into the physical network, then
communication will be efficient. A good embedding is one in which no physical
link is expected to transmit a disproportionate amount of data. Once a com-
putation is broken into P pieces, there is freedom in mapping the pieces to P
physical processors. This freedom can be exploited to ensure that the commu-
nication patterns in the application map well onto the physical network. This
problem can be described in terms of graph embeddings. Given two graphs G
and H, an embedding is an assignment of vertices from G to vertices of H, with a
corresponding assignment of edges of G to paths in H. In the parallel computing
setting, the vertices of G are the work partitions and we want to assign them
to processors (vertices of H). But we want to do this is a way such a way that
communication operations (edges of G) don’t overwhelm the network intercon-
nect (edges of H). Graph embedding techniques provide a way to address this
problem.

Combinatorial algorithms arise in a wide assortment of other parallel com-
puting scenarios. Alternative load balancing models use space-filling curves or
network flow algorithms. Graph matching is used to reduce data remapping
costs in dynamic load balancing. A new linear time approximation algorithm
for maximum weighted matching with approximation ratio 1/2 was developed



by Preis [52] in the context of partitioning graphs for parallel computation. His
work has spurred work on algorithms with better approximation ratios. Graph
techniques are used to block or reorder operations to improve the utilization of
memory hierarchies. As these and many similar examples illustrate, combinato-
rial scientific computing is a thriving and critical enabler for parallel computing.

3 Mesh Generation

Many methods for solving partial differential equations require the geometric
space to be decomposed into simple shapes. In scientific or engineering simula-
tions with complex geometries, this mesh generation problem can be extremely
challenging. In many settings, more time is spent generating the mesh than in
any subsequent step of simulation and analysis.

Criteria to evaluate the quality of a mesh continue to evolve. But generally
speaking, a good mesh is one with well shaped elements, and as few of them as
possible. A well shaped element is one in which angles and lengths don’t vary
too much from being isotropic. (When the physics being modeled is dramatically
skewed, as near surfaces in fluid flow calculations, a carefully skewed element may
be desirable, and meshing routines must be adjusted appropriately.)

A rich collection of geometric algorithms are employed in mesh generation.
One common technique is the use of Delaunay triangulation to produce triangu-
lar meshes in two dimensions [43, 58]. Delaunay triangularization is an elegant
algorithm for joining a set of points with triangles in a such a way that unnec-
essarily badly shaped triangles are avoided. However, in the mesh generation
problem the locations of mesh points in the interior of the object are generally
unspecified. A wide variety of algorithms have been proposed to initialize and
optimize point locations. These algorithms use geometric techniques like quad-
trees (or oct-trees in three dimensions) and various point insertion algorithms.
Near geometric boundaries, constrained triangulations may be required, which
adds complexity to standard Delaunay algorithms.

Tetrahedral meshing in three dimensions is considerably more challenging.
Unlike in two dimensions, three dimensional Delaunay meshes are not guaran-
teed to consist of only well shaped elements. A variety of heuristics have been
proposed to avoid badly shaped sliver elements, and this continues to be an
active area of research.

For some applications, quadrilateral (in 2D) or hexahedral (in 3D) elements
are preferred to triangles and tetrahedra. Quad and hex meshing are quite chal-
lenging, and are considerably less mature than triangular or tetrahedral meshing.
A quad or hex mesh has considerable topological structure. For instance, consider
the path of quadrilateral elements that is constructed by entering an element on
one side and departing it on the opposite side. In three dimensions, one can work
with paths constructed in a similar manner, or sheets grown by expanding in
two of the three pairs of opposing faces of an element. The topology of these
structures greatly constrains the space of possible meshes and can be used to
facilitate the mesh generation process [61].



4 Solving Sparse Linear Systems

4.1 Direct Methods

Matrix factorizations are at the core of modern numerical linear algebra. Solving
systems of linear equations, least-squares data fitting, eigenvector and singular
vector computations can all be described in terms of factoring a given matrix
into a product of ‘simpler’ matrices, such as diagonal, triangular, or orthogonal
matrices. When a matrix is sparse, i.e., there are many zero elements in it,
the factors can be computed with fewer operations and reduced storage. As an
instance, the Cholesky factorization of an n × n dense matrix requires O(n3)
operations and O(n2) space, whereas if the matrix can be represented by a
planar computational graph, the operations are bounded by O(n3/2) and space
by O(n log n). Appropriate graph models and sophisticated algorithms designed
using these models are necessary to realize these gains.

We begin by discussing combinatorial issues associated with solving symmet-
ric positive definite systems of equations, since this is the archetypal problem.
After that we will sketch the modifications required for unsymmetric systems of
equations.

The graph model for Cholesky factorization (Gaussian elimination of a sym-
metric positive definite matrix A) was introduced by Parter [45], and further
studied by Rose [55]. The appropriate graph here is the adjacency graph of the
symmetric matrix that has a vertex vi representing the ith row and column,
and an undirected edge (i, j) representing each nonzero aij and its symmetric
counterpart aji. During factorization, multiples of a row of the current matrix
are added to a subset of the higher-numbered rows with the goal of transforming
nonzeros below the diagonal in a column into zeros. During this process, a zero
element in a higher-numbered row could become nonzero, and such newly created
nonzero elements are called fill elements. Parter described the graph transfor-
mation that models the kth step of the factorization: add edges as needed to
make all higher-numbered neighbors of vertex vk a clique, and then mark vk and
all edges incident on it as deleted. The edges added correspond to fill elements.
Rose showed that the filled graph obtained by taking the union of all the added
edges with the edges corresponding to the original matrix is a chordal graph.
(A chord in a cycle is an edge that joins two non-consecutive vertices on the
cycle. A chordal graph has a chord joining every cycle of length greater than
or equal to four.) A fill path in a graph is a path joining two vertices vi and
vj in which every interior vertex in the path is numbered lower than both end
vertices. Rose, Tarjan, and Lueker [56] obtained a static characterization of fill
in Cholesky factorization: A fill edge (vi, vj) is created during the factorization
if and only if a fill path joins the vertices vi and vj in the adjacency graph of
the original matrix A.

Sparse matrix factorizations require the computation of data structures for
the factor matrices, i.e., identification of the nonzero elements and their row and
column indices. Once this information is available, most of the non-numerical
operations can be removed from the inner-most loop of numerical computa-



tions, so that the latter can be performed in time proportional to the number
of numerical operations. Hence one of the requirements for algorithms for com-
puting the various data structures associated with sparse factorizations is that
they run as far as is possible, in time proportional to arithmetic operations or
faster. This necessitates the development of graph models, efficient algorithms
and high-performance implementations.

The Elimination Tree A data structure called the elimination tree [41] plays
center stage in determining the control flow during the factorization, and in
designing efficient algorithms for computing data structures for the Cholesky
factors. The elimination tree has the vertices of the adjacency graph for its
nodes, and the parent of a node v is the next vertex to be eliminated from the
clique created when v is eliminated. In other words, the parent of a node in the
etree is the lowest-numbered node among all of its higher-numbered neighbors.
The elimination tree is also the transitive reduction of the filled graph in which
every edge is directed from its lower-numbered to its higher-numbered endpoint.

The elimination tree is a minimal representation of the control dependences
in the Cholesky factorization in the following sense: if an edge (i, j) exists in the
filled graph then j is an ancestor of i in the elimination tree; and if i and j belong
to vertex-disjoint subtrees in the elimination tree then no edge joins i and j in
the filled graph. In particular this implies that the computation of a column of
the factor cannot be completed unless all of the columns corresponding to its
children nodes has been computed. Hence the elimination tree can be used to
schedule the numerical computations associated with Cholesky factorization.

The elimination tree is also useful in designing efficient algorithms for com-
puting the nonzero structures of the rows and columns of the Cholesky factor.
The nonzero row indices in the jth column of the Cholesky factor can be ob-
tained by unioning the row indices of the jth column of the matrix A and the
row indices of the columns of the Cholesky factor corresponding to the children
of node j in the elimination tree, where we consider only rows from j to n in
each column. Without the elimination tree, the union would have to be taken
over a larger set of columns. The structure of the ith row of the factor can be
obtained as a pruned subtree of the elimination tree rooted at node i.

Another important feature of modern sparse factorization algorithms is the
identification of dense submatrices within the sparse factors to obtain high per-
formance on modern multiprocessors through register and cache reuse. The dense
submatrices are obtained by grouping adjacent vertices with identical sets of
higher-numbered neighbors into supernodes. The occurrence of supernodes stems
from the fact that eliminating a vertex creates a clique of its higher-numbered
neighbors.

A survey of the several data structures employed in sparse matrix factoriza-
tions is provided in [50].

Ordering Algorithms An important component of modern sparse matrix
solvers is an algorithm that orders columns (and rows) of the initial matrix



to reduce the work and storage needed for computing the factors. These order-
ings also influence the effectiveness of preconditioners and the convergence of
iterative solvers, and can often reduce the work needed by an order of magni-
tude or more. Two major classes of ordering algorithms have emerged thus far:
algorithms based on the divide and conquer paradigm, exemplified by nested
dissection, which is a top-down algorithm that computes the ordering from n
(the number of vertices) to 1. The computational graph is recursively separated
into two or more connected components by removing a small set of vertices called
a vertex separator at each step. The separator vertices are ordered last, and the
remainder of the vertices in the graph are ordered by recursively computing sep-
arators in the subgraphs and giving them the next lower available numbers. The
second class of ordering algorithms is a greedy, bottom-up algorithm that orders
vertices to locally reduce fill. This class is exemplified by the minimum-degree
algorithm, which chooses a vertex of minimum degree in the current graph to
eliminate next.

In practice, minimum degree algorithms are implemented in a space-efficient
manner such that the filled graph can be implicitly represented in the same space
as the original graph, even as fill edges are created during the elimination [24].
One way to do this is to use a clique cover, i.e., a set of cliques that includes every
edge in the current graph. Initially each edge in the original graph is a clique,
and as a vertex is eliminated, all cliques containing that vertex are merged into
a new clique. Since this union operation does not increase the size of the clique
cover, we are guaranteed that the filled graph can be represented in no more
space than the original graph. There is one difficulty associated with the clique
cover representation though: it costs O(n2) operations to compute the degree
of a vertex in the course of the ordering. Hence approximations for the degree
measure which can be computed fast, in O(n) time, have been developed, the
most popular of which is the approximate minimum degree (AMD) algorithm [1],
due to Amestoy, Davis and Duff.

Nested dissection, which was discovered by Alan George [23], has spurred
much research into computing vertex separators in graphs. Important classes of
graphs that occur in various applications have separators of bounded size. Planar
graphs have O(n1/2) separators [40], and this implies that systems of equations
from finite element meshes of 2-dimensional problems can be solved in O(n3/2)
operations and O(n log n) space. This result explains why direct methods are
often the solvers of choice for 2-dimensional problems. For 3-dimensional meshes
in which each element is well shaped, the corresponding bounds are O(n2) op-
erations and O(n4/3) space. Spectral, geometric, and multilevel algorithms have
been developed for computing separators in such graphs. Currently software for
graph partitioning employs multilevel algorithms due to the good quality of the
ordering and the fast computation they offer.

Unsymmetric Problems For unsymmetric (and symmetric indefinite) matri-
ces, algorithms for sparse Gaussian elimination cannot neatly separate combi-
natorial concerns from numerical concerns as in the symmetric positive definite



case. These problems require pivoting based on the actual numerical values in the
partially factored matrix for numerical stability. In these problems, the combi-
natorial task of data structure computation has to be interleaved with numerical
computation on a group of columns.

Nevertheless, combinatorial algorithms for computing data structures for the
factors and for determining the control flow have been designed. One of the
important differences for unsymmetric problems is that instead of an elimination
tree, the control flow is determined by directed acyclic graphs (DAGs) that
minimally represent the directed graphs corresponding to the factors [25]. These
DAGs could be used to speed up the computation of the data structures for the
factors.

Another combinatorial task that arises in these problems is matchings in
graphs. An unsymmetric matrix can be represented by a bipartite graph with
vertices corresponding to rows and columns, and each nonzero represented by an
edge joining a row vertex and a column vertex. The magnitude of a nonzero can
be represented by an edge weight, and then a matching of maximum cardinality
with the maximum weight can be used to permute rows and columns so as to
place large elements on the diagonal [18]. This reduces the need for numerical
pivoting in direct solvers, and improves the quality of incomplete factorization
preconditioners.

A maximum cardinality matching in a bipartite graph can also be used to
compute a canonical decomposition of bipartite graphs called the Dulmage-
Mendelsohn decomposition (the ear decomposition for bipartite graphs), which
corresponds to a block triangular form for reducible matrices [49]. Only the diag-
onal blocks in a block triangular form need to be factored, potentially leading to
significant savings in work and storage for reducible matrices that arise in appli-
cations such as circuit simulations. The diagonal blocks are also called strong Hall
components, since they have the property that every set of k columns has nonze-
ros in at least k + 1 rows. The strong Hall property is useful in many structure
prediction algorithms for unsymmetric Gaussian elimination and orthogonal-
triangular factorization [26].

4.2 Iterative Methods

For solving large systems of equations, iterative methods are often preferred to
sparse direct solvers since iterative solvers require less memory and are easier
to parallelize. The runtime of an iterative method depends upon the cost of
each iteration and the number of iterations required to achieve convergence.
Combinatorial algorithms contribute to both of these considerations.

Consider the product c = Ab where A is sparse. This operation typically
involves a doubly-nested loop in which the outer loop is over rows and the
inner loop is over nonzero entries in a row of A. If the nonzeros in a row are
not consecutive, then non-consecutive entries of c will need to be accessed. The
needed elements of c will often not be in cache, and so will be comparatively
expensive to access. But if nonzeros in a row happen to be adjacent, then this



will not only improve access to c, but can also be exploited to reduce the number
of memory indirections required to access the elements of A.

One way to improve the performance of this operation is to reorder the
columns of the matrix to increase the number of consecutive nonzeros in the
rows. Pınar and Heath show that this problem can be recast as a graph problem
in which the objective is to order the vertices to maximize the sum of weights
connecting adjacent vertices [47]. They propose a heuristic approach to this
NP-Hard problem that borrows techniques from literature on the the Traveling
Salesman problem. They report that this reordering improves the performance
of sparse matrix-vector multiplication by more than 20%.

The second factor in the cost of an iterative solver is the speed with which
the method converges. The number of iterations can be dramatically reduced by
effective preconditioning. Preconditioning is a transformation of a linear system
so that Ax = b is replaced by M−1Ax = M−1b, where the operator M−1A has
better numerical properties than A alone. Generally speaking, this modification
should reduce the condition number or increase the degree of clustering of the
eigenvalues. For a preconditioner M to be effective, it must be easy to solve
systems of the form My = z, and the construction of M must be efficient in
both time and space.

A number of preconditioning strategies have been proposed, and several
classes of preconditioners have combinatorial aspects. Incomplete factorization
preconditioners follow the steps of a sparse direct solver, but discard many of the
fill elements. Their construction involves many of the same operations as sparse
direct solvers including graph-based reordering and fill monitoring [57].

Algebraic multigrid preconditioners approximate a matrix by a sequence of
smaller and smaller matrices. The construction of smaller matrices can involve
graph matching [38] or independent set computations [15].

Support theory preconditioners exploit an equivalence between the numerical
properties of diagonally dominant matrices and graph embedding concepts of
congestion and dilation [7]. The (symmetric positive-definite) matrix A is repre-
sented as a graph, and the preconditioner is constructed via graph operations to
create an approximation to A that is easy to factor [27]. Spielman and Teng have
used this approach to propose preconditioners that are provably near optimal
for all diagonally dominant matrices, no matter how irregularly structured or
poorly conditioned [59].

5 Optimization, Derivatives, and Coloring

5.1 Overview

Many algorithms that solve nonlinear optimization problems and differential
equations require the computation of derivative matrices of vector functions.
When the derivative matrices are large and sparse, sparsity and matrix symme-
try can be exploited to compute their nonzero entries efficiently. The problem
of minimizing the number of function evaluations needed to compute a sparse
derivative matrix can be formulated as a matrix partitioning problem.



Graph coloring is an abstraction for partitioning a set of objects into groups
according to certain rules. Hence it is natural that the matrix partitioning prob-
lems in derivative matrix computations can be modeled as specialized graph
coloring problems. Remarkably, the techniques for exploiting sparsity here are
essentially the same whether derivatives are computed using the older method
of finite differences or the comparatively recent method of automatic differen-
tiation. In formulating, analyzing, and designing algorithms for these matrix
partitioning problems, graph coloring has proven to be a powerful tool. Indeed,
modern software for computing large, sparse Jacobians and Hessians rely on
graph coloring algorithms to make the computations feasible.

5.2 A Jacobian Computation Problem

Let F (x) denote a vector function of a vector variable x, and let J denote the
derivative matrix of F with respect to x (the Jacobian). We assume that the
nonzero structure of J is known or can be computed. From the approximation
1
ε [F (x+εek)−F (x)] ≈ J(x)ek, by differencing the function along the co-ordinate
vector ek, we can estimate the kth column of J through function evaluations at
F (x) and F (x+εek), where ε is a small step size. Thus, if sparsity is not exploited,
the estimation of a Jacobian matrix with n columns would require n additional
function evaluations.

Now consider a subset of the columns of the Jacobian such that no two
columns have a nonzero in a common row; such a subset of columns is struc-
turally orthogonal. In a group of structurally orthogonal columns, the columns
are pairwise orthogonal to each other independent of the numerical values of
the nonzeros. Choose a column vector d with 1’s in components corresponding
to the indices of columns in a structurally orthogonal group of columns, and
zeros in all other components. By differencing the function F along the vec-
tor d, one can simultaneously determine the nonzero elements in all of these
columns through the function evaluations at F (x) and F (x + εd). Further, by
partitioning the columns of the Jacobian into the fewest groups, each consisting
of structurally orthogonal columns, the number of (vector) function evaluations
needed to estimate the Jacobian matrix is minimized.

Curtis, Powell, and Reid [14] observed in 1974 that sparsity can be employed
in this way to reduce the number of function evaluations needed to estimate
the Jacobian. In 1983 Coleman and Moré [11] modeled this matrix partition-
ing problem as a distance-1 graph coloring problem. The model uses the column
intersection graph of a matrix where columns correspond to vertices and two ver-
tices are joined by an edge whenever the corresponding columns have nonzeros in
a common row (i.e., the columns are structurally non-orthogonal). A distance-1
coloring of a column intersection graph, partitions the columns into groups of
structurally orthogonal columns. Since the distance-1 graph coloring problem is
known to be NP-hard, the work of Coleman and Moré showed that it is unlikely
that there is a polynomial time algorithm for partitioning the columns of a ma-
trix into the fewest groups of structurally orthogonal columns. Meanwhile, they
developed several practically effective heuristics for the problem. More recently,



Gebremedhin et al. [21] have used a different graph coloring model for the same
matrix partitioning problem. This coloring formulation uses a bipartite graph to
represent a Jacobian matrix. The vertex set V1 in the bipartite graph corresponds
to the rows of the matrix and the vertex set V2 corresponds to the columns. An
edge joins a row vertex rk to a column vertex c` if the matrix element jk` of the
Jacobian is nonzero.

Two columns in the Jacobian matrix are structurally orthogonal if and only
if they are at a distance greater than two from each other in the correspond-
ing bipartite graph. Thus, a distance-2 coloring of the set of column vertices
V2 is equivalent to a partitioning of the columns of the matrix into groups of
structurally orthogonal columns. A distance-2 coloring of the vertex set V2 is an
assignment of colors to these vertices such that every pair of column vertices at
a distance of exactly two edges from each other receives distinct colors. More
precisely, this coloring is a partial distance-2 coloring of the bipartite graph since
the row vertex set V1 is left uncolored.

5.3 Variations on Matrix Computation

Depending on the type of derivative matrix being computed and the specifics of
the method being applied, there exist several variant matrix partitioning prob-
lems. Specifically, the nature of a particular problem in our context depends on:
whether the matrix to be computed is nonsymmetric, a Jacobian; or symmetric,
a Hessian; whether the evaluation scheme employed is direct or substitution-
based (a direct method requires solving a diagonal system and a substitution
method relies on solving a triangular system of equations); whether a unidirec-
tional (1d) partition or a bidirectional (2d) partition is used (a unidirectional
partition involves only columns or rows whereas a bidirectional one involves both
columns and rows); and whether all of the nonzero entries of the matrix or only
a subset need to be determined; we refer to these as full and partial matrix
computation. Each of these matrix partitioning problems can be modeled as a
specialized graph coloring problem.

Hessians In 1979 Powell and Toint [51] extended the approach of Curtis, Powell,
and Reid to compute sparse Hessians. McCormick [42] introduced a distance-2
graph coloring model for the computation of Hessians in 1983. Independently, in
1984, Coleman and Moré [12] gave a more precise coloring model that exploits
symmetry. Their model satisfies the two conditions: (1) every pair of adjacent
vertices receives distinct colors (a distance-1 coloring), and (2) every path on
four vertices uses at least three colors. This variant of coloring is called star
coloring, since in such a coloring every subgraph induced by vertices assigned
any two colors is a collection of stars.

Substitution-based Evaluation In a substitution-based evaluation scheme,
the unknown matrix elements are determined by solving a triangular system of
equations. A substitution-based evaluation is often effectively combined with the



exploitation of symmetry, and hence is used in computing the Hessian. Based on
the work of Powell and Toint [51], Coleman and Moré [12] found a coloring model
for a restricted substitution method for evaluating a Hessian called triangular
coloring. Triangular coloring exploits symmetry only to a limited extent. A more
accurate model for a substitution method to compute a Hessian leads to an
acyclic coloring problem in which the requirements are that (1) the coloring
corresponds to a distance-1 coloring, and (2) vertices in every cycle of the graph
are assigned at least three distinct colors. This variant of coloring is called acyclic
since every subgraph induced by vertices assigned any two colors is a forest, and
is due to Coleman and Cai [10]. Recently Gebremedhin et al [22] have developed
the first practical heuristic algorithm for acyclic coloring and a new efficient
algorithm for star coloring; they have shown that a substitution method based
on acyclic coloring leads to faster Hessian computations than a direct method
based on star coloring.

Bidirectional Partition If the matrix contains a few dense columns and rows,
it may be advantageous to consider partitioning subsets of both columns and
rows. A partition that involves both columns and rows is called bidirectional.
Due to symmetry, there is no advantage in considering a bidirectional partition
of the Hessian, i.e., a symmetry-exploiting unidirectional partition suffices. In
the context of automatic differentiation, bidirectional partitions arise when the
Jacobian is computed by using the forward and reverse modes simultaneously.

Bidirectional partitioning of the Jacobian leads to specialized bicoloring prob-
lems in the bipartite graph, i.e., a coloring of subsets of both the row vertices and
the column vertices with disjoint sets of colors. When bidirectional partitioning
is used within a direct evaluation scheme for Jacobians, the coloring problem
is that of star bicoloring ; the corresponding model within a substitution-based
scheme is the acyclic bicoloring problem. Bidirectional partitioning problems
and their graph coloring formulations were studied by Hossain and Steihaug [33]
and Coleman and Verma [13].

Partial Computation The final variation within the classification scheme is
whether all elements of the Jacobian and the Hessian are required, or only a
subset that would be needed for preconditioning purposes. We refer to these
variations as full and partial matrix computation. The latter would be useful
in ‘matrix-free’ methods for large-scale problems, where the Jacobian is too
large to be explicitly estimated, but a coarser representation of the Jacobian is
used as a preconditioner. Partial matrix computation problems lead to restricted
coloring problems where only a specified subset of the vertices need to be colored;
however, one still needs to pay attention to the remaining vertices, since they
could interfere with the estimation of the required matrix elements.

All of these variations lead to a rich collection of graph coloring problems.
Table 1 shows the collection of five coloring problems that arise when we consider
the computation of all nonzero entries of Jacobians and Hessians. Partial matrix
computation problems lead to another set of five coloring problems, of which



1d partition 2d partition

Jacobian distance-2 coloring star bicoloring Direct
Hessian star coloring NA Direct
Jacobian NA acyclic bicoloring Substitution
Hessian acyclic coloring NA Substitution

Table 1. Graph coloring formulations for computing all nonzero entries of derivative
matrices. The Jacobian is represented by its bipartite graph, and the Hessian by its
adjacency graph. NA stands for not applicable.

graph models have been formulated for direct methods by Gebremedhin et al.
These authors provide a recent survey of graph coloring for computing derivatives
in [21].

Graph and hypergraph coloring have been used in a wide collection of applica-
tion areas in addition to optimization: register allocation in compilers, radio and
wireless networks, scientific computing, data movement in distributed and paral-
lel computing, facility location problems, cache-efficient algorithms, etc. Parallel
computers make it feasible to solve large-scale problems in many of these ap-
plication areas, especially optimization, and hence there is currently increased
interest in efficient algorithms and software for coloring graphs with millions of
vertices.

6 Statistical Physics

The inherent complexity of the physical world has led physicists to investigate
simplified, idealized models. The hope is that these idealized models capture
some of the most interesting features of reality, but their simplification allows
for more detailed analysis and simulation. In many cases, these models have rich
and exploitable combinatorial structure.

The best known example of this approach is the Ising model for magnetic
materials. Bulk magnetism is caused by the alignment of atomic spins. The spin
of each atom influences the spin of its near neighbors, leading to very complex
dynamics. In real magnets, the complex, three-dimensional geometry of atomic
locations and the subtlety of the interactions makes analysis quite difficult. In
the 1930s, long before computational simulation was even an option, the Ising
model was proposed as a simple tool for studying magnetism.

In the Ising model atoms are placed on the lattice points of a regular 1-,
2- or 3-dimensional grid. Each atom only interacts with its nearest neighbors.
Various initial and boundary conditions can be applied to the problem, and
many questions can be asked about its statistical dynamics or energetics. Some
of these questions can be addressed via combinatorial optimization techniques
involving matchings and counting of subgraphs [5].

The success of the Ising model has led to a vast array of variants and gener-
alizations, many of which have combinatorial features of their own. It has also
led to philosophically related models of very different phenomena.



One of these alternatives was proposed by Thorpe to model mechanical prop-
erties of materials [62]. Instead of trying to explicitly model the detailed bond
structure of a complex composite, Thorpe’s model places atoms in space and
then connects them to near neighbors randomly. The number of connections is
chosen to reflect the statistical properties of a specific composite material. These
bonds are then treated as rigid bars, and the mechanical rigidity of the resulting
structure can be analyzed. Fast algorithms for analyzing these structures have
been developed which build upon concepts in graph matching and graph rigid-
ity [3]. The application of combinatorial optimization techniques to simplified
physical models continues to be a a very active area of research.

A very different class of idealized models of physical reality are provided by
cellular automata, of which Conway’s Game of Life is a prototypical example. In
cellular automata, a set of entities interact via very simple rules, but in some cir-
cumstances complex collective behavior can be observed. The analysis of cellular
automata is richly combinatorial [64].

7 Computational Chemistry

There is a natural correspondence between the structure of molecules consisting
of atoms and bonds, and the vertices and edges of a graph. This relationship
has led to a wide range of graph theoretic techniques in chemistry. In fact, the
term “graph” as used here was first coined by J. J. Sylvester in his studies of
molecular structure [60].

The graphs that describe molecules have special properties that sometimes
allow for more efficient algorithms. Since an atom can be bonded to at most a
few other atoms (typically four), the corresponding graph has a small maximum
degree. Also, each atom is of a particular type (carbon, oxygen, etc.), so each
vertex in the graph can be assigned a corresponding type value.

If a drug company discovers a molecule that exhibits an interesting biological
effect, they will want to test similar molecules. But in a very large universe of
molecules, how does one determine which ones are similar? A common tech-
nique is to use a set of graph properties or invariants to characterize molecules.
Molecules of interest are then those that have similar graphical properties. This
seemingly simplistic approach actually works quite well, and a vast collection of
graphical invariants have been proposed to characterize molecules [54].

Another way to search for drug candidates is to identify a piece of a molecule,
perhaps a small portion of a large protein, that displays the desired activity, and
then to search for other molecules that possess the same molecular fragment.
This problem can phrased in terms of subgraph isomorphism. Given graph G
and a smaller target graph T , the subgraph isomorphism problem is a search
for a subset of vertices and edges in G that comprise an exact match for T .
Although subgraph isomorphism is known to be NP-complete, several aspects of
this application make it solvable in practice. First, the vertex types (i.e., chemical
species) constrain the search space. And the goal here is not to look in a single



large graph G, but rather to scan a large library of smaller graphs, each of which
corresponds to a molecule.

8 Bioinformatics

Bioinformatics has seen spectacular growth since the 1990’s, and combinatorial
problems abound in biological applications, so that a section of this length has to
be necessarily incomplete. A few books discussing algorithms in bioinformatics
include: Gusfield [28], Durbin et al. [19], Pevzner [46], and Eidhammer et al. [20].
All that we hope to do here is to highlight a few select areas of current research
interest.

Algorithms on strings are used in local and multiple alignment of DNA and
protein sequences. Dynamic programming is used to compute optimal pairwise
alignments of sequences, but due to its quadratic time complexity, it is imprac-
tical for searching a large database of sequences against a query sequence to find
the best local or global alignment. Faster heuristic algorithms such as BLAST
and FASTA have been developed for this problem, and BLAST represents one of
the most widely used bioinformatics tools. Optimal multiple sequence alignments
are NP-hard to compute, and various approximation algorithms have been de-
veloped for this problem. Hidden Markov models are used to build probabilistic
models of protein families and to answer queries about whether a specific protein
belongs to the family or not [19]. Sequence data of specific proteins have been
used to construct phylogenetic trees, and have provided an alternative to classi-
fying organisms based on phenotypes. Constructing an optimal phylogenetic tree
that represents given sequence data for multiple organisms is computationally
intensive due to the super-exponential growth in the number of trees that must
be examined as a function of the number of species.

Aligning RNA sequences is a computationally more intensive task since sec-
ondary structure needs to be taken into account to compute alignments. A re-
cent approach to this problem involves a graph-theoretic formulation that uses
weighted matchings in graphs and integer linear programs [4].

The Gene Ontology (GO) project (URL: www.geneontology.org) addresses
the need to provide consistent descriptions of the proteins in multiple databases.
Structured and controlled vocabularies are being developed for proteins in terms
of the biological processes they are associated with, the cellular components they
belong to, and their molecular functions, independent of the species. The data
structure underlying GO may be viewed as partially ordered set (poset), and
answering queries efficiently in GO leads to several combinatorial problems on
posets. Efficient algorithms for computational problems on posets remain to be
developed.

Proteomic experiments such as the yeast 2-hybrid system yield protein-
protein interaction graphs at the organism-scale, and such graphs are now avail-
able for many model organisms as well as humans. Because these in-vitro ex-
periments have high error rates, Bayesian networks have been used to integrate
this data with other proteomic and genomic data to improve the reliability of



the interaction graph. A functional module is a group of proteins involved in
a common biological process [29]. A key computational task is to decompose a
protein-protein interaction graph into functional modules, to annotate the bi-
ological process that each module is involved in, and to identify “cross-talk”
between the modules, i.e., the proteins that are involved in linking different bio-
logical processes. This task can be modeled as a clustering of the graph in which
the clusters can overlap; computing a clustering in these networks is challeng-
ing since these graphs are small-world networks (the average distance between
any two vertices in the network is O(log n), where n is the number of vertices);
hence the distance between two clusters is quite small. The degree distributions
of vertices in these networks obey a power-law, and there are a few vertices of
high degree that tend to confound the clustering.

Early work on clustering these networks has involved searching for cliques of
small size, or local clustering approaches that grow clusters from seed vertices [2].
Spectral and multi-level clustering algorithms, similar to their analogues in graph
partitioning algorithms, have been developed to compute such clusterings [53].
The emerging field of computational systems biology is rich in combinatorial
problems that arise from the characterization of biological networks and knowl-
edge discovery in such networks. Effective methods to text-mine the literature
to build proteomic and genomic networks are essential as the number of publi-
cations in these emerging fields continues to grow.

9 Information Processing

Like many aspects of society, science is being transformed by the explosive
growth of available information and the rapidly evolving tools for search and
analysis. There are many ways to represent information, but several of them
have rich combinatorial underpinnings.

Perhaps the most familiar graph in informatics is the graph in which web
pages are vertices and hyperlinks become (directed) edges. The structure of
this graph is a critical aspect of Google’s PageRank algorithm for ranking web
pages [44], and of Kleinberg’s related HITS algorithm [39] which is used by other
search engines. Both of these algorithms construct a matrix from the web graph
and then compute rankings with eigenvectors or singular vectors of this matrix.

The ideas in PageRank were actually proposed several decades earlier in
citation analysis [48]. In this field, scientific papers are vertices and their citation
links are edges. A calculation analogous to PageRank is used to determine which
papers (or journals) are most significant.

Many types of information can be naturally represented as graphs, includ-
ing social or communication networks of all sorts. The study of these complex
networks has recently grown to become a very active area of research amongst
sociologists, statistical physicists and computer scientists. Needless to say, graph
algorithms are central to this field.

Text analysis is another area of informatics in which graph models are impor-
tant. Consider a set of documents and the union of all their keywords. A matrix



can be used to encode the set of documents that use a particular keyword. Equiv-
alently, this relationship can be encoded by a bipartite graph in which documents
are one set of vertices and keywords are another. An edge connects a document
to a keyword that the document contains. This structure can be used to analyze
and organize the information contained in the corpus of documents using a va-
riety of graph and linear algebra techniques. For instance, this structure can be
used in a query processing system to identify the documents that best match a
user’s query [6, 16, 30].

10 The Future

This paper has tried to introduce some of the many ways in which abstractions
and algorithmic advances in computer science have played a role in scientific
computing. The critical enabling role that these algorithms play is often over-
looked. One important reason for this is that the combinatorial kernel is often
just one piece of a larger tool or body of work (e.g., an ordering code within
a linear solver, or a Delaunay triangulation within a mesh generator). But we
believe there are other, cultural factors involved as well.

Computational science is usually marketed with an emphasis on the scien-
tific impact of the work – e.g., the insight into global warming or the design of
a more efficient chemical plant. The vast collection of enabling technologies un-
derpinning these applications often get short shrift. When these algorithms are
emphasized, those that are most accessible to computational scientists are the
ones that are most likely to be lauded. The training of a computational scien-
tist often involves exposure to numerical methods or to finite elements, so these
technologies are likely to be appreciated and acknowledged. But few computa-
tional scientists have taken courses in graph algorithms, and so the importance
of discrete algorithms is less likely to be recognized.

As we have tried to argue in this paper, discrete algorithms have long played
a crucial enabling role in science and engineering. We expect their importance to
continue to grow for several reasons. Fundamentally, as the data sets we analyze
and the computations we perform continue to grow in size and complexity, opti-
mal algorithmic efficiency becomes of paramount concern. This driving force will
continue to create opportunities for new research into advanced algorithms (and
approximation algorithms). In addition, as the recognition of the value of CSC
becomes more widespread in the scientific and engineering communities, we are
already witnessing a growing receptiveness and interest in discrete algorithms.
We are also seeing a growth in educational programs that expose students to a
range of topics necessary to contribute to CSC. Finally, we foresee rapid growth
in several areas of science that are particularly rich in combinatorial problems.
Among these are biology and informatics. And the broad transition to parallel
computing for scientific and engineering computations also increases the impor-
tance of combinatorial algorithms.

As with any interdisciplinary subject, the growth of CSC raises challenges
on several fronts. Education is a key issue. Computational science requires train-



ing in a scientific discipline combined with training in numerical methods and
software engineering. We feel strongly that it should also include exposure to ba-
sic algorithms and data structures, with a particular focus on graph algorithms.
Publication venues are a challenge in CSC since its work often falls into the cracks
between theory and applications. CSC sits on the periphery of several scientific
communities, but is central to none of them. Visibility and recognition is partic-
ularly important for young researchers. The tenure process can be difficult for
academics whose work spans traditional communities. Professional societies and
funding agencies can play an important role in nurturing and supporting this
field.

Many scientific breakthroughs occur at the boundaries between fields where
ideas and techniques can fruitfully cross-fertilize each other. We believe that
combinatorial scientific computing lies on one of these fruitful boundaries. For
researchers trained in computer science algorithms, scientific applications offer
a rich assortment of interesting problems with high impact. For computational
scientists trained in numerical methods or in an application discipline, combina-
torial techniques offer the potential for dramatic advances in simulation capa-
bility. This mutual benefit will continue to motivate and inspire important work
for long into the future.

Acknowledgments

We are indebted to many of our colleagues who have contributed to our un-
derstanding of the diverse areas touched upon in this paper. We also thank
Assefaw Gebremedhin and Florin Dobrian for comments on an earlier draft of
this manuscript. Sandia National Laboratories is a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. DOE
under contract number DE-AC-94AL85000.

References

1. P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree
ordering algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886–
905, 1996.

2. G. D. Bader and C. W. Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics, 4(2):27 pp.,
2003.

3. S. Bastea, A. Burkov, C. Moukarzel, and P. M. Duxbury. Combinatorial opti-
mization methods in disordered systems. Computer Phys. Comm., 121:199–205,
1999.

4. M. Bauer, G. W. Klau, and K. Reinert. Fast and accurate structural RNA align-
ment by progressive Langrangian optimization. In M. R. Berthold et al, editor,
Computational Life Sciences, Lecture Notes in Bioinformatics, volume 3695, pages
217–228. Springer Verlag, 2005.

5. R. J. Baxter. Exactly solved models in statistical mechanics. Academic Press, 1982.



6. M. Berry and M. Browne. Understanding Search Engines: Mathematical Modeling
and Text Retrieval. SIAM, Philadelphia, 1999.

7. E. G. Boman and B. Hendrickson. Support theory for preconditioning. SIAM J.
Matrix Anal. Appl., 25(3):694–717, 2003.
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9. Ü. Çatalyürek and C. Aykanat. PaToH: a multilevel hypergraph partitioning tool
for decomposing sparse matrices and partitioning VLSI circuits. Technical Report
BU–CEIS–9902, Dept. Computer Engineering and Information Science, Bilkent
Univ., Turkey, 1999.

10. T. F. Coleman and J. Cai. The cyclic coloring problem and estimation of sparse
Hessian matrices. SIAM J. Alg. Disc. Meth., 7(2):221–235, 1986.
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