
Combinatorial Algorithms for Computational Science

and Engineering

Erik G. Boman1, Doruk Bozdag2, Umit V. Catalyurek2,
Karen D. Devine1, Assefaw H. Gebremedhin3, Paul D. Hovland4,
and Alex Pothen3

1 Discrete Algorithms and Math Department, Sandia National Laboratories
2 Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University
3 Department of Computer Sciences and Computing Research Institute, Purdue University
4 Mathematics and Computer Science Division, Argonne National Laboratory

Abstract. We discuss recent activities in the SciDAC Applied Math Institute for
Combinatorial Scientific Computing and Petascale Simulations (CSCAPES).

1. Introduction
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Figure 1. Key research areas in CSCAPES and
their relationship to a typical SciDAC application.
An arrow from A to B indicates that A in some
sense uses B.

CSCAPES was established in 2006 to help
contribute to the SciDAC mission by de-
veloping infrastructural algorithmic and
software technologies for supporting high-
performance computing. Its scope encom-
passes four areas: load-balancing and re-
lated tasks in parallel processing (such as
data migration and task scheduling); auto-
matic differentiation (AD), a technology for
transforming computer source code for com-
puting a function into code for computing its
derivatives; basic ingredients in linear solver
technology; and runtime data and iteration
reordering to improve performance in irreg-
ular computation.

The focus in CSCAPES in each of these areas is on the formulation (modeling) and solution
(algorithms) of the underlying fundamental combinatorial problems, which are often phrased
using graphs or hypergraphs. Load-balancing, the task of distributing data and work in a large-
scale computation among the processors of a machine to minimize total execution time, can be
phrased as a partitioning problem on a graph, or with more accuracy, on a hypergraph. When
computational dependency among subtasks is modeled using a graph, a distance-1 coloring
of the graph can be used to determine a scheduling of the tasks for concurrent computation.
Distance-2 coloring and several other specialized variants are used to model matrix partitioning
problems that arise in the efficient computation of sparse Jacobians and Hessians using AD.
In AD, exploitation of associativity and commutativity in the chain rule of differential calculus



leads to a variety of vertex or edge elimination problems in the directed acyclic graph used to
represent the computation of a function and its derivative. Various types of matchings in graphs
are used in the solution of sparse linear systems (numerical preprocessing and block triangular
decomposition) and in the coarsening phase of multilevel methods for graph partitioning. Work
and storage reduction in direct solvers for large sparse systems calls for vertex ordering problems
in graphs. Graph and hypergraph based models are used to capture the needs in reordering the
nodes and elements within an unstructured mesh to improve runtime performance.

CSCAPES researchers are developing sequential and parallel algorithms and software for
the combinatorial problems outlined in the previous paragraph. The load-balancing and
parallelization capabilities are being deployed through the Sandia-housed Zoltan software toolkit.
Similarly, the AD capabilities are being deployed via the tools being developed at Argonne within
the OpenAD framework. In addition, serial as well as parallel codes (for coloring, matching, and
re-ordering) are being separately developed at the academic institutions within CSCAPES, with
the ultimate goal of being integrated with the major software outlets, Zoltan and OpenAD.
Both Zoltan and the tools in OpenAD pre-date CSCAPES and have been under continuous
development for several years with sustained support from DOE; similarly, the coloring work
in CSCAPES was previously supported by NSF. Zoltan’s internal interface is currently being
redesigned to improve support for integration of third party libraries. For example, it has
recently acquired an interface to the parallel ordering functionality available in PT-Scotch.

The load-balancing and partitioning facilities in Zoltan have been used to enable a
wide variety of applications in structural mechanics, chemical engineering, groundwater flow,
biological systems, electronic circuit simulations, and molecular dynamics. Likewise, the tools
in OpenAD have been applied to a broad range of applications: modeling breast cancer, climate,
weather, semiconductor devices, power networks, and groundwater; atmospheric chemistry;
computational fluid dynamics; the network-enabled optimization server (NEOS); water reservoir
simulation; and chemical kinetics.

In the remainder of this short paper we provide a few “nuggets” of our recent works, to
give a flavor of the ongoing research and development activities within CSCAPES. For more
information, consult the references listed in this paper and the website http://www.cscapes.org.

2. Dynamic Hypergraph Repartitioning and 2D Matrix Partitioning
In parallel adaptive computations, processor work loads may become unbalanced over time due
to changes in the computations. In adaptive mesh refinement, for example, the refinement and
coalescing of elements may cause significant load imbalance. This kind of application requires
dynamic load balancing. Dynamic load balancing has several goals with complicated trade-offs:
load balance in the new data distribution; low communication cost within the application; low
cost to migrate data from the old distribution to a new one; and short repartitioning time.

CSCAPES researchers have recently developed a hypergraph-based repartitioning method [5].
In this method, new vertices are added to represent each part. Then, each of these vertices is
connected to the objects in the same part with new (weighted) edges to model the data migration
cost. The resulting hypergraph accurately accounts for both the communication volume and the
migration cost to move the data, and can be partitioned using existing algorithms and software.

In Figure 2, results from applying this hypergraph repartitioning method (HG-Repart) to an
adaptive mesh refinement problem from the ALEGRA shock physics code [2] is shown. HG-
Repart is compared with other connectivity-based approaches—“scratch-remap” hypergraph
partitioning (HG-Scratch) and graph-based partitioning (G-Scratch) and repartitioning (G-
Repart)—and the coordinate-based methods Recursive Coordinate Bisection (RCB) and Hilbert
Space-Filling Curve partitioning (HSFC). Scratch-remap methods compute partitions without
accounting for existing part assignments, and then remap parts to try to minimize migration
costs. While the coordinate-based methods do not model communication and migration
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Figure 2. (Top) Sample adaptive finite element meshes at time-steps 0, 54, and 108; the smallest
mesh has 132,209 nodes, and the largest has 1,380,266 nodes. (Bottom) A comparsion of communication
volume and execution time over 109 time-steps of an adaptive finite element simulation on 16, 32 and
64 processors of a Linux cluster (dual 2.2GHz AMD Opterons with 4 GB RAM and a Myrinet network).

costs explicitly, they are implicitly incremental, making them viable for repartitioning mesh-
based problems. The repartitioning hypergraph method HG-repart produced lower total cost
(application communication volume plus data migration communication volume) than all other
methods. The coordinate-based methods were much faster than graph- and hypergraph-based
methods, but their total cost was high. Execution time for HG-repart was greater than G-repart,
indicating the need for faster heuristics in the hypergraph implementation for applications with
relatively low and homogeneous connectivity.

The multiplication of a sparse matrix by a vector is an important kernel in scientific
computing. CSCAPES researchers have long studied how to optimize the performance of
this operation in parallel by reducing communication volume [6]. Recently, new partitioning
algorithms have been developed for novel two-dimensional data distributions that can be
computed efficiently using current partitioning software [1, 11].

3. Parallel Coloring
CSCAPES researchers have recently developed a framework for parallelizing greedy distance-1
coloring algorithms on distributed-memory computers [4]. Formulated in a generic manner, the
techniques employed in the framework include: careful exploitation of features of the initial data
distribution; speculation—maximizing concurrency by tentatively tolerating inconsistencies and
then detecting and resolving them; randomization; and infrequent, coarse-grain communication
among processors as opposed to frequent, fine-grained communication. In [4], several specialized
algorithms designed using the framework have been presented and evaluated; experiments carried
out on moderate size machines demonstrated good scalability.

In a work that is currently being finalized [3], the distance-1 coloring framework has been
extended for the distance-2 coloring problem, an archetypal model for partitioning problems
that arise in the efficient computation of sparse Jacobian and Hessian matrices using AD (see
Figure 3). To address the challange of accessing color information of distance-2 neighbors,



Figure 3. Structurally
orthogonal column parti-
tion of a derivative ma-
trix A and its representa-
tion as a distance-2 color-
ing in the adjacency graph
Ga(A) when A is sym-
metric, and bipartite graph
Gb(A) when A is nonsym-
metric.
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name max (seq)

pkustk13 94,893 3,260,967 299 303
shipsec5 179,860 4,966,618 125 140
pwtk 217,918 5,708,253 179 180
inline 1 503,712 18,156,315 842 843
ldoor 952,203 22,785,136 76 112
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Figure 4. Performance of the parallel distance-2 coloring algorithm on select application graphs. The
maximum degree in a graph is a lower bound on the optimal number of colors needed for distance-2
coloring. A greedy sequential algorithm gave near optimal (or perhaps optimal) solution for these test
graphs. The parallel algorithm used in the worst case only 12% more colors.

efficient means of information exchange between processors hosting a pair of vertices that are
two edges away from each other are introduced. Experiments run on up to a hundred processors
have shown that the resulting parallel distance-2 coloring algorithm scales well and gives a
solution very close to the sequential variant, which in turn often gives a near optimal solution
(see Figure 4). MPI implementations of the distance-2 coloring algorithm as well as the distance-
1 coloring algorithm discussed earlier have been incorporated in Zoltan.

In the case of Hessian computation, the distance-2 coloring model does not exploit the
available symmetry. Models that exploit symmetry to various degrees exist. The most accurate
model for a direct method is star coloring and that for a substitution method is acyclic coloring.
CSCAPES investigators have in a recent work exploited the structures of two-colored induced
subgraphs in star and acyclic coloring to design novel sequential algorithms that have been shown
to be superior to previously known approaches [9]. The serial software they have developed has
been incorporated into the operator-overloading-based AD tool ADOL-C. Experiments using
ADOL-C on Jacobian computation in a Simulated Moving Bed process, a method used in
chromatographic separation in chemical engineering, and Hessian computation on an electric
power grid problem have shown that the use of the coloring techniques in large-scale problems
reduces overall run time by several orders of magnitude [7, 8].

4. Automatic Differentiation
Suppose the derivatives of y =

∏n
i=1 xi with respect to all xi need to be computed. One

algorithm to compute this function is y1 = x1; yi = xi ∗ yi−1, i = 2, . . . , n. One can then
compute the derivatives using yn = 1; yi = xi+1 ∗ yi+1, xi+1 = yi ∗ yi+1, i = n − 1, . . . , 1.
Then, ∂y/∂xi = xi. This algorithm to compute the derivatives corresponds to the reverse
mode of automatic differentiation. The reverse mode is optimal in this case and within a
factor two of optimal for all scalar functions. Now, consider the case of y = wT ∏n

i=1 Miv,
where w and v are vectors and the Mi are dense, rectangular matrices (y remains a scalar).
Then one might compute y using b0 = wT ; bi = bi−1Mi, i = 1, . . . , n; y = bnv. Then, the



derivatives with respect to the elements of the Mi can be computed optimally (or nearly so)
using bn = v; bi−1 = Mibi,M i = bibi−1,= n, . . . , 1. However, if one computes the more general
sequence a1 = wT M1v1, a2 = wT M1M2v2, . . ., an = wT M1M2 . . .Mnvn, where y =

∑n
i=1 ai,

and then computes the derivatives of each a0 using the algorithm above (summing to produce
the derivatives of y), the result is far from optimal. The problem is that although the chained
vector-matrix products from the left can be reused from one ai to the next, the chained matrix-
vector products from the right cannot be reused because the vi vary. To illustrate the problem,
suppose all of the Mi are square matrices of size n×n. Then, the cost of computing the function
is O(n3) while the cost of computing the derivative matrices is O(n4). If, however, one recasts
the computation as b0 = wT ; bi = bi−1Mi, ai = bivi, i = 1, . . . , n; then, one can simply recur
backward on the bk sequence, with an extra term thrown in to account for the inner product
with xk. This brings the cost back down to O(n3). Thus, in developing methods to compute
the derivatives of a function, it is important to consider the full algorithm used to compute the
function, not just subcomponents. We identified a way to use a similar technique to reduce the
cost of computing the gradient of a function arising in computational chemistry from O(n5) to
O(n4) [10]. This reduction will have a major impact on the size of problems that can be solved.
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