
Combinatorial Algorithms for Computational Science

and Engineering

Erik G. Boman1, Doruk Bozdag2, Umit V. Catalyurek2,
Karen D. Devine1, Assefaw H. Gebremedhin3, Paul D. Hovland4,
and Alex Pothen3

1 Discrete Algorithms and Math Department, Sandia National Laboratories
2 Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University
3 Department of Computer Sciences and Computing Research Institute, Purdue University
4 Mathematics and Computer Science Division, Argonne National Laboratory

Abstract. We discuss recent activities in the SciDAC Applied Math Institute for
Combinatorial Scientific Computing and Petascale Simulations (CSCAPES).

1. Introduction

Scope of CSCAPES

Computational Science Application

Automatic Differentiation

Coloring

Data Migration

Elimination Matching Partitioning Ordering

Optimization Linear Solver Eigen Solver

Task Scheduling Load Balancing Performance Improvement

Scientific Computing Tool HPC Task Combinatorial Problem

Figure 1. Key research areas in CSCAPES and
their relationship to a typical SciDAC application.
An arrow from A to B indicates that A in some
sense uses B.

CSCAPES was established in 2006 to help
contribute to the SciDAC mission by de-
veloping infrastructural algorithmic and
software technologies for supporting high-
performance computing. Its scope encom-
passes four areas: load-balancing and re-
lated tasks in parallel processing (such as
data migration and task scheduling); auto-
matic differentiation (AD), a technology for
transforming computer source code for com-
puting a function into code for computing its
derivatives; basic ingredients in linear solver
technology; and runtime data and iteration
reordering to improve performance in irreg-
ular computation.

The focus in CSCAPES in each of these areas is on the formulation (modeling) and solution
(algorithms) of the underlying fundamental combinatorial problems, which are often phrased
using graphs or hypergraphs. Load-balancing, the task of distributing data and work in a large-
scale computation among the processors of a machine to minimize total execution time, can be
phrased as a partitioning problem on a graph, or with more accuracy, on a hypergraph. When
computational dependency among subtasks is modeled using a graph, a distance-1 coloring
of the graph can be used to determine a scheduling of the tasks for concurrent computation.
Distance-2 coloring and several other specialized variants are used to model matrix partitioning
problems that arise in the efficient computation of sparse Jacobians and Hessians using AD.
In AD, exploitation of associativity and commutativity in the chain rule of differential calculus

leads to a variety of vertex or edge elimination problems in the directed acyclic graph used to
represent the computation of a function and its derivative. Various types of matchings in graphs
are used in the solution of sparse linear systems (numerical preprocessing and block triangular
decomposition) and in the coarsening phase of multilevel methods for graph partitioning. Work
and storage reduction in direct solvers for large sparse systems calls for vertex ordering problems
in graphs. Graph and hypergraph based models are used to capture the needs in reordering the
nodes and elements within an unstructured mesh to improve runtime performance.

CSCAPES researchers are developing sequential and parallel algorithms and software for
the combinatorial problems outlined in the previous paragraph. The load-balancing and
parallelization capabilities are being deployed through the Sandia-housed Zoltan software toolkit.
Similarly, the AD capabilities are being deployed via the tools being developed at Argonne within
the OpenAD framework. In addition, serial as well as parallel codes (for coloring, matching, and
re-ordering) are being separately developed at the academic institutions within CSCAPES, with
the ultimate goal of being integrated with the major software outlets, Zoltan and OpenAD.
Both Zoltan and the tools in OpenAD pre-date CSCAPES and have been under continuous
development for several years with sustained support from DOE; similarly, the coloring work
in CSCAPES was previously supported by NSF. Zoltan’s internal interface is currently being
redesigned to improve support for integration of third party libraries. For example, it has
recently acquired an interface to the parallel ordering functionality available in PT-Scotch.

The load-balancing and partitioning facilities in Zoltan have been used to enable a
wide variety of applications in structural mechanics, chemical engineering, groundwater flow,
biological systems, electronic circuit simulations, and molecular dynamics. Likewise, the tools
in OpenAD have been applied to a broad range of applications: modeling breast cancer, climate,
weather, semiconductor devices, power networks, and groundwater; atmospheric chemistry;
computational fluid dynamics; the network-enabled optimization server (NEOS); water reservoir
simulation; and chemical kinetics.

In the remainder of this short paper we provide a few “nuggets” of our recent works, to
give a flavor of the ongoing research and development activities within CSCAPES. For more
information, consult the references listed in this paper and the website http://www.cscapes.org.

2. Dynamic Hypergraph Repartitioning and 2D Matrix Partitioning
In parallel adaptive computations, processor work loads may become unbalanced over time due
to changes in the computations. In adaptive mesh refinement, for example, the refinement and
coalescing of elements may cause significant load imbalance. This kind of application requires
dynamic load balancing. Dynamic load balancing has several goals with complicated trade-offs:
load balance in the new data distribution; low communication cost within the application; low
cost to migrate data from the old distribution to a new one; and short repartitioning time.

CSCAPES researchers have recently developed a hypergraph-based repartitioning method [5].
In this method, new vertices are added to represent each part. Then, each of these vertices is
connected to the objects in the same part with new (weighted) edges to model the data migration
cost. The resulting hypergraph accurately accounts for both the communication volume and the
migration cost to move the data, and can be partitioned using existing algorithms and software.

In Figure 2, results from applying this hypergraph repartitioning method (HG-Repart) to an
adaptive mesh refinement problem from the ALEGRA shock physics code [2] is shown. HG-
Repart is compared with other connectivity-based approaches—“scratch-remap” hypergraph
partitioning (HG-Scratch) and graph-based partitioning (G-Scratch) and repartitioning (G-
Repart)—and the coordinate-based methods Recursive Coordinate Bisection (RCB) and Hilbert
Space-Filling Curve partitioning (HSFC). Scratch-remap methods compute partitions without
accounting for existing part assignments, and then remap parts to try to minimize migration
costs. While the coordinate-based methods do not model communication and migration

p=16 p=32 p=64
0

50

100

150

200

250

300

Number of processors

C
o

m
m

u
n

ic
at

io
n

 V
o

lu
m

e
(M

B
yt

es
)

HG−repart mig
HG−repart com
HG−scratch mig
HG−scratch com
G−repart mig
G−repart com
G−scratch mig
G−scratch com
RCB mig
RCB com
HSFC mig
HSFC com

p=16 p=32 p=64
0.01

0.1

1

10

100

Number of processors

P
ar

ti
ti

o
n

in
g

 t
im

e

HG−repart
HG−scratch
G−repart
G−scratch
RCB
HSFC

Figure 2. (Top) Sample adaptive finite element meshes at time-steps 0, 54, and 108; the smallest
mesh has 132,209 nodes, and the largest has 1,380,266 nodes. (Bottom) A comparsion of communication
volume and execution time over 109 time-steps of an adaptive finite element simulation on 16, 32 and
64 processors of a Linux cluster (dual 2.2GHz AMD Opterons with 4 GB RAM and a Myrinet network).

costs explicitly, they are implicitly incremental, making them viable for repartitioning mesh-
based problems. The repartitioning hypergraph method HG-repart produced lower total cost
(application communication volume plus data migration communication volume) than all other
methods. The coordinate-based methods were much faster than graph- and hypergraph-based
methods, but their total cost was high. Execution time for HG-repart was greater than G-repart,
indicating the need for faster heuristics in the hypergraph implementation for applications with
relatively low and homogeneous connectivity.

The multiplication of a sparse matrix by a vector is an important kernel in scientific
computing. CSCAPES researchers have long studied how to optimize the performance of
this operation in parallel by reducing communication volume [6]. Recently, new partitioning
algorithms have been developed for novel two-dimensional data distributions that can be
computed efficiently using current partitioning software [1, 11].

3. Parallel Coloring
CSCAPES researchers have recently developed a framework for parallelizing greedy distance-1
coloring algorithms on distributed-memory computers [4]. Formulated in a generic manner, the
techniques employed in the framework include: careful exploitation of features of the initial data
distribution; speculation—maximizing concurrency by tentatively tolerating inconsistencies and
then detecting and resolving them; randomization; and infrequent, coarse-grain communication
among processors as opposed to frequent, fine-grained communication. In [4], several specialized
algorithms designed using the framework have been presented and evaluated; experiments carried
out on moderate size machines demonstrated good scalability.

In a work that is currently being finalized [3], the distance-1 coloring framework has been
extended for the distance-2 coloring problem, an archetypal model for partitioning problems
that arise in the efficient computation of sparse Jacobian and Hessian matrices using AD (see
Figure 3). To address the challange of accessing color information of distance-2 neighbors,

Figure 3. Structurally
orthogonal column parti-
tion of a derivative ma-
trix A and its representa-
tion as a distance-2 color-
ing in the adjacency graph
Ga(A) when A is sym-
metric, and bipartite graph
Gb(A) when A is nonsym-
metric.

c1 c2

c5

c4

c3

a11 0 0 0 a15
0 a22 a23 0 0
0 a32 a33 a34 a35
0 0 a43 a44 a45
a51 0 a53 a54 a55

a11 a12 0 0 a15
a21 a22 0 0 0
a31 0 0 a34 0
0 0 a43 a44 a45

A Ga

c1

c3

c2

c4
c5

r1
r2
r3
r4

Gb
A

graph |V | |E| Degree colors
name max (seq)

pkustk13 94,893 3,260,967 299 303
shipsec5 179,860 4,966,618 125 140
pwtk 217,918 5,708,253 179 180
inline 1 503,712 18,156,315 842 843
ldoor 952,203 22,785,136 76 112

0 20 40 60 80 100
0

10

20

30

40

50

60

Number of processors

S
p

ee
d

u
p

ldoor
pwtk
shipsec5
inline_1
pkustk13

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Number of processors

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
co

lo
rs

ldoor
pwtk
shipsec5
inline_1
pkustk13

Figure 4. Performance of the parallel distance-2 coloring algorithm on select application graphs. The
maximum degree in a graph is a lower bound on the optimal number of colors needed for distance-2
coloring. A greedy sequential algorithm gave near optimal (or perhaps optimal) solution for these test
graphs. The parallel algorithm used in the worst case only 12% more colors.

efficient means of information exchange between processors hosting a pair of vertices that are
two edges away from each other are introduced. Experiments run on up to a hundred processors
have shown that the resulting parallel distance-2 coloring algorithm scales well and gives a
solution very close to the sequential variant, which in turn often gives a near optimal solution
(see Figure 4). MPI implementations of the distance-2 coloring algorithm as well as the distance-
1 coloring algorithm discussed earlier have been incorporated in Zoltan.

In the case of Hessian computation, the distance-2 coloring model does not exploit the
available symmetry. Models that exploit symmetry to various degrees exist. The most accurate
model for a direct method is star coloring and that for a substitution method is acyclic coloring.
CSCAPES investigators have in a recent work exploited the structures of two-colored induced
subgraphs in star and acyclic coloring to design novel sequential algorithms that have been shown
to be superior to previously known approaches [9]. The serial software they have developed has
been incorporated into the operator-overloading-based AD tool ADOL-C. Experiments using
ADOL-C on Jacobian computation in a Simulated Moving Bed process, a method used in
chromatographic separation in chemical engineering, and Hessian computation on an electric
power grid problem have shown that the use of the coloring techniques in large-scale problems
reduces overall run time by several orders of magnitude [7, 8].

4. Automatic Differentiation
Suppose the derivatives of y =

∏n
i=1 xi with respect to all xi need to be computed. One

algorithm to compute this function is y1 = x1; yi = xi ∗ yi−1, i = 2, . . . , n. One can then
compute the derivatives using yn = 1; yi = xi+1 ∗ yi+1, xi+1 = yi ∗ yi+1, i = n − 1, . . . , 1.
Then, ∂y/∂xi = xi. This algorithm to compute the derivatives corresponds to the reverse
mode of automatic differentiation. The reverse mode is optimal in this case and within a
factor two of optimal for all scalar functions. Now, consider the case of y = wT ∏n

i=1 Miv,
where w and v are vectors and the Mi are dense, rectangular matrices (y remains a scalar).
Then one might compute y using b0 = wT ; bi = bi−1Mi, i = 1, . . . , n; y = bnv. Then, the

derivatives with respect to the elements of the Mi can be computed optimally (or nearly so)
using bn = v; bi−1 = Mibi,M i = bibi−1,= n, . . . , 1. However, if one computes the more general
sequence a1 = wT M1v1, a2 = wT M1M2v2, . . ., an = wT M1M2 . . .Mnvn, where y =

∑n
i=1 ai,

and then computes the derivatives of each a0 using the algorithm above (summing to produce
the derivatives of y), the result is far from optimal. The problem is that although the chained
vector-matrix products from the left can be reused from one ai to the next, the chained matrix-
vector products from the right cannot be reused because the vi vary. To illustrate the problem,
suppose all of the Mi are square matrices of size n×n. Then, the cost of computing the function
is O(n3) while the cost of computing the derivative matrices is O(n4). If, however, one recasts
the computation as b0 = wT ; bi = bi−1Mi, ai = bivi, i = 1, . . . , n; then, one can simply recur
backward on the bk sequence, with an extra term thrown in to account for the inner product
with xk. This brings the cost back down to O(n3). Thus, in developing methods to compute
the derivatives of a function, it is important to consider the full algorithm used to compute the
function, not just subcomponents. We identified a way to use a similar technique to reduce the
cost of computing the gradient of a function arising in computational chemistry from O(n5) to
O(n4) [10]. This reduction will have a major impact on the size of problems that can be solved.

Acknowledgments
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the U. S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000. The work at Argonne was supported by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, U.S. Department of Energy under Contract W-31-109-Eng-38.
The CSCAPES Institute is supported by the U.S. Department of Energy’s Office of Science
through grant DE-FC-0206-ER-25774, as part of its SciDAC program.

References
[1] E. G. Boman. A nested dissection approach to sparse matrix partitioning. In Proc. of Appl. Math. Mech.,

to appear, 2008. (Presented at ICIAM07, Zurich, July 2007).
[2] E. A. Boucheron, K. H. Brown, K. G. Budge, S. P. Burns, D. E. Carroll, S. K. Carroll, M. A. Christon, R. R.

Drake, C. G. Garasi, T. A. Haill, J. S. Peery, S. V. Petney, J. Robbins, A. C. Robinson, R. Summers, T. E.
Voth, and M. K. Wong. ALEGRA: User Input and Physics Descriptions Version 4.2. Sandia National
Laboratories, Albuquerque, NM, 2002. Tech. Report SAND2002-2775.

[3] D. Bozdag, U. Catalyurek, A. Gebremedhin, F. Manne, E. Boman, and F. Ozguner. Distributed-memory
parallel graph coloring algorithms for Jacobian and Hessian computation. To be submitted to SIAM J.
Sci. Comput., 2008.

[4] D. Bozdag, A. Gebremedhin, F. Manne, E. Boman, and U. Catalyurek. A framework for scalable greedy
coloring on distributed memory parallel computers. Journal of Parallel and Distributed Computing,
68(4):515–535, 2008.

[5] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and L. Riesen. Hypergraph-based dynamic
load balancing for adaptive scientific computations. In Proc. of 21th International Parallel and Distributed
Processing Symposium (IPDPS’07). IEEE, 2007. 11 pages.

[6] U. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decomposition for parallel sparse-matrix
vector multiplication. IEEE Transactions on Parallel and Distributed Systems, 10(7):673–693, 1999.

[7] A. Gebremedhin, A. Pothen, A. Tarafdar, and A. Walther. Efficient computation of sparse Hessians using
coloring and automatic differentiation. INFORMS Journal on Computing (to appear), 2008. 28 pages.

[8] A. Gebremedhin, A. Pothen, and A. Walther. Exploiting sparsity in Jacobian computation via coloring and
automatic differentiation: a case study in a simulated moving bed process. In The Fifth International
Conference on Automatic Differentiation, August 2008, Bonn, Germany (to appear), 2008. 10 pages.

[9] A. Gebremedhin, A. Tarafdar, F. Manne, and A. Pothen. New acyclic and star coloring algorithms with
application to computing Hessians. SIAM Journal on Scientific Computing, 29(3):1042–1072, 2007.

[10] Personal communication with Ron Shepherd.
[11] M. Wolf, E. Boman, and B. Hendrickson. Optimizing sparse matrix-vector multiplication by corner

partitioning. In Proc. of PARA08, to appear, 2008.

