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Coloring in parallel processing

A distance-1 coloring of G = (V ,E ) is

a mapping φ : V → {1, 2, . . . , q} s.t.
φ(u) 6= φ(v) whenever (u, v) ∈ E
a partitioning of V into q independent sets

The objective is to minimize q

Distance-1 coloring is used to discover
concurrency in parallel scientific computing.
Examples:

iterative methods for sparse linear systems
(Jones & Plassmann, 94)
adaptive mesh refinement
preconditioners
(Saad, 96; Hysom & Pothen, 01)
eigenvalue computation (Manne, 98)
sparse tiling (Strout et al, 02)
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Coloring in automatic differentiation: context

Procedure SparseCompute(F : Rn → Rm)

S1. Determine the sparsity structure of the derivative (first or second)
matrix A ∈ Rm×n of the function F

S2. Obtain a seed matrix S ∈ {0, 1}n×q with the smallest q

S3. Compute the numerical values of the entries of
the compressed matrix B = AS ∈ Rm×q

S4. Recover the numerical values of the entries of A from B

The seed matrix S partitions the columns of A:

sjk =

{
1 iff column aj belongs to group k,

0 otherwise.

It is obtained using an appropriate coloring on the graph of A.
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Coloring model variations in
derivative computation via compression

Sources of problem variation:

Type of derivative matrix

Jacobian (nonsymmetric)
Hessian (symmetric)

Recovery method

Direct
Substitution

Dimension of partitioning (for the Jacobian case)

Unidirectional (only columns or rows)
Bidirectional (both columns and rows)
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An archetypal model for direct methods
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Structurally orthogonal partition of matrix A equivalent to:

Distance-2 coloring of the adjacency graph Ga(A) = (V ,E)
when A is symmetric (McCormick, 1983)

Partial distance-2 coloring of the bipartite graph Gb(A) = (V1,V2,E)
when A is nonsymmetric (GMP, 2005)

Distance-1 coloring of the appropriate square graph (Coleman and Moré, 1983)
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An accurate model for direct Hessian computation
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Symmetrically orthogonal partition: whenever hij 6= 0

hj only column in a group with nonzero at row i or
hi only column in a group with nonzero at row j

Star coloring: a vertex coloring φ of Ga(H) s.t.

φ is a distance-1 coloring and
every path on 4 vertices (P4) uses at least 3 colors

SymOP equivalent to star coloring (Coleman and Moré, 84)
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An accurate model for Hessian computation via substitution
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Substitutable partition: whenever hij 6= 0

hj in a group where all nonzeros in row i are ordered before hij or
hi in a group where all nonzeros in row j are ordered before hij

Acyclic coloring: a vertex coloring φ of Ga(H) s.t.

φ is a distance-1 coloring and
every cycle uses at least 3 colors

Substitutable partition equivalent to acyclic coloring (Coleman and Cai, 86)
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Overview of coloring models in derivative computation

General sparsity pattern:
unidirectional partition bidirectional partition

Jacobian distance-2 coloring star bicoloring Direct
Hessian star coloring NA Direct

(restricted star coloring)
Jacobian NA acyclic bicoloring Substitution
Hessian acyclic coloring NA Substitution

(triangular coloring)

Nonsym A Gb(A) = (V1,V2,E )
Sym A G (A) = (V ,E )

Regular sparsity pattern (discretization of structured grids):

Formula-based coloring (Goldfarb and Toint, 1984)

Hierarchical coloring (Hovland, 2007)
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Outline

1 Models
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3 Case studies

4 Parallel algorithms

5 Summary
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Complexity and Algorithms

Distance-k, star, and acyclic coloring are NP-hard
(they are also hard to approximate)

A greedy heuristic usually gives a good solution
Greedy(G = (V ,E ))

Let v1, v2, . . . , vn be an ordering of V
for i = 1 to n do

determine forbidden colors to vi

assign vi the smallest permissible color
end-for

For distance-k coloring, Greedy can be implemented to run
in O(ndk) time, where dk is the average degree-k

We have developed O(nd2)-time heuristic algorithms for
star and acyclic coloring
Key idea: exploit the structure of two-colored induced subgraphs
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A new star coloring heuristic algorithm

v v vv v v

(a) (b) (c) (d) (e) (f)

Algorithm (Input: G = (V ,E )):
for each v ∈ V

1 Choose color for v

forbid colors used by neighbors N(v) of v
forbid colors leading to two-colored P4

∀{w , x} ⊆ N(v) where φ(w) = φ(x),
forbid colors used by N(w) and N(x)
∀ non-single-edge star S incident on v ,
forbid color of hub of S

2 Update collection of two-colored stars

Time: O(|V |d2) Space: O(|E |)
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A new acyclic coloring heuristic algorithm
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Algorithm (Input: G = (V ,E )):
for each v ∈ V

1 Choose color for v

forbid colors used by neighbors N(v) of v
forbid colors leading to two-colored cycles

∀ tree T incident on v , if v adj to ≥ 2 vertices of same color,
forbid the other color in T

2 Update collection of two-colored trees (merge if necessary)

Time: O(|V |d2 · α) Space: O(|E |)
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Performance comparison:
new star and acyclic coloring algorithms vs previous algorithms

|V | in 1000 |E | in 1000 MaxDeg MinDeg AvgDeg

range 10 – 150 50 – 17,000 8 – 860 0 – 230 3 – 600
sum 1,500 88,000 6,400 800 4,200

Table: Summary of size and density of test graphs (total: 29).

D2 RS NS S T-sl A D1

colors 9,240 8,749 7,636 7,558 5,065 4,110 1,757
time (min) 28.2 34.4 930 162 12.4 32.5 0.04

Table: Total number of colors and runtime, summed over all test cases.
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Experiments using ADOL-C

Efficacy of the four-step scheme tested in two case studies
1 Jacobian computation in a Simulated Moving Bed process

(chromatographic separation in chemical engineering)
2 Hessian computation in an optimal electric power flow problem

Experiments showed
technique enabled cheap Jacobian/Hessian computation
where dense computation is infeasible
observed results for each step matched analytical results
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Parallelizing greedy coloring

Desired task: parallelize Greedy such that

speedup is Θ(p)
number of colors used is roughly same as in serial

A difficult task since Greedy is inherently sequential

For D1 coloring, several approaches based on
Luby’s parallel algorithm for maximal independent set exist

Some drawbacks:

no actual parallel implementation
many more colors than a serial implementation
poor parallel speedup on unstructured graphs
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Generic parallelization techniques

Basic standard techniques:
balanced trees, pointer jumping,
divide and conquer, strict partitioning
Strict partitioning:

break up the given problem into p independent
subproblems of almost equal sizes
solve the p subproblems concurrently using p processors

Main work in SP lies in the decomposition step,

often no easier than solving the original problem.

Relaxed partitioning:
break up the given problem into p, not necessarily entirely independent,
subproblems of almost equal sizes
solve the p subproblems concurrently
detect inconsistencies in the solutions concurrently
resolve any inconsistencies

RP can be used successfully if the resolution in the fourth step

involves only “local” adjustments.
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RP applied to greedy coloring

Basic features of the algorithm:

exploits features of data distribution

distinguishes between interior and boundary vertices

proceeds in rounds, each having two phases:

tentative coloring
conflict detection

tentative coloring phase organized in supersteps

each processor communicates only after coloring a subset of its
assigned vertices using currently available information
(infrequent, coarse-grain communication)

randomization used in resolving conflicts
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A Framework for Parallel Distance-1 Coloring

Framework(G = (V ,E), s)
Partition V into V1,V2, . . . ,Vp using a graph partitioner
On each processor Pi , i ∈ I = {1, . . . , p}

for each boundary vtx v ∈ V ′
i = {u : (u, v) ∈ Ei}

assign v a random number r(v)
Ui ← Vi

while ∃j ∈ I , Uj 6= ∅ rounds
Partition Ui into `i subsets Ui,1,Ui,2, . . . ,Ui,`i , each of size s
for k = 1 to `i do supersteps for tentative coloring

for each v ∈ Ui,k do
assign v a permissible color

send colors of boundary vtxs in Ui,k to relevant processors
receive color information from relevant processors

Wait until all incoming messages are received
Ri ← ∅
for each boundary vtx v ∈ Ui do conflict detection

if ∃(v ,w) ∈ Ei s.t. c(v) = c(w) and r(v) < r(w) then
Ri ← Ri ∪ {v}

Ui ← Ri recolor in next round



Specializations of Framework

Framework can be specialized along several axes:

1 Color selection strategies:
First Fit: search for smallest color starts at 1 on each processor

Staggered FF: search for smallest color starts from different “bases”

2 Coloring order:
interior vertices can be colored before, after, or interleaved with

boundary vertices

3 Local vertex ordering:
vertices on each processor can be ordered

using various degree-based techniques

4 Supersteps:
can be run synchronously or asynchronously

5 Inter-processor communication:
can be customized or broadcast-based
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How should the options in Framework be set?

An answer requires considering a complex set of factors, including

size and density of input graph

number of processors

quality of initial partitioning

characteristic of platform on which implementation is run

Determination bound to rely on experimentation

Assefaw Gebremedhin (CSCAPES) Coloring in Scientific Computing 22 / 27



Lessons learned from experiments

Good parameter configuration for
large-size (millions of edges) graphs:

moderately unstructured graphs
(e.g. a typical application graph):

1 a superstep size s in the order of 1000
2 asynchronous supersteps
3 a coloring order in which interior vertices appear either

strictly before or strictly after boundary vertices
4 First Fit color choice strategy
5 customized inter-processor communication

highly unstructured (e.g. random) graphs:

s in the order of 100
items 2 to 4 same as for moderately unstructured graphs
broadcast-based communication
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A sample experimental result: strong scalability
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Algorithm FBAC on Itanium 2 cluster.
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A sample experimental result: weak scalability
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Summary

Current accomplishments:

Developed a unifying graph-theoretic framework
for sparse derivative computation.
Designed and implemented new sequential algorithms
for distance-k , star, acyclic, and other coloring problems.
C++ implementations assembled in a package called ColPack.

ColPack also includes various ordering routines for greedy coloring.

Integrated parts of ColPack with the AD tool ADOL-C.
Developed parallel algorithms for distance-1, distance-2, and
restricted star coloring.

Algorithms scale well for a hundred processors.
Implementations made available via Zoltan.

Planned activities:

Integrate coloring software with tools in OpenAD.
Develop algorithms for coloring problems in partial matrix computation.
Develop parallel star and acyclic coloring algorithms.
Develop parallel coloring algorithms for tera and petascale computation.
Collaborate with application and tool developers to “plug in” coloring
technologies to enable CSE.
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