SCR Catalyst for Simultaneous Control of NO_x, CO, Non-Methane Hydrocarbon Emissions from Gas-fired Power Plants

William B. Feaver, Harvey S. Rosenberg and Joseph A. Rossin (Presenter) Guild Associates, Inc. 5750 Shier-Rings Road Dublin, Ohio 43016 (614) 760-8007

Summary

Natural gas-fired power plants are being constructed in favor of coal-fired power plants because of their reduced emissions to the atmosphere. Although NO_x emissions from natural gas-fired power plants are low (on the order of 25 ppm), many state and local regulations require that NO_x emissions be reduced to as low as 2 ppm. Selective catalytic reduction (SCR) is a leading technology for the control of NO_x emissions and has been successfully applied to the control of NO_x emissions from coal-fired power plants for a number of years. With respect to the gas turbine application, high NO_x reduction efficiencies (greater than 95%) can be achieved using a conventional SCR catalyst provided the process is operated with excess NH₃. The drawback to operation with excess NH₃ is that NH₃ slip becomes an issue because SCR catalyst lacks the ability to decompose the excess NH₃. Consequently, NO_x reduction efficiency becomes limited by NH₃ slip. In addition to NO_x, emissions from natural gas-fired power plants also include CO and unburned hydrocarbons. CO and hydrocarbon emissions are beginning to come under scrutiny, and the SCR catalyst has minimal activity towards these compounds.

A novel SCR-type catalyst is currently being developed to control emissions from natural gas-fired power plants. The goal of this development effort is to identify a low cost monolithic catalyst capable of achieving the desired NO_x reduction efficiency with negligible NH₃ slip. One additional goal of this effort is to incorporate onto the catalyst the ability to oxidize CO and non-methane hydrocarbons. The catalyst under development consists of a washcoated monolith and combines an SCR function with an NH₃ abatement function. The NH₃ abatement function is also active in the oxidation of CO and non-methane hydrocarbons. The addition of an NH₃ abatement function to an SCR catalyst allows for operation with excess NH₃, thereby ensuring a high NO_x reduction efficiency. NH₃ slip is minimized/avoided because the excess NH₃ is decomposed over the catalyst. One key to successful implementation of the above catalyst design is for the NH₃ abatement function to decompose NH₃ with minimal selectivity towards the formation of NO_x.

A novel SCR-type catalyst was evaluated for its ability to decompose NO_x, CO and toluene (selected as a representative non-methane hydrocarbon) in a laboratory scale test stand using simulated turbine exhaust. Simulated turbine exhaust consisted of 30 ppm NO_x, 10% O₂, 10% CO₂, 5% water, balance N₂. When operated with approximately 40 ppm NH₃ at temperatures between 240 and 290°C and GHSV's between 12,000 and 18,000 hr⁻¹, the catalyst is able to achieve NO_x effluent concentrations below 2 ppm with less than about 1 ppm NH₃ slip. Operation of the catalyst at temperatures greater than about 290°C results in insufficient NO_x reduction. This behavior is attributed to excessive NH₃ activity. Operation of the catalyst at temperatures below about 240°C results in excessive NH₃ slip, which is attributed to insufficient NH₃ activity.

The NH₃ abatement function associated with the catalyst facilitates a reaction between adsorbed NH₃ and O₂ leading to the formation of H₂O and primarily N₂. Because the catalyst destroys NH₃ according to an oxidation mechanism, the ability of the catalyst to destroy CO and toluene (selected as a representative hydrocarbon) was also evaluated. The CO and toluene activity of the catalyst was evaluated by spiking the process stream with 400 ppm CO and 300 ppm toluene. The catalyst was able to achieve greater than 90% destruction of CO at temperatures of greater than about 200°C, while temperatures of greater than 280°C are required to achieve 90% destruction of toluene.