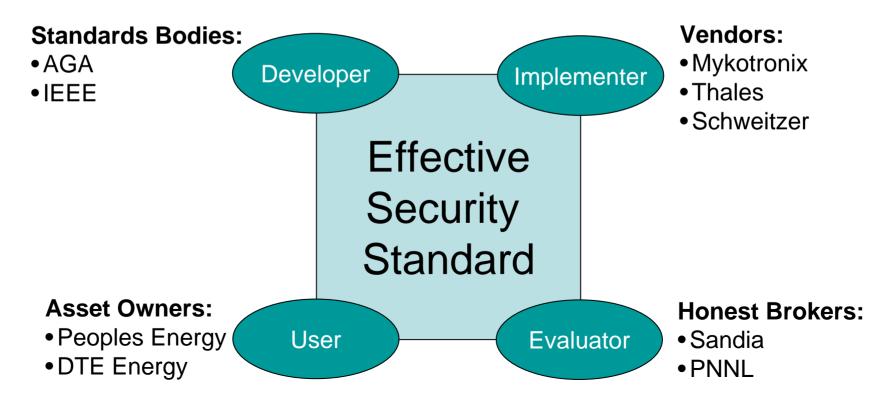


Visualization and Controls Program Peer Review 2006 AGA 12 Cryptographic Security Analysis

Tim Draelos, Principal Investigator Sandia National Laboratories (505) 844-8698 tjdrael@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. U.S. Department of Energy Office of Electricity Delivery and Energy Reliability


Work Package Description

NSTB FY05 Task

- AGA 12: Cryptographic Protection of SCADA Communications
 - Part 1: Background, Policies, and Test Plan
 - Part 2: Retrofit Link Encryption for Asynchronous Serial Communications
 - Part 3: Protection of Networked Systems
 - Part 4: Protection Embedded in SCADA Components
- Task 1: AGA 12, Part 2 Cryptographic Security Analysis
 - AGA 12, Part 2 Cryptographic Security Analysis report delivered June, 2006
- Task 2: AGA 12, Part 2 Cryptographic Security Testing
 - SCADA Cryptographic Security Test Plan: General Guidance delivered June, 2006

Industry Needs

- Asset owners need SCADA security products they can trust
 - Trust can come from Honest Broker evaluation
- Vendors need a stable security standard for development

Industry Benefits (Impacts)

- Original draft reviewed
 - May 12, 2005
- Recommendations had limited impact on intermediate drafts
 - November 29, 2005
 - January 25, 2006
- Final recommendations had huge impact on most recent draft
 - March 31, 2006

Technical Approach

- Cryptographic Security Analysis and Testing
 - Studied multiple drafts of AGA 12, Part 2
 - Engaged AGA 12, Part 2 authors in technical discussions via email and telephone to increase our understanding.
 - Developed block diagrams / flow charts of AGA 12, Part 2 protocols
 - Studied cryptographic algorithms and their uses as specified by AGA 12, Part 2
 - Documented security findings and recommendations
 - Reported findings and recommendations to AGA 12, Part 2 authors
 - Prepared final report based on findings, recommendations, and changes to AGA 12, Part 2
 - Prepared general guidance for testing SCADA security devices

Collaborations and Partnerships

• GTI

- Bill Rush: Lead contact / editor of AGA 12
- John Kinast: AGA 12 author
- Aakash Shah: AGA 12 software implementer / tester
- Cisco
 - Andrew Wright: Lead technical author of AGA 12
- AGA
 - Host body for AGA 12
- PNNL
 - Mark Hadley: AGA 12 device performance testing

Technical Progress – Accomplishments

- Created diagrams for Serial SCADA Protection Protocol
 - Session Layer, Transport Layer
 - OPN, ACK, CLS, ERR Messages
- Cryptographic Security Findings / Recommendations
 - Static Session used to transfer Dynamic session keys
 - Use of stream ciphers for Static Sessions should be prohibited
 - The state variable (32-bit random number) is too short
 - 64-128 bits of state variable recommended
 - Attacks against PE Mode with No Holdback
 - Block swapping is possible without CRC detection
 - Repeated state variables defeats CRC check
 - Perform Full Holdback Authentication of dynamic session headers
 - Rewrite standard to promote consistent, secure implementations

Technical Progress – Accomplishments

- Final Reports
 - AGA 12 Part 2 Cryptographic Security Analysis
 - Official Use Only
 - SCADA Cryptographic Security Test Plan: General Guidance
- Impact
 - Greatly increased the security of AGA 12