MATHCAD Program using Gauss's Method to determine the Orbit of an object from three measurements.

Version 16
with speed of
light correction and one iteration)

I work in time units of solar days, in distance units of AU (earth orbit radius), and masses of one solar mass (M). Then astronomers like to use the Gaussian gravitational constant k. In addition, I use mass units of 1 solar mass M .
$\mathrm{k}:=0.01720209895$
M0 := 1
i := $1 . .3$

The coordinates of three different comet measurements are the heliocentric vectors 1,2 , and 3 . I start with Right Ascension and Declination measured here on Earth. I use α for right ascension angle, and δ for the declination.
$\Xi:=2 \cdot \frac{\pi}{360} \quad$ Data is entered in decimal degrees, and converted to radians.
I use time units of Julian dates, and then multiply them by the Gaussian gravitational constant k, to make the time come out in units of mean solar days.

$\alpha_{1}:=264.0625 \cdot \Xi$	$\delta_{1}:=-6.3402777 \cdot \Xi$	$\mathrm{t}_{1}:=331.6667$	Sept. 4,1996	$10: 00 \mathrm{pm}$
$\alpha_{2}:=263.766666 \cdot \Xi$	$\delta_{2}:=-3.8586111 \cdot \Xi$	$\mathrm{t}_{2}:=379.5833$	Oct. 22, 1996	$8: 00 \mathrm{pm}$
$\alpha_{3}:=271.2541667 \cdot \Xi$	$\delta_{3}:=-0.4819444 \cdot \Xi$	$\mathrm{t}_{3}:=419.5417$	Dec. 1,1996	$6: 00 \mathrm{pm}$

$\mathrm{T}_{1}:=\mathrm{k} \cdot\left(\mathrm{t}_{3}-\mathrm{t}_{2}\right) \quad$ These are the three normalized time differences associated with
$\mathrm{T}_{2}:=\mathrm{k} \cdot\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right) \quad$ the three separate observations.
$\mathrm{T}_{3}:=\mathrm{k} \cdot\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \quad \mathrm{T}_{1}=0.68736835 \quad \mathrm{~T}_{2}=1.51163445 \quad \mathrm{~T}_{3}=0.82426609$

Now I need the geocentric Sun positions for the three times. These are from the 1996 Astronomical Almanac book, and I interpolate between two adjacent days in the Table to get the right Julian time.
$\begin{array}{lll}\mathrm{X}_{1}:=-.963664 & \mathrm{Y}_{1}:=0.271679 & \mathrm{Z}_{1}:=0.117785 \\ \mathrm{X}_{2}:=-.86156452 & \mathrm{Y}_{2}:=-.456282 & \mathrm{Z}_{2}:=-.197827 \\ \mathrm{X}_{3}:=-0.33433726 & \mathrm{Y}_{3}:=-0.850871 & \mathrm{Z}_{3}:=-0.368908\end{array}$
$R 1:=\left[\begin{array}{l}\mathrm{X}_{1} \\ \mathrm{Y}_{1} \\ \mathrm{Z}_{1}\end{array}\right] \quad \mathrm{R} 2:=\left[\begin{array}{l}\mathrm{X}_{2} \\ \mathrm{Y}_{2} \\ \mathrm{Z}_{2}\end{array}\right] \quad \mathrm{R} 3:=\left[\begin{array}{l}\mathrm{X}_{3} \\ \mathrm{Y}_{3} \\ \mathrm{Z}_{3}\end{array}\right] \quad \mathrm{R}$ is the solar position for each of the three times
$|\mathrm{R} 1|=1.00813248 \quad|\mathrm{R} 2|=0.99479757 \quad|\mathrm{R} 3|=0.98582756 \quad \begin{aligned} & \text { The Earth gets closer to the Sun } \\ & \text { in the Winter. }\end{aligned}$
Next I calculate the geocentric unit vectors for each observation from the RA and Declinations measured. These are basically the angles to the comet from earth.... but I don't know the distance.

$$
\left(\begin{array}{ll}
\mathrm{ux}_{\mathrm{i}} & \mathrm{uy}_{\mathrm{i}}
\end{array} \mathrm{uz}_{\mathrm{i}}\right):=\left(\cos \left(\alpha_{\mathrm{i}}\right) \cdot \cos \left(\delta_{\mathrm{i}}\right) \sin \left(\alpha_{\mathrm{i}}\right) \cdot \cos \left(\delta_{\mathrm{i}}\right) \sin \left(\delta_{\mathrm{i}}\right)\right)
$$

$$
\mathrm{u} 1:=\left[\begin{array}{c}
\mathrm{ux}_{1} \\
\mathrm{uy}_{1} \\
\mathrm{uz}_{1}
\end{array}\right] \quad \mathrm{u} 2:=\left[\begin{array}{c}
\mathrm{ux}_{2} \\
\mathrm{uy}_{2} \\
\mathrm{uz}_{2}
\end{array}\right] \quad \mathrm{u} 3:=\left[\begin{array}{c}
\mathrm{ux}_{3} \\
\mathrm{uy}_{3} \\
\mathrm{uz}_{3}
\end{array}\right] \quad \begin{aligned}
& \mathrm{ux}_{2}=-0.10833159 \\
& \mathrm{uy}_{2}=-0.99183452 \\
& \mathrm{uz}_{2}=-0.06729457
\end{aligned}
$$

u1, u2, and u3 are the unit vectors (directions) from the earth to the comet for each of the three times, T1, T2, and T3

$$
|\mathrm{u} 1|=1.00000000 \quad|\mathrm{u} 2|=1.00000000 \quad|\mathrm{u} 3|=1.00000000 \quad \text { The vectors do have length } 1 .
$$

Now Gauss determines the postions at time 2, by using information from times 1 and 3, and the Newtonian force law.

Since a simple 2-body orbit will be in one plane, then it is possible to describe the third position vector for the object as some linear combination of the other two positions, as long as the other two are not parallel to each other. So, for example $r 2=c 1^{*} r 1+c 3^{*} r 3$ What I will do is calculate the geometrical coefficients c1 and c3.

I calculate the geometrical coefficients from the relation of areas swept out per unit time and using Kepler's second Law. I am getting this from the book "Introduction to Celestial Mechanics", by S. W. McCuskey. First I need to define some coefficients that I will use later.

$$
\begin{aligned}
& \mathrm{a}_{1}:=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right) \quad \mathrm{b}_{1}:=\frac{1}{6} \cdot\left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right) \cdot\left[1-\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{2}\right] \cdot\left(\mathrm{T}_{2}\right)^{2} \quad \mathrm{a}_{3}:=\left(\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}}\right) \quad \mathrm{b}_{3}:=\frac{1}{6} \cdot\left(\frac{\mathrm{~T}_{3}}{\mathrm{~T}_{2}}\right) \cdot\left[1-\left(\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}}\right)^{2}\right] \cdot\left(\mathrm{T}_{2}\right)^{2} \\
& \mathrm{a}_{1}=0.45471863 \quad \mathrm{a}_{3}=0.54528137 \quad \mathrm{~b}_{1}=0.13736773 \\
& \mathrm{~A}:=\frac{\left[\mathrm{a}_{1} \cdot(\mathrm{R} 1 \cdot(\mathrm{u} 1 \times \mathrm{u} 3))\right]-(\mathrm{R} 2 \cdot(\mathrm{u} 1 \times \mathrm{u} 3))+\left[\mathrm{a}_{3} \cdot(\mathrm{R} 3 \cdot(\mathrm{u} 1 \times \mathrm{u} 3))\right]}{\mathrm{u} 1 \cdot(\mathrm{u} 2 \times \mathrm{u} 3)} \\
& B:=\frac{\left[\mathrm{b}_{1} \cdot(\mathrm{R} 1 \cdot(\mathrm{u} 1 \times \mathrm{u} 3))\right]+\left[\mathrm{b}_{3} \cdot(\mathrm{R} 3 \cdot(\mathrm{u} 1 \times \mathrm{u} 3))\right]}{(\mathrm{u} 1 \cdot(\mathrm{u} 2 \times \mathrm{u} 3))}
\end{aligned} \quad \mathrm{A}=3.15407435 \mathrm{l} \quad \mathrm{~B}=-2.37224388
$$

I need to solve two equations and two unknowns. They are nonlinear equations, so I could solve them graphically, or let the computer do the dirty work for me. These equations use the coefficients, which I have already calculated above.
$\begin{array}{lll}\rho 2:=5 & \begin{array}{l}\text { Now I define starting (guesses) values for } \rho \text { and } r r \text {, the distances from } \\ \text { the Earth and Sun to the comet, respectively, to be used later as guesses for the }\end{array} & \mathrm{x}:=0.85,0.860 . .50 \\ \mathrm{rr}:=6 & \mathrm{z}:=0.1,0.11 . .10\end{array}$ computer solution.

This left equation, below, came from first terms in an expansion of sector/triangle ratios by Gauss, and is approximate.

$$
y(x):=A+\frac{B}{\left(\frac{3}{x^{2}}\right)}
$$

$$
\mathrm{g}(\mathrm{z}):=\mathrm{z}^{2}+(|\mathrm{R} 2|)^{2}-(2 \cdot \mathrm{z} \cdot(\mathrm{u} 2 \cdot \mathrm{R} 2))
$$

The equation above is just the general form relating the three sides of a triangle, and is exact.

I can solve the two equations graphically, by looking at the graph and seeing the points where the two curves intersect.

Only one intersection will be the real answer. There could be up to three different solutions, so I need to check several starting values when using the computer solver.

$$
\left(\mathrm{A}+\frac{\mathrm{B}}{\mathrm{rr}^{3}}\right)-\rho 2=0 \quad(|\rho 2|)^{2}+(|\mathrm{R} 2|)^{2}-(2 \cdot|\rho 2| \cdot(\mathrm{u} 2 \cdot \mathrm{R} 2))-\mathrm{rr}^{2}=0
$$

Or I use the computer routine "find" function to get the solutions.

$$
\text { Answer }:=\text { find }(\mathrm{rr}, \mathrm{p} 2) \quad \text { Answer }=\binom{2.59276927}{3.01797134}
$$

rr $:=\mid$ Answer $_{0}\left|\quad \rho_{2}:=\right|\left(\right.$ Answer $_{1} \mid$

$$
\begin{array}{ll}
\mathrm{rr}=2.59276927 & \text { Sun-Comet distance at time } 2 \\
\rho_{2}=3.01797134 & \text { Earth-Comet distance at time } 2
\end{array}
$$

Now the coefficients that give position 2 as a linear combination of positions 1 and 3 can be calculated.
$c_{1}:=a_{1}+\frac{b_{1}}{(\mathrm{rr})^{3}} \quad c_{3}:=a_{3}+\frac{\mathrm{b}_{3}}{(\mathrm{rr})^{3}}$
EQ. (A).
$\rho_{1}:=\frac{(\mathrm{R} 1 \cdot(\mathrm{u} 2 \times \mathrm{u} 3)) \cdot \mathrm{c}_{1}-(\mathrm{R} 2 \cdot(\mathrm{u} 2 \times \mathrm{u} 3))+\mathrm{c}_{3} \cdot(\mathrm{R} 3 \cdot(\mathrm{u} 2 \times \mathrm{u} 3))}{\mathrm{c}_{1} \cdot(\mathrm{u} 1 \cdot(\mathrm{u} 2 \times \mathrm{u} 3))}$
$\rho_{3}:=\frac{\mathrm{c}_{1} \cdot(\mathrm{R} 1 \cdot(\mathrm{u} 1 \times \mathrm{u} 2))-(\mathrm{R} 2 \cdot(\mathrm{u} 1 \times \mathrm{u} 2))+\mathrm{c}_{3} \cdot(\mathrm{R} 3 \cdot(\mathrm{u} 1 \times \mathrm{u} 2))}{\mathrm{c}_{3} \cdot(\mathrm{u} 3 \cdot(\mathrm{u} 1 \times \mathrm{u} 2))}$
So, finally I have solved for the position vectors of the comet at the three times ($\rho 1, \rho 2$, and $\rho 3$). Now I can multiply the distances by their unit vectors from Earth and get the Sun-Comet heliocentric rectangular equatorial vector positions.
r10 : $=\rho_{1} \cdot \mathrm{u} 1-\mathrm{R} 1$
r20 : $=\rho_{2} \cdot \mathrm{u} 2-\mathrm{R} 2$
$r 30:=\rho_{3} \cdot u 3-R 3$
r is the heliocentric position vector of the comet

$$
|\mathrm{r} 10|=3.11297449 \quad|\mathrm{r} 20|=2.59276927 \quad|\mathrm{r} 30|=2.13471796
$$

I'm going to correct my observation times for the speed of light now, and then iterate once on my coefficients, for an improved calculation.

$$
\begin{aligned}
& \mathrm{tc}_{1}:=\mathrm{t}_{1}-0.00577 \cdot \rho_{1} \quad \mathrm{tc}_{2}:=\mathrm{t}_{2}-0.00577 \cdot \rho_{2} \quad \mathrm{tc}_{3}:=\mathrm{t}_{3}-0.00577 \cdot \rho_{3} \\
& \mathrm{~T}_{1}:=\mathrm{k} \cdot\left(\mathrm{tc}_{3}-\mathrm{tc}_{2}\right) \quad \mathrm{T}_{2}:=\mathrm{k} \cdot\left(\mathrm{tc}_{3}-\mathrm{tc}_{1}\right) \quad \mathrm{T}_{3}:=\mathrm{k} \cdot\left(\mathrm{tc}_{2}-\mathrm{tc}_{1}\right) \quad \mathrm{n}:=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}} \quad \mathrm{~m}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \\
& \mathrm{~B}_{1}:=\frac{1}{12} \cdot(\mathrm{~m} \cdot \mathrm{n}-\mathrm{n}+\mathrm{m}) \cdot\left(\mathrm{T}_{2}\right)^{2} \quad \quad \mathrm{~B}_{2}:=\frac{1}{12} \cdot(\mathrm{~m} \cdot \mathrm{n}+1) \cdot\left(\mathrm{T}_{2}\right)^{2} \quad \mathrm{~B}_{3}:=\frac{1}{12} \cdot((\mathrm{~m} \cdot \mathrm{n}-\mathrm{n})+\mathrm{m}) \cdot\left(\mathrm{T}_{2}\right)^{2} \\
& \mathrm{c}_{3}:=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}} \cdot \frac{1+\mathrm{B}_{3} \cdot(|\mathrm{r} 30|)^{-3}}{1-\mathrm{B}_{2} \cdot(|\mathrm{r} 20|)^{-3}} \quad \quad \mathrm{c}_{1}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \cdot \frac{1+\mathrm{B}_{1} \cdot(|\mathrm{r} 10|)^{-3}}{1-\mathrm{B}_{2} \cdot(|\mathrm{r} 20|)^{-3}}
\end{aligned}
$$

These are the corrected coefficents, based on the first estimate of r1, r2, and r3. Now I can use the new c1 and c3, to get new and improved b1 and b3.

$$
\mathrm{b}_{1}:=\left(\mathrm{c}_{1}-\mathrm{a}_{1}\right) \cdot(|\mathrm{r} 20|)^{3} \quad \mathrm{~b}_{3}:=\left(\mathrm{c}_{3}-\mathrm{a}_{3}\right) \cdot(|\mathrm{r} 20|)^{3}
$$

Now a new coefficient B can be calculated, and then new estimates for $\rho 2$ and r. The coefficient A has not changed, in this correction.

$$
\begin{aligned}
& \mathrm{B}:=\frac{\left[\mathrm{b}_{1} \cdot(\mathrm{R} 1 \cdot(\mathrm{u} 1 \times \mathrm{u} 3))\right]+\left[\mathrm{b}_{3} \cdot(\mathrm{R} 3 \cdot(\mathrm{u} 1 \times \mathrm{u} 3))\right]}{(\mathrm{u} 1 \cdot(\mathrm{u} 2 \times \mathrm{u} 3))} \quad \mathrm{B}=-1.97895091 \\
& \rho 2:=5 \quad \mathrm{x}:=0.74,0.75 . .50 \\
& \mathrm{rr}:=6 \quad \mathrm{z}:=0.01,0.02 . .10
\end{aligned}
$$

$$
\mathrm{g}(\mathrm{z}):=\mathrm{z}^{2}+(|\mathrm{R} 2|)^{2}-(2 \cdot \mathrm{z} \cdot(\mathrm{u} 2 \cdot \mathrm{R} 2))
$$

$$
\mathrm{y}(\mathrm{x}):=\mathrm{A}+\frac{\mathrm{B}}{\left(\frac{3}{\mathrm{x}^{2}}\right)}
$$

Sun-Comet distance squared

- trace 1
- trace 2

The intersection points of these two curves give possible solution pairs of the Earth-Comet and Sun-Comet distances at Time 2.

Given
$\left(\mathrm{A}+\frac{\mathrm{B}}{\mathrm{rr}^{3}}\right)-\rho 2=0 \quad(|\rho 2|)^{2}+(|\mathrm{R} 2|)^{2}-(2 \cdot|\rho 2| \cdot(\mathrm{u} 2 \cdot \mathrm{R} 2))-\mathrm{rr}^{2}=0$
Answer : $:=$ find(rr, 22$) \quad$ Answer $=\binom{2.61716294}{3.04368104}$
rr :=| Answer $_{0}\left|\quad \rho_{2}:=\right|\left(\right.$ Answer $_{1} \mid$
rr $=2.61716294$ Sun-Comet distance at time 2
$\rho_{2}=3.04368104$ Earth-Comet distance at time 2

$$
\mathrm{c}_{1}:=\mathrm{a}_{1}+\frac{\mathrm{b}_{1}}{(\mathrm{rr})^{3}} \quad \mathrm{c}_{3}:=\mathrm{a}_{3}+\frac{\mathrm{b}_{3}}{(\mathrm{rr})^{3}}
$$

$\rho_{1}:=\frac{(\mathrm{R} 1 \cdot(\mathrm{u} 2 \times \mathrm{u} 3)) \cdot \mathrm{c}_{1}-(\mathrm{R} 2 \cdot(\mathrm{u} 2 \times \mathrm{u} 3))+\mathrm{c}_{3} \cdot(\mathrm{R} 3 \cdot(\mathrm{u} 2 \times \mathrm{u} 3))}{\mathrm{c}_{1} \cdot(\mathrm{u} 1 \cdot(\mathrm{u} 2 \times \mathrm{u} 3))}$
$\rho_{3}:=\frac{\mathrm{c}_{1} \cdot(\mathrm{R} 1 \cdot(\mathrm{u} 1 \times \mathrm{u} 2))-(\mathrm{R} 2 \cdot(\mathrm{u} 1 \times \mathrm{u} 2))+\mathrm{c}_{3} \cdot(\mathrm{R} 3 \cdot(\mathrm{u} 1 \times \mathrm{u} 2))}{\mathrm{c}_{3} \cdot(\mathrm{u} 3 \cdot(\mathrm{u} 1 \times \mathrm{u} 2))}$

$$
\begin{array}{lll}
\mathrm{r} 1:=\rho_{1} \cdot \mathrm{u} 1-\mathrm{R} 1 & \mathrm{r} 2:=\rho_{2} \cdot \mathrm{u} 2-\mathrm{R} 2 & \mathrm{r} 3:=\rho_{3} \cdot \mathrm{u} 3-\mathrm{R} 3 \\
|\mathrm{r} 1|=3.15841934 & |\mathrm{r} 2|=2.61716294 & |\mathrm{r} 3|=2.14587940
\end{array}
$$

Now I have to go to the ecliptic plane. Since the Earth axis is tilted by 23 degrees, 27 minutes to the plane of the ecliptic this means I have to do a rotation.

$$
\varepsilon:=23.4396 \cdot\left(\frac{2 \cdot \pi}{360}\right) \quad \mathrm{N}:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\varepsilon) & \sin (\varepsilon) \\
0 & -\sin (\varepsilon) & \cos (\varepsilon)
\end{array}\right] \quad \begin{aligned}
& \mathrm{N} \text { is the 2D } \\
& \text { rotation matrix } \\
& \text { through an angle } \varepsilon \text { radians }
\end{aligned}
$$

Since I am running out of r's to use, I will choose S to denote the new heliocentric rectangular ecliptic
$\mathrm{S} 1:=\mathrm{N} \cdot \mathrm{r} 1 \quad$ coordinates, at each of the three times.
$\mathrm{S} 2:=\mathrm{N} \cdot \mathrm{r} 2$
$\begin{aligned} & \mathrm{S} 3:=\mathrm{N} \cdot \mathrm{r} 3 \\ & |\mathrm{~S} 1|=3.15841934\end{aligned} \quad \mathrm{~S} 1=\left(\begin{array}{c}0.67412158 \\ -2.97411073 \\ 0.82209379\end{array}\right)$
$|\mathrm{S} 2|=2.61716294$
$|\mathrm{S} 3|=2.14587940 \quad$ change the distances.

SO, FROM THE KNOWN POSITIONS AT THE THREE TIMES, THE ORBIT PARAMETERS CAN BE CALCULATED NEXT.
Finally, I can calculate the six standard orbital elements, in the heliocentric ecliptic coordinate. system.

$$
\text { e3 := } \frac{\mathrm{S} 1 \times \mathrm{S} 3}{|\mathrm{~S} 1 \times \mathrm{S} 3|} \quad \text { e3 }=\left|\begin{array}{l}
-0.97497798 \\
-0.22225449 \\
-0.00456855
\end{array}\right| \quad \begin{aligned}
& \text { e3 is the new unit vector, which is } \\
& \text { perpendicular to the plane of the } \\
& \text { orbit, that is, perpendicular to } \\
& \text { the two position measurements, } \\
& \text { vectors S1 and S3. }
\end{aligned}
$$

$\mathrm{l}:=\operatorname{acos}\left(\mathrm{e} 3_{2}\right) \quad \mathrm{l}=1.57536489$ iota (l) is the inclination of the orbit with respect to the ecliptic
$\Omega:=\operatorname{atan}\binom{\mathrm{e} 3_{0}}{-\mathrm{e} 3_{1}} \quad \Omega=-1.34666776 \quad \Omega:=\Omega+2 \cdot \pi \quad \begin{aligned} & \text { (Add } 2 \pi \text { if numerator and denominator } \\ & \text { negative) }\end{aligned}$
Omega (Ω) is the longitude of the ascending node of the comet with respect to the line of the vernal equinox. The other two unit vectors in the orbital plane are now defined as:
$\mathrm{e} 2_{0}:=-\sin (\Omega) \cdot \cos (1)$
$\mathrm{e} 2_{1}:=\cos (\Omega) \cdot \cos (1)$
e2 $2_{2}=\sin (1)$
$\mathrm{e} 1_{0}:=\cos (\Omega)$
$e 1_{1}:=\sin (\Omega)$
$e 1_{2}:=0$

Next I will solve for two equations, in two unknowns, $\operatorname{ecos} \omega$ and esin ω, which I refer to as XX and YY e is the eccentricity, and ω is called the argument of the perihelion.
$\mathrm{XX}:=0.1 \mathrm{YY}:=0.1$ Starting guess.
Given
$X X \cdot((S 1-S 2) \cdot \mathrm{e} 1)+\mathrm{YY} \cdot((\mathrm{S} 1-\mathrm{S} 2) \cdot \mathrm{e} 2)-(|\mathrm{S} 2|-|\mathrm{S} 1|)=0$
$\mathrm{XX} \cdot((\mathrm{S} 1-\mathrm{S} 3) \cdot \mathrm{e} 1)+\mathrm{YY} \cdot((\mathrm{S} 1-\mathrm{S} 3) \cdot \mathrm{e} 2)-(|\mathrm{S} 3|-|\mathrm{S} 1|)=0$
SolveTwo := find (XX, YY)
$\mathrm{XX}:=$ SolveTwo $_{0} \quad \mathrm{YY}:=$ SolveTwo $_{1}$
ecc $:=\sqrt{\mathrm{XX}^{2}+\mathrm{YY}^{2}} \quad$ ecc $=0.97927548 \quad$ If eccentricity (ecc) is >1, the orbit is
俍
SolveTwo $=\binom{-0.62431913}{0.75445748}$ a hyperbola..... and does not return.
$\omega:=\operatorname{atan}\left(\frac{\mathrm{YY}}{\mathrm{XX}}\right) \quad \omega=-0.87950618 \quad \begin{aligned} & \text { If } \mathrm{XX} \text { is negative, and } \mathrm{YY} \text { is positive, } \\ & \text { add } \pi \text { to the arctan to put the angle in }\end{aligned}$ the proper quadrant.
$\mathrm{a}:=\frac{|\mathrm{S} 2|+\mathrm{XX} \cdot(\mathrm{S} 2 \cdot \mathrm{e} 1)+\mathrm{YY} \cdot(\mathrm{S} 2 \cdot \mathrm{e} 2)}{\left(1-\mathrm{ecc}^{2}\right)} \quad \mathrm{a}=45.70426141 \quad$ (IF a is NEGATIVE, I have a problem !)
$\mathrm{P}:=\frac{2 \cdot \pi}{\mathrm{k} \cdot \sqrt{\mathrm{M} 0}} \cdot \mathrm{a}^{\frac{3}{2}}$
Kepler's Third Law... .. relating period P to the semimajor axis raised to the 3/2 power.
$\mathrm{P}=1.12858291 \cdot 10^{5} \quad$ P_years $:=\frac{\mathrm{P}}{365.25} \quad$ P_years $=308.99$
$E:=-\operatorname{acos}\left(\frac{a-|S 2|}{a \cdot e c c}\right) \quad E=-0.27402958 \quad E$ is the "eccentric anomaly" angle at time t2
$\mathrm{M}:=\mathrm{E}-\mathrm{ecc} \cdot \sin (\mathrm{E}) \quad \mathrm{M}=-0.00902505 \mathrm{M}$ is the "mean anomaly" angle at time t2
$\mathrm{T}:=\mathrm{t}_{2}-\frac{\mathrm{M} \cdot \mathrm{P}}{2 \cdot \pi} \quad \mathrm{~T}=541.69083404 \quad \begin{aligned} & \mathrm{T} \text { is the time of perihelion passage, in my Julian } \\ & \text { date units. }\end{aligned}$
$\mathrm{q}:=\mathrm{a} \cdot(1-\mathrm{ecc}) \quad \mathrm{I}:=\frac{360}{2 \cdot \pi} \cdot \mathrm{l} \quad \mathrm{O}:=\frac{360}{2 \cdot \pi} \cdot \Omega \quad \mathrm{~W}:=\frac{360}{2 \cdot \pi} \cdot \omega$

$$
\text { P_years }=308.99 \quad \text { Orbital Period (in years) } \quad P=2364
$$

$$
\mathrm{a}=45.704 \quad \text { Semimajor axis (in } \mathrm{AU})
$$

The calculated orbital elements from my data and calculations are:

ecc $=0.97927548$	eccentricity		.995107808	
$\mathrm{q}=0.94719896$	distance of perihelion closest approach to sun (in AU.)	.914103842		
$\mathrm{l}=1.57536489$	inclination angle from ecliptic	$\mathrm{I}=90.26$	degrees	89.429449
$\omega=2.26208647$	Argument of perihelion	$\mathrm{W}=129.61$	degrees	130.5910916
$\Omega=4.93651755$	longitude of ascending node	$\mathrm{O}=282.84$	degrees	282.470692
$\mathrm{~T}=541.69083404$	Time of perihelion passage			539.6353

My eccentricity is too small, but at least it's under 1. My distance of perihelion closest approach to the sun is 3% too big. However, my inclination, argument of the perihelion, and longitude of the ascending node are very close. My time of perihelion is also only two days late. Overall, it is really a quite accurate set of orbital parameters. The main problem is the eccentricity, and the orbital period, which is much shorter than the real 2300 years.

