TRW Space & Electronics Group

Occulter

Glenn Starkman

Free Flying Occulter Conceptual Drawing

Terrestrial Planet Finder Occulter Implementation Trades

Waveband

Visible IR

- Reduced occulter size and separation
- Reduced telescope size
- Eliminate thermal cooling of occulter
- Reduce thermal cooling of telescope

*Occulter quantity along LOS to target

Occulter Quantity* Appodized Single Occulter Bottlebrush

- Reduced system complexity
- Improved nulling performance

8m Primary 16m Primary

 Reduced system cost

Telescope Size

L2 Orbits Heliocentric Orbits

 Reduced target reposition delta V

Orbit

Telescope/Occulter Separation

For Feasibility Assessment Used Separation Distance 100,000 km and Occulter Radius 35m

- Minimizes on-axis intensity
 - advantages: 1- independent, analytic
 - disadvantage: not optimized (especially for large telescopes)
- Stringent Occulter requirements limited to outer ~ 2 meters

- Star
 - unresolved, at infinity
 - black body at T_{eff}
- Planet
 - unresolved, at infinity
 - unnocculted (placed beyond occulter edge)
 - Spectrum reflected stellar black body plus lines
- Telescope
 - 100% transparent hole in 100% opaque aperture plane
 - no scattered light
 - 100% efficiency detectors
- Occulter
 - no scattered light, no thermal emission in visible
- Waveband
 - 0.5 0.7 mm for detection
 - 0.5 1.0 mm for characterization

- Telescope
 - Diameter: 8m (NGST configuration)
 - Waveband: diffraction-limited over 0.5 1.0 μm (NGST at 2.0 $\mu m)$
 - Kodak has technology path for making NGST diffraction-limited in visible
 - Properties: non-cryogenic (simplified shielding)
 - Low risk CCD technology for instrument
- Occulter
 - Radius: 35m
 - Maximum Transmissivity: 99.9%
 - Thickness: ~10 μ m
 - Supporting Struts: 2 cm
- System
 - Location: heliocentric, earth trailing
 - Separation: 50,000 100,000 km

- Numerical computation of intensity of double-diffracted starlight (starocculter-telescope-image plane) & single-diffracted reflected planet-light (planet-telescope-image plane) at each pixel in field-of-view
- Diffraction-limited beam sub-pixelated by 3²
- Fluxes in waveband assigned using black body spectrum for T_{eff} of star
- Waveband sampled by 4 wavelengths, boxcar filter assumed, intensities averaged
- Integration times, are times to S/N=5

Planet	S/N
Mercury ^a	N/A
Venus	38
Earth	18
Mars ^b	3
Jupiter	1308
Saturn	722
Uranus ^c	39
Neptune ^c	15

a occulted

- b marginally visible
- c outside fov--projected S/N

Target Star with Planet at 83mas, 8m telescope, $\Delta t=25,000s$

0

3.4

IRW

- Polarization: reflected planet light is partially polarized
 - starlight is unpolarized
- Time dependence: planet moves on orbits, noise does not
- Wavelength dependence: λ dependence of nulling
 - modifies occulted stellar spectrum
 - but not unocculted planetary spectrum

- Star
 - Sun at 10 pc
 - Blackbody spectrum at 5770K (as per SWG)
- Planet
 - Earth at 1 A.U. and 100 mas
 - Reflected solar continuum (as per SWG)
 - SWG-supplied spectrum
- Waveband
 - \sim 0.5-1.0 μm with R=20 and R=50
 - Raw spectrum sampled at $R \approx 1500$
 - Nulling computed at R \approx 5, linearly interpolate log(nulling) in λ
- Approach
 - Earth spectrum+ occulted Solar continuum -- Poisson sampled
 - Fit to Earth continuum + occulted Solar continuum
- Spectral Feature Detection Criterion
 - 5σ inconsistency with continuum over feature width

Terrestrial Planet Finder Very High Resolution Energy Spectrum TRW (per SWG)

- SWG spectrum contains no specification of underlying chemical species
- Clearly present in SWG spectrum:
- H_2O multiple bands including 0.74µm, 0.82µm, 0.91µm, 0.95µm
- O_2^- (b' Σ_g^+ -X³ Σ_g^-) O-O band at 0.76µm
- Also in target waveband:
- CH₄ 0.49μm,0.540μm,0.62μm,0.73μm,0.87μm 0.90μm, 1.0μm, ...
- NH₃ 0.55μm,0.65μm,0.79μm
- $H_2 0.64 \mu m, 0.82 \mu m$
- Resolution for detection unknown

Observed spectrum with best fit occulted stellar TRW continuum + unocculted planetary continuum

Observed spectrum with best fit occulted stellar TRW continuum + unocculted planetary continuum

ferrestrial Plane

Occulter System Configuration

IRW

Γ	Felescope/Instrument Functions				
	Primary/Figure Control/Deployment				
	Fine Point Control				
	Starlight Sensing				
	Data Management				
	Occulter Position Sensing				
	Shade/Deployment				

Occulter Functions

Shade Beacon

Shade/Deployment

Occulter Spacecraft Functions

TRW

Orbit Position Control

Attitude Control

Communications

Data Management

Power Generation/Control

Thermal Control

Propulsion

I R W

Occulter projection error

Error Budget to Requirements Flow

IRW

Terrestrial Planet Finder

- Relaxation of critical parameters for 16m telescope vs 8m telescope
 - Telescope-Occulter LOS misalignment: 6m radial vs 4m
 - Transmissivity: 99% vs 99.9%
 - Structure Blockage: 7 cm struts vs 2 cm
- The occulter parameters for the 16m telescope have not been tuned to correspond in S/N to the equivalent parameters for the 8m telescope. The 16m scenes (in backup material) and associated characterization times are therefore often less attractive than for 8m
- A full trade study would be needed to more completely explore these tradeoffs

- Occulter shade material
 - state of art < 98% transmissive (CP1, CP2 polyimide films; optical adhesive films, carbon fiber weaves)
 - meshes vs films for high transmissivity
 - low scattering, surface reflectivity
 - uv/cosmic ray degradation
 - micrometeoroid damage
 - large shield size vs maximum fab capability (1 1.5 m wide), leads to large number of zones and associated seams

IR/

- Occulter configuration
 - strength, stiffness vs mass, volume
 - deployment of large thin films (tearing, etc)
 - control of shield orientation during spacecraft attitude control
- System operability
 - Controlling relative drift of 4m radial over 100,000 km separation
 - Metrology w/ beacon from shield for relative drift knowledge (using telescope)
 - Orbit position knowledge accuracy
 - Optimal repositioning scheme to minimize delta V vs number of required occulters