MESSENGER

MESSENGER Navigation for Mercury 2 Flyby

Ken Williams
Navigation Team Chief
KinetX, Inc.

- Heliocentric Trajectory
- Encounter Geometry
- Delivery Errors and Costs
- Navigation Considerations
- Delta-DOR Timeline
- Doppler/Ranging Timeline
- Summary

NEA	MESSENGER Heliocentric Trajectory	B B

DSM = Deep Space Maneuver

| MESSENGER |
| :--- | ---: |
| Encounter Geometry |\quad B B

Mercury Flyby 2

Source: http://messenger.jhuapl.edu/soc/reldoc_img/mfly2_3view_od125.jpg
NOTE: Actual times may vary - Dependent on OD changes, spacecraft attitude and TCMs

Nasind	MESSENGER Delivery Errors and Costs	B

(

MESSENGER

Navigation Considerations

What's Different about Mercury 2 Versus Mercury 1?

- DSM for M1-M2 Leg Already Completed with Excellent Outcome
- $\sim 10 \mathrm{~cm} / \mathrm{sec}$ at TCM-25 (Aug 28 or M2-39d) to achieve M2 targeted aimpoint
- TCM-25 or subsequent TCM- 26 might be reduced or eliminated altogether by "solar sailing" sufficiently close to aimpoint
- DE405 Mercury Ephemeris Verified
- Difference of only ~2 km established after M1 Reconstruction
- OpNavs demoted from critical operations to tests until Mercury orbit in 2011
- Need for close-in TCM-27 eliminated
- No Long Solar Conjunctions
- Superior Conjunction (SEP < 3 deg) 4-8 June (non-critical period)
- Inferior Conjunction (SEP 2-3 deg) 6-7 October (around encounter, but little or no degradation in tracking data)
- No Earth Occultation
- Had been out of contact about 48 min for Mercury 1
- Closest Heliocentric Range Yet
- Down to ~0.3 AU after flyby

A9A for	Delta-DOR Requirements	(B)

Proposed Delta-DOR Schedule for Mercury 2 Approach

- Intended to clean up trajectory errors since last DSM
- 9 measurements (5 weeks to 2 weeks before TCM)

Knowledge
Update

- Support of events during last 6 weeks prior to encounter M2-3d
- Reconstruction of TCM, go/no-go decision, design and reconstruction of any maneuvers remaining before M2
- 18 measurements (M2 - 6 weeks to M2 - 3.25 days; reducible if TCM cancelled)
- Encounter reconstruction and support of post-encounter cleanup maneuver
- Determines outbound trajectory and cleanup of encounter errors at TCM-28
- 4 measurements (M2 + 3 days to M2 + 9 days)
- Delta-DORs should be balanced between each DSN baseline and not bunched up
- As shown with 50\% Goldstone-Madrid and 50\% Goldstone-Canberra

Nats | MESSENGER |
| :---: |
| Doppler-Ranging Requirements |\quad B H

Proposed Doppler/Ranging Schedule for Mercury 2 Approach

MESSENGER

Summary

- Adequate Delta-DOR and Doppler/ranging tracks to support accurate flyby trajectory reconstruction
- Projected delivery errors and costs relatively benign
- Specific Navigation recommendations:
- Do not change planet ephemeris (stay with DE405 for operations prior to Mercury orbit in 2011)
- Perform OpNavs as tests to further develop and refine capabilities leading eventually to landmark tracking in Mercury orbit in 2011
- Attempt attitude adjustments to "sail" sufficiently close to the target, but leave approach maneuver opportunities in place for now
$>$ Delete TCM-27 (no late update)
$>$ Move TCM26 farther out and add TCM26C1 (contingency)
$>$ If approach maneuver required, keep option open to adjust Mercury TCA to allow completely lateral (or radial) implementation
- Seehttp://messenger.jhuapl.edu for more information

Backup Slides

NA5s	MESSENGER Spacecraft Overview	(B)

Source: http://messenger.jhuapl.edu/spacecraft/index.html

Mercury B-plane as of 10 April 2008

Mercury B-plane (06-Oct-2008, EMO2000)

Positions, Times, 3- σ Errors

- Pre-DSM-3 Nominal Delivery

Prediction:

- B•T, B•R = 3349, 220 km
- Ellipse: 4050×291 km, -5 deg
- TCA: 08:40:00.7 ET $\pm 48 \mathrm{~min}$ - Nav OD124 (02 Apr 2008):
- B•T, B•R = 3600, 181 km
- Ellipse: $873 \times 77 \mathrm{~km},-4 \mathrm{deg}$
- TCA: 08:38:03.7 ET $\pm 466 \mathrm{~s}$
- Nav OD124 with Previous Attitude Predict:
- B•T, B•R = 3268, 196 km
- Ellipse: $883 \times 79 \mathrm{~km},-4 \mathrm{deg}$
- TCA: 08:40:58.5 ET $\pm 471 \mathrm{~s}$ - Nav OD125 (10 Apr 2008):
- B•T, B•R = 3464, 98 km
- Ellipse: $778 \times 68 \mathrm{~km},-4 \mathrm{deg}$
- TCA: 08:39:15.7 ET $\pm 414 s$ - reop021a Target ([0,0] on Plot):
- B•T, B•R = 3349, 220 km
(Aimpoint)
- TCA: 08:42:48.1 ET

Proposed Mercury 2 OpNav Test

- General Characteristics
- Slightly Reduced Number of OpNav Images
> 8 OpNav events vs. 9 for M1
> Still 8 images per event
- Relatively More Compressed Observation Schedule
> First image after M2-3.3d (> 40 deg off Sun)
> Last image much closer to Encounter than M1 (~M2-15h)
> After last pre-encounter Delta-DOR
- Relatively More Relaxed Processing Schedule
> OpNav activity now passive (testing) rather than active (part of critical operations)
> Therefore, no specific turn-around requirement
> Playback of images according to priorities established by Science
- Schedule

OpNav \#	DOY	Date (UTC)	Start Time (UTC)	Start Relative to Encounter (hrs)
1	277	3-Oct-2008	$3: 30$	-77
2	277	3-Oct-2008	$16: 00$	-65
3	278	4-Oct-2008	$4: 00$	-53
4	278	4-Oct-2008	$12: 00$	-45
5	278	4-Oct-2008	$20: 00$	-37
6	279	5-Oct-2008	$4: 00$	-29
7	279	5-Oct-2008	$12: 00$	-21
8	279	5-Oct-2008	$18: 00$	-15

- General Characteristics
- 8 Images taken in as rapid succession as possible
- Spacecraft attitude settled and recorded as quaternion at time image shuttered
- Pivot angle fixed for entire sequence
- Auto-exposure parameters based on DN levels instead of exposure times per recommendation of MDIS Team
- Specific Requirements

Image \#	Include Star*	Include Mercury	Camera	Exposure	DPU Binning	Filter	
1	Yes	No	NAC	10 sec	1×1	Clear	Star within $5-10$ deg of planet and 20 pixels of boresight
2	Yes	No	NAC	10 sec	2×2	Clear	
3	Yes	No	NAC	10 sec	2×2	Clear	Offset 10 pixels to observe star relative to camera noise
4						Clear	Planet within 20 pixels of boresight
5	No	Yes	NAC	≤ 2400 DN (auto)	1×1	Clear	
6	Yes	Yes	NAC	≤ 1400 DN (auto)	1×1	WAC	10 sec
7	Yes	Yes	WAC	≤ 2400 DN (auto)	1×1	Clear	Same attitude and pivot Sangle; minimize time between WAC images
8	Yes	Yes	WAC	≤ 1400 DN (auto)	1×1	Clear	

*Star to Target:

OpNav \#	Star ID (Tycho Catalog)	Visual Magnitude
1	$1396-02758-1$	3.9
2	$1396-02758-1$	3.9
3	$1396-02758-1$	3.9
4	$1960-01550-1$	3.0
5	$1960-01550-1$	3.0
6	$1396-02758-1$	3.9
7	$1960-01550-1$	3.0
8	$1960-01550-1$	3.0

