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ABSTRACT 

The effect of finite ion Larmor radius on the develop- 

ment of Rayleigh-Taylor instability of a plasma bounded 

by a vacuum is studied. The macroscopic equations of mo- 

tions a re  used where the finite ion Larmor radius effect is 

incorporated through off-diagonal terms in the pressure 

tensor in the momentum fluid equations. The effect of the 

finite Larmor radius stabilization of the interchange mode 

is demonstrated. For disturbances propagating along the 

magnetic field it is found that the inclusion of gyro-viscosity 

has the effect of reducing the instability of plasma vacuum 

interface. 
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I. INTRODUCTION 

The importance of the effect of the finite Larmor radius (FLR) of the ions 

on plasma instabilities has been of considerable interest in the recent years. 

The effect of FLR on the gravitational instability of a plasma was considered by 

Rosenbluth et all using Vlasov equation and the same results were recovered 

later by Roberts and Taylor2 using macroscopic equations for a two dimensional 

plasma. Recently Kennel and Greene3 have investigated the FLR effects using 

the appropriate scalings of the Vlasov equation and derived a set of asymptotic 

equations. Among several interesting results, they obtain the FLR stabilization 

of the interchange mode. 

This paper considers the stability of an incompressible plasma bounded by 

a vacuum and supported against gravity by a static magnetic field. We use here 

the macroscopic moment equations where the effect of finite ion Larmor radius 

is included through off-diagonal terms in the pressure tensor in the momentum 

fluid equations. The boundary conditions relevant to the problem at hand are 

derived and the dispersion relation is obtained. The interchange mode stabili- 

zation is demonstrated. When the disturbance is propagating along the magnetic 

field, the dispersion relation is analyzed on the assumption that gyroviscosity is 

small, i.e. NOk2 /pn w, << 1, where N is the  particle density, 0 the plasma temper- 

ature in energy units, k and n are the wave number and frequency of the dis- 

turbance respectively, p the density and w, the ion-gyrofrequency. It is found 

that the inclusion of gyro-viscosity has the effect of reducing the instability of 

plasma vacuum boundary. 



11. FORMULATION OF THE PROBLEM. 

We now consider a situation where an infinitely conducting plasma occupies 

the half space 0 < Y <a and is supported against gravity by a uniform magnetic 

field which we shall take along the z-axis of a system of Cartesian co-ordinates 

(x, y ,  z) .  We shall assume that the medium is incompressible and infinitely 

conducting. The equations basic to our discussion are the equations of motion 

and the generalized Ohm's law 

1 -  - 1 -  4 4 

C 4 n N e  N e  
g +  - v X  B - - ( V X  B ) x  B t -!- GP, = o  

together with 

4 
+ 

V . v = O  and  ? . g = O ,  (3)  

where 77 = p + B2/8n ,  

the electron number density, p, is the electron pressure,  p is the total fluid 

pressure , p is the constant density, v is the fluid velocity , 2 the electric 

field, the magnetic field and c the velocity of light. The electric and the 

magnetic fields satisfy NIaxwell's equations in which we shall neglect the dis- 

placement current. The anisotropic part  of the stress tensor,  PM , arises because 

of the finite Larmor radius effects. If the magnetic field is along the z-axis, its 

various components are given by4 

= (0, -g ,  0) is the constant gravitational field, N is 

4 
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where 

and 

given by I/ = NO/pwc, where 0 = kT and wc = eB/Mc is the ion gyrofrequency. It 

is clear  from the foregoing equations that these admit the static stationary 

solution 

is the unit dyadic. The coefficient u occurring in the above relations is 

The condition of pressure balance in equilibrium at the interface then becomes 

B2 Bf 
(10) P p t - = -  1 

a n  0 7 ~  

where B and B 

in the vacuum respectively. 

denote the strength of the magnetic fields in the plasma and 
P 
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For small departures from the state of equilibrium, let the various quantities 

be denoted by c, Bp + 6, P + SP. The equations governing these are readily ob- 

tained from Eqs. (1) - (4) together with Maxwell's equation ag/at  = -c? X 2. 

We thus obtain 

and 

-. ai; - + -  -. -. 
a t  - = V x  ( V  x Bp) - c1 V x  [ ( v x  g) x BPI 

where n1 = S p / p  + ep - g / 4 n p  and c1 = c /4nNe = Bp 14 rrpw,. 

We now assume the ( t , z )  dependence of the various quantities to be of the 

form f(x, y ,  z, t )  = f ( x ,  y )  exp ( n  t + i k Z z ) .  Equations (11) and (12) then reduce 

to 

+ - 1 -  i k z  B 

P 477 P 
n v  = -vn l  - - v pM t P 6 (13) 

and 

-. 
n g  = i k z B p ;  t i k Z B p c l  V x  6 .  (14) 

The gradient term in Eq. (13) can be eliminated by taking the curl  of this equa- 

tion. Assuming that the temperature variations in the initial state are negligible, 

we find after some straight forward reductions that 

i k B  - ---L - 4  v - - -  + 
n V x  v = i k z  - ( V x  V x  v - 3kq v )  + P v x  b . 

2 4 n P  
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We can then eliminate the velocity field from Eq. (15) by using Eq. (14) and ob- 

tain the equation for perturbation in the magnetic field i; : 

a 3 k i 3  c u r l 3  i; + a 2 k z 2  c u r  l 2  + alk;' c u r  1 % f a0G = 0, 

where we have put 

and 

111. THE METHOD OF SOLUTION. 

The solution of Equation (16) can be written as 

where Gi is governed by the equation 
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and ai's are solutions of the cubic equation 

a3 k i 3  a: t a2 k i 2  a; t alk;' ai t a. 0. (24) 

To solve Equation (23) we further assume that the x-dependence of the per- 

turbation is of the form i k, x . We then obtain for the solution valid in the upper 

half plane (y > 0): 

and 

where 

- X i Y  bi = Cipi  e , 

- A ~ Y  bi = i C i q i e  , 
Y 

- A i Y  bi = C i e  , 

kxkz t a i h i  k, ai t kZ hi P: = 1 q: = 

and Ci a re  the three integration constants to be determined by the boundary 

conditions. Having obtained 6 the perturbation in the velocity field can be ob- 

tained from Equation (14) to be 
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I .  

The perturbation in the total pressure 7-r1 can be obtained by taking the z-component 

of Eq. (13) and making use of the foregoing results. We thus find 

Finally the perturbation in the vacuum magnetic field, G ( O )  is the solution 

of equations ? X g ( O )  = 0 and ? - s ( O )  = 0; it is given by 

where C, is another integration constant to  be determined by the boundary 

condition. 

IV. THE BOUNDARY CONDITIONS 

The dispersion relation can now be obtained by using the boundary conditions 

appropriate to  the problem. These are: (1) At the interface y = 0, the normal 

component of the velocity must be compatible with the assumed form of the 

deformed boundary, i.e., 

i ( k x x  t k Z z  t n t )  
V = ~ E  e , 

where E is a constant. 

(2) The normal component of the magnetic field must be continuous. The 

linearized form of this condition is 
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where A[Xl denotes the jump in the quantity X at the inter,ace. Here io is the 

unit normal to the undisplaced interface and % denotes its displacement. For 

the problem at hand 

-. 

Go = and 8 N  = - E (gx i k x  + t Z  i k z )  Y 
(34) 

The remaining conditions are  obtained by integrating the equation of motion 

(1) across the interface. We thus obtain 

(3)  If we multiply Eq. (35) scalarly with 5 we obtain the boundary condition for 

the continuity of the normal component of the stress:  

A(n)  = i  * n (i @). 

The linearized form of this equation leads to the condition 

, (y = O), B" 
np - E p g  + Pyy = 7T; = - 

47T = 1 
(37) 

where the superscripts 'p' and 'v' on nl refer to the plasma and the vacuum 

quantities and in writing Eq. (37) we have made use of the relation an; /dy = - p g  
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The other two conditions a re  obtained by taking the vector product of Eq. 

(35 )  with 6 .  This leads to the conditions for the continuity of the tangential 

s t ress :  

The linearized form of Eq. (38) leads to the conditions 

P XY = O  (at y = O )  (39) 

and 

On making use of the foregoing boundary conditions we obtain the following 

characteristic value equations: 

( n  t Pai )  qi Ci = n E k Z B p ,  c i 

1 
qi Ci = - ikC, t k Z e  (B, - Bv), t i 

v ( n  t Pai) (k, t k Z  pi)  Ci = - k Z  Bp (B, - Bv)(k C, - i k E  e Bv) , (44) c i P 
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where we have put ,8 = in2 /kzmc .  Equations (41)-(45) are five equations involv- 

ing the five unknown constants Ci , ( i  = 1, 2, 3, 4) and E .  The dispersion relation 

is obtained by setting the determinant of their coefficients equal to zero. 

V. THE INTERCHANGE MODE. 

In view of the complexity of the general case we first consider the simple 

case of the interchange mode. We observe that in this case k Z  = 0, kx  # 0 and 

Equations (13) and (14) reduce to 

1 -  + 

P 

-. -. 
n v  = - bl --v ' PM, 

and 

+ 
n b  = 0 .  

Equation (47) gives b'= 0, since n # 0, while Eq. (46) leads to 

(46) 

(47) 

where we put 

that w = 0. The other two equations together with the divergence condition yield 

the solutions 

= (GX u + z,, v + g z w ) .  The z-component of Eq. (48) requires 
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-kx y + i k x  x + n t 
u = -  i C  e 9 

- kx  y + i k x  x + n t 
v =  C e  

I .  

and 

The constant C is determined by the requirement that at y = 0, v = n e  and we get 

C = n e .  

The boundary condition (37) now reduces to 

v 1 t i u  2 ( i k x v t $ ) = r g a t y = O .  (53) 

On using the foregoing results in this equation we obtain the dispersion relation 

n2 = g k x  - i n v k i .  (54) 

This leads to the result 

We may observe here that when u - 0, n = k (g kx)' I 2  which agrees with the 

classical result that the presence of a magnetic field has no effect on the inter- 

change mode. However, when v # 0, we find from relation (55) that (a) the 
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instability sets in as overstability and (b) the growth rate of instability is re- 

duced due to the gyro-viscosity; and this effect is large for short  wavelengths. 

In fact we can see from Eq. (55) that all wave numbers with k greater than a 

certain critical k, are  stabilized by the gyro-viscosity, where k, is given by 

k,=($) 1 /3 

and all wave numbers k < k, are unstable. 

VI. THE CASE kx = 0 AND kZ # 0. 

We shall now drop the subscript z on k as it is no longer necessary. Equa- 

tions (41)-(45) now lead to the dispersion relation: 

0 

0 

n 

1 - 7 )  

kg 

where 

Pi = n2 t (n + P a i )  ( n - - a .  i;k .) 

= 0 ,  (57) 

(58) 

(59) 
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. 

1 

and 7 = B, /B, > 1. In order to solve the dispersion relation (57), we now need 

the expressions for ai’s, the roots of Eq. (24). A s  it seems quite difficult to 

find the general solution of Eq. (24),  we shall restrict  ourselves to the case 

when the gyro-viscosity effects are small and we shall assume that wv /n << 1. 

The roots of Eq. (24) are  then determined by an iteration procedure and we find 

that correct to the first order terms in w,/n, the roots a re  given by ( w v  = uk2 ): 

and 

2 i n k  ( ; - 1 + - -  . a = -  
w 3 

The appearance of the term (l /uv) in Eq. (62) leads to no difficulties as we de- 

mand that in the limit u - 0, the constant C3 - 0. With a’s given by Eqs. (60) - 

(62) we can readily see that to the lowest significant order, we have 
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where 

and 

The dispersion relation given by Eq. (57) can now be written as 

(n t pai )  K i  = 0, 
i = I  

where 

and c i  j k  is the unit tensor of third rank which is completely antisymmetric in 

all the indices. On using the relations ( G O )  - (70) in equations (71) - (73) and 

, 

carrying out all the expansions consistently to the lowest significant order in 8 ,  

we obtain after some straightforward reductions for the dispersion relation: 

16 



where 

3 3 
W 2  w4 

t - (N - n2) - - (N t Tn2) 

Do = k g  - n2 - Q 2  (1 t q 2 ) ,  

(74) 

and  b = l - a  n2 a =  
27Tn2 (1 -q) 

First of all we observe that in the limiting case when 8 -, 0, i.e., the ab- 

sence of gyro-viscosity, Eq. (74) reduces to the classical result 

Do = k g  - n i  - n2 (1  t q 2 )  = 0, 

where we put a subscript on n to denote its value in the limit b -.+ 0. In order to 

obtain the first order correction to the disgersion relation, we substitute no 

given by Eq. (76) into all the terms containing 8 in Eq. (74) and obtain the result 

(77) 

= n i  (1 -%) 
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where 

Note that f is positive only when 77 is larger than q, = ( 2v+ 1)/( 2 v -  1) 2 1.4. 

If we consider a situation where q > 77, and which is unstable in the absence 

of w y  i.e., no > 0, then for this unstable mode in the presence of m u ,  n i  > n2 > 0 

i.e., the instability is reduced. If on the other hand we consider a situation 

which is stable in the absence of wu i.e., ng < 0,  then the inclusion of gyro- 

effects in the equations of motion leads to damping of the oscillations. 

VII. CONCLUSIONS 

We find that for  the interchange mode with the inclusion of gyro-viscosity 

(a) the instability sets in as overstability and (b) the growth rate of instability is 

reduced. For disturbances propagating along the magnetic field, for a high P- 

plasma (77 > T I = )  the instability is reduced due to the inclusion of gyro-viscosity. 
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