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Physics of vortex matter

I. Pinning and creep
II. Melting and localization
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Part I Outline

1. Elastic string in point disorder
2. Critical currents and creep
3. Quantum mechanical mapping
4. Creep through columnar defects

- On n'est pas sérieux, quand on a dix-sept ans
Et qu'on a des tilleuls verts sur la promenade.

One isn’t serious when one is seventeen,
And when there are green lime-trees on one’s 

promenade.

Arthur Rimbaud
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In order to bend vortex one has to distort distribution of circular 
currents→ linear tension can be ascribed to vortices.

Vortex line tension



Disorder



Dislocations in crystals CDW and SDW

Domain walls Interacting electrons

Wigner crystals on disordered substrates
Spin- and other glasses…

Exemplary system: elastic medium in random environment

Models a wealth of physical systems and phenomena: 



Collective pinning

L



Critical current is defined by the relation: 

and reads:Lorentz force

Pinning
force

TEMPERATURE BEHAVIOR?



Three regions of vortex motion:

T. Nattermann and S. Scheidl, Vortex glass phases in type II superconductors,
Advances in Physics, 2000, vol. 49, No. 5, 607, 704
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Roughness:

Being placed in disordered medium elastic object 
adjusts itself to rugged potential relief
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Thermally activated vortex dynamics in random media

=

Activated vortex motion:

Creation a vortex loop

F

ℓ

Nucleation of new phase
in first order transitions
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Linear response



Thermally activated dynamics of random systems:

Governed by the wide distribution of barriers 

0ln( / )E T τ τ�

0

time to overcome barrier :

exp

E
E
T

τ τ ⎛ ⎞
⎜ ⎟
⎝ ⎠

�

Basic law of relaxation in random (glassy) systems:



CREEP

O Snail, 
Climb Fuji slope, slowly, slowly 
Up to the top…

Matsuo Bashō
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Burgers equation for turbulence,    v x tε → →

x

2 2

2

1 ( , )
2 2

T V x u
x C u C u
ε ε ε∂ ∂ ∂⎛ ⎞= − − +⎜ ⎟∂ ∂ ∂⎝ ⎠

u
u( , )x u

1/3 1/3    x v tε →∼ ∼



et al

Experiment Unambiguous proof: divergent barriers E J µ−∝



BOSE GLASS:
VORTICES + COLUMNAR DEFECTS



A PROBLEM:
B

A

C
D

sail over the sea.  The paths are straight lines and all the velocities  are different.  
Ship A ‘collided’ with ships B, C, and D; B collided with C and D (triple collisons
excluded).

Four ships,



Prove that C collided 
(or will collide) with D



A
B

D

C X

X X

X

X

?

X

Y



X

Y

t

C

D

B

A



Vortex trajectories can be mapped onto 
world lines of the 2D Bosons
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Quantum mechanical mapping



Temperature dependence of the critical current from the elementary quantum
mechanics
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A problem

• Let us consider two 
dimensional potential 
well 

Find first bound state 
energy level
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α
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Effective potential well

Temperature dependence of the point defects-induced critical current
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HALF-LOOP EXCITATIONS:   v∝ exp(- const / J)

CURRENT
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VARIABLE RANGE FLUX HOPPING:  v∝ exp(-const/J1/3)

HALF-LOOP EXCITATIONS:   v∝ exp(- const / J)

CURRENT

et al

BOSE GLASS DYNAMICS



Creep: Further development and understanding

P. Chauve, T. Giamarchi, and P. Le Doussal, Europhys.Lett., 44,110 (1998)
L. Radzikhovsky, 1998 March Meeting of APS, talk E37 8

developed RG approach describing the whole range of velocities.



Creep is a general phenomenon

Other random systems?
All of them?



II. Vortex lattice melting
1. Lindemann criterion

2. Role of disorder 

3. Disorder-induced melting

4. Dynamic melting

5. Columnar defects:
• Upward shift
• Bose glass phase
• Localization in vortex liquid
• Delocalization-induced melting



Vortex lattice melting



melting

2
66C u L

Mean-field (cage) approach

- elastic energy to deform vortex in a cage

T - energy of thermal fluctuations
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melting and disorder

cL
Weak disorder does not influence melting much since disorder becomes relevant
on the scales of the order      , and melting characteristic distances are         ,
and

0a

0cL a� ?



disorder-induced melting 0cL a�
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This means that at some field the transition form elasticity dominated
behavior (low fields) to disorder dominated state (high fields) takes place!
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Formation of the amorphous phase



Dislocation mediated melting
Disorder free part of free energy in 
terms of dislocation density:

Disorder-related part:

A local minimum in the free-energy density at 2
aRρ −�

VL local minimum: 
2

00.2aρ −�



Dynamic melting

Driven lattice hits defects.
These random collisions cause
positional fluctuations of vortices – resembling
effect of temperature.

Effect of fluctuations increases as lattice slows down.
Thus lattice can melt.

Shaking temperature:
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Bose glass transition and 
vortex localization
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In the first order with respect to 
disorder the correction to the energy
is zero (after averaging with respect
to disorder).  Thus the first correction
appears in the second order of 
perturbation theory.  But the second
order correction is always negative.
Therefore, the bound state in the 
rippled well is more deep.

ε Aε A

Bound state in the parabolic well

Bound state in the rippled parabolic well

Shift of the melting line due to columnar defects

mB
T

B

BGB
Melting line shifts upwards



Bose glass melting vs. delocalization process

Formation of the Bose glass phase is equivalent to localization of 2D 
quantum particles in the random field of point defects. Melting into a 
liquid phase corresponds to delocalization effect 

Then little Gerda shed burning tears; and they … thawed 
the lumps of ice, and consumed the splinters of the Bose-
glass…

Hans Christian Andersen, The Snow Queen



Disordered Bose systems: long history of study… 

Dilute interacting Bose gas in a random potential:

– described quasiparticles dissipation and depletion of superfluidity at zero temperature

– finite 
temperatures

… … … … … …



•The described depletion of ns reflects only scattering of zero energy quasiparticles
by random potential, but possible contribution from the quasiparticle bound states
was overlooked

• Some quasiparticles leave condensate and get localized: this suggests the existence
of the intermediate state where superfluid and localized components present 
simultaneously

This poses the next 
Question:

Will even arbitrarily weak disorder localize the part of 
the condensate –
or localization effects vanish if disorder is too weak 
and/or the boson interactions are sufficiently strong?

General problem: localization in interacting (Bose) systems



Vortex trajectories can be mapped onto 
world lines of the 2D Bosons
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Quantum mechanical mapping



Bose glass transition:

Stiffening of tilt modulus

Kerson Khuang and Hsin-Fei Meng, PRL 69, 644 (1992)
S. Giorgini, L. Pitaevskii, S. Stringari, PR B 49, 12938 (1994)
A. Lopatin and V. Vinokur, PRL 88, 235503 (2002)

T. Hwa, P. Le Doussal, 
D. Nelson, V.V.,
PRL 71, 3545 (1993)

Disorder-induced depletion 
of superfluid density 

Bose glass transition takes place at  ns = 0

44  is related to the superfluid density of bosons.c ( )2 1
44 / 4 1 (4  )sc B nπ π λ −⎡ ⎤= +⎣ ⎦

Superfluid density:  ns= n - nn where  nn is the normal density.

1. Low field: go from the superfluid - vortex liquid side



2. Higher fields: vortex-vortex interactions dominate.

Melting is determined by balance between the elastic and thermal energies:

2
0( )th m LT cε ε≈ (1 )BG mT T corrections= +

B

T

ns = 0Bose glass

Vortex liquid



Re-examine liquid/superfluid state

Disorder-induced depletion 
of superfluid density 

Stiffening of tilt modulus

Any disorder reduces ns.
May be interpreted as the fact that some
fraction of the vortices is localized

(partially pinned)

What happens to pinned vortices as we raise temperature?

Intermediate vortex 
state liquid+pinned?

B

T

Intermediate 
phase?Bm

Bose glass

(A. Andreev, I. Lifshitz, ’68)
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Re-examine pinning: pinning by a single defect



There are always bound states in 2D: one vortex is always pinned by one 
Columnar defect. 

What happens if there are many interacting vortices (take high enough
temperatures where binding is exponentially weak)?

Naïve picture:
Vortices wander freely
and screen each other out 
from columnar defect.
Thus, if the defect potential is
not sufficiently strong, vortices
may get depinned. 



Localization and delocalization  of vortices on/from the columnar defects. 

There are two contributions to the normal density:

(a) Contribution from localized states nloc.

n loc deln n n= +

(b) Contribution due to scattering of bosons (vortices) on the disorder potential ndel
(even smooth disorder suppresses the superfluid density)

The Task:  Theory that includes both of these terms 

Quantitative analysis:



Hamiltonian of Bosons:
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Contributions to the normal density from localized and delocalized bosons



In case of strong vortex interaction  double occupation is prohibited
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Now we use the basis of the exact eigenstates of the noninteracting problem
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VORTEX PHASE DIAGRAM



T

B
Transition occurs due to
lines wanderings

In a liquid
vortices fluctuate
much easier,
thus we can expect the
transition to shift to
higher temperatures,
if we go from the solid
side!

FIRST ORDER TRANSITION

(0)
MB

MB



• The exact position of the Bose glass transition depends
on the filling parameter n, which is to be found self-consistently

• Hybridization of the bound states with condensate: the
number of trapped vortices is not exactly 1

• In the limit of low density (low hybridization) a localization-
delocalization transition (n=1→n=0) may occur

Bose glass

Vortex liquid

Intermediate (mixed) phase

depinning transition



( )
exp p pE f T

v
T f

µ⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∼
2
χµ
ς

=
−


