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Superconductors

The Meissner Effect 



TYPE I AND TYPE II SUPERCONDUCTORS



VORTEX FORMATION
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Abrikosov vortices



… vortices…

Union City tornado

Cordell tornado, in 
a sinuous stage
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Vortex lattice

Nb at  T= 1.2 K       H = 985 G
U. Essmann, H. Träuble, Phys. Lett. 24A, 526 (1967) 

decoration by magnetic smoke
image in electron microscope





Disorder



Dislocations in crystals CDW and SDW

Domain walls Interacting electrons

Wigner crystals on disordered substrates
Spin- and other glasses…

Exemplary system: elastic medium in random environment

Models a wealth of physical systems and phenomena: 



Collective pinning

L

recovers pinning



Critical current is defined by the relation: 

and reads:Lorentz force

Pinning
force



Three regimes of vortex motion:

T. Nattermann and S. Scheidl, Vortex glass phases in type II superconductors,
Advances in Physics, 2000, vol. 49, No. 5, 607, 704

vortex dynamics



- On n'est pas sérieux, quand on a dix-sept ans
Et qu'on a des tilleuls verts sur la promenade.

(One isn’t serious when one is seventeen,
And when there are green lime-trees on one’s 

promenade.)

Arthur Rimbaud

We consider creep regime



Linear response

For vortices: v=µF
find µ ?
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Roughness:

Being placed in disordered medium elastic object 
adjusts itself to rugged potential relief



Thermally activated vortex dynamics in random media

=

Activated vortex motion:

Creation a vortex loop

F

ℓ

Nucleation of new phase
in first order transitions
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Thermally activated dynamics of random systems:

Governed by the wide distribution of barriers 

0ln( / )E T τ τ�

0

time to overcome barrier :

exp

E
E
T

τ τ ⎛ ⎞
⎜ ⎟
⎝ ⎠

�

Basic law of relaxation in random (glassy) systems:



CREEP

O Snail, 
Climb Fuji slope, slowly, slowly 
Up to the top…

Matsuo Bashō
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Consequences of general law of relaxation:
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No linear response!



et al

Experiment Unambiguous proof: divergent barriers: E J µ−∝



BOSE GLASS:
VORTICES + COLUMNAR DEFECTS



A PROBLEM:
B

A

C
D

sail over the sea.  The paths are straight lines and all the velocities  are different.  
Ship A ‘collided’ with ships B, C, and D; B collided with C and D (triple collisons
excluded).

Four ships,



Prove that C collided 
(or will collide) with D
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Vortex trajectories can be mapped onto 
world lines of the 2D Bosons

Quantum mechanical mapping
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HALF-LOOP EXCITATIONS:   v∝ exp(- const / J)

CURRENT
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Variable range vortex hopping

Variable range hopping
(Shklovskii formula for semiconductors)



VARIABLE RANGE FLUX HOPPING:  v∝ exp(-const/J1/3)

HALF-LOOP EXCITATIONS:   v∝ exp(- const / J)

CURRENT

et al

BOSE GLASS DYNAMICS



Creep is a general phenomenon

Other random systems?
All of them?



Vortex lattice melting



melting
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Mean-field (cage) approach

- elastic energy to deform vortex in a cage

T - energy of thermal fluctuations
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melting and disorder

cL
Weak disorder does not influence melting much since disorder becomes relevant
on the scales of the order      , and melting characteristic distances are         ,
and

0a

0cL a� ?



Bose glass transition and 
vortex localization
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In the first order with respect to 
disorder the correction to the energy
is zero (after averaging with respect
to disorder).  Thus the first correction
appears in the second order of 
perturbation theory.  But the second
order correction is always negative.
Therefore, the bound state in the 
rippled well is more deep.

ε Aε A

Bound state in the parabolic well

Bound state in the rippled parabolic well

Shift of the melting line due to columnar defects

mB
T

B

BGB
Melting line shifts upwards

Is that all?



Bose glass melting vs. delocalization process

Formation of the Bose glass phase is equivalent to localization of 2D 
quantum particles in the random field of point defects. Melting into a 
liquid phase corresponds to the delocalization effect 

Then little Gerda shed burning tears; and they … thawed 
the lumps of ice, and consumed the splinters of the Bose-
glass…

Hans Christian Andersen, The Snow Queen

44  (tilt modulus) is related to the superfluid density of bosonsc

( )2 1
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Bose glass transition takes place at  ns = 0



Consider vortex liquid state

Disorder-induced depletion 
of superfluid density 

Stiffening of the tilt modulus

Any disorder reduces ns. May be interpreted as the fact that some
fraction of the vortices is always localized

(partially pinned)

What happens to pinned vortices as we raise temperature?

Intermediate vortex 
state liquid+pinned?

B

T

Intermediate 
phase?Bm

Bose glass

→ equivalent to superfluid state of 2D bosons



There are always bound states in 2D, 
therefore one vortex is always pinned by one columnar defect. 

What happens if there are many interacting vortices (take high enough
temperatures where binding is exponentially weak)?

Naïve picture:
Vortices wander freely and screen each 
other out from columnar defect.  Thus, 
if the defect potential is not sufficiently 
strong, vortices may get depinned. 

Increasing temperature effectively
suppresses pinning potential.  Therefore,
by increasing temperature, one can depin
vortices from columnar defects

B

Tmelting line

Bose
glass

vortex liquid

delocalization line



Hamiltonian of bosons:
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Calculations: finding the occupation number n for the columnar defects



In case of strong vortex interaction  double occupation is prohibited
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Now we use the basis of the exact eigenstates of the noninteracting problem:

Effective model that describes occupation of the localized sates:
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VORTEX PHASE DIAGRAM
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T

B
Transition occurs due to
lines wanderings

In a liquid
vortices fluctuate
much easier,
thus we can expect the
transition to shift to
higher temperatures,
if we go from the solid
side!

FIRST ORDER TRANSITION

(0)
MB

MB



( )
exp p pE f T

v
T f

µ⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∼

2
χµ

ς
=

−

Competing localization


