#### HYP links for dynamical fermion simulations

Stefan Schaefer

NIC, DESY

Domain Wall Fermions at Ten Years

in collaboration with A. Hasenfratz and R. Hoffmann

# Outline

- Why fat links?
- HYP links suitable for dynamical fermion simulations
- difference to standard HYP: Projection of U(3) instead of SU(3)
- tests for dynamical clover Wilson and overlap

short range fluctuations of the gauge field make fermions expensive

- ► Wilson: exceptional configurations, phase structure
- staggered: taste breaking
- overlap: cost of construction (low modes of the kernel operator)
- DWF: explicit chiral symmetry breaking

Working hypothesis:

large cut-off effects in fermion sector due to dislocations

Possible cure: Improved gauge actions (DBW2, Iwasaki)

- suppress short range fluctuations
- possibly large cut-off effects from gauge sector
- large auto-correlation time in MD simulations need dislocations to change topology

part of the solution

## Fat links

construct Dirac operator from sum over extended paths

$$=$$
  $=$   $(1-\alpha)$   $+ \beta$ 

- less vulnerable to short range fluctuations
- examples: APE, Asqtad, stout
- iterate to make it more efficient
- large spatial extend can cause large cut-off effects
- improves scaling (if not over-done)

#### Main building blocks

APE

Albanese et al'87

$$\widetilde{U}_{\mu}(x) = \operatorname{Proj}_{SU(3)}\left[(1-\alpha)U_{\mu}(x) + \frac{\alpha}{6}V_{\mu}(x)\right]$$

▶ Projection not easily differentiable → not usable in MD

 STOUT
 Morningstar, Peardon'04

$$\widetilde{U}_{\mu}(x)=\exp(iQ_{\mu})U_{\mu}(x)\;;\;\;Q_{\mu}(x)=\left[rac{
ho}{i}V_{\mu}(x)U_{\mu}^{+}(x)
ight]_{\mathrm{TH}}$$

differentiable everywhere

▶ 
$$6\rho \longleftrightarrow \alpha$$

# Main building blocks

n-APE

$$\widetilde{U}_{\mu}(x) = \operatorname{Proj}_{U(3)}\left[(1-\alpha)U_{\mu}(x) + \frac{\alpha}{6}V_{\mu}(x)\right]$$

$$\operatorname{Proj}_{U(3)} A = A (A^{\dagger} A)^{-1/2}$$

- differentiable everywhere if A non-singular
   mo problem in practice
- projection has been used in the past: Kentucky'93, FLIC, Narayanan&Neuberger'06
- force term can be computed exactly (à la stout )
- the projection costs about the same as stout smearing

# HYP links

#### Hasenfratz, Knechtli'01

$$\begin{split} V_{n,\mu} &= \operatorname{Proj}_{\mathcal{SU}(3)}[(1-\alpha_1)U_{n,\mu} + \frac{\alpha_1}{6}\sum_{\pm\nu\neq\mu}\widetilde{V}_{n,\nu;\mu}\widetilde{V}_{n+\hat{\nu},\mu;\nu}\widetilde{V}_{n+\hat{\mu},\nu;\mu}^{\dagger}]\\ \widetilde{V}_{n,\mu;\nu} &= \operatorname{Proj}_{\mathcal{SU}(3)}[(1-\alpha_2)U_{n,\mu} + \frac{\alpha_2}{4}\sum_{\pm\rho\neq\nu,\mu}\overline{V}_{n,\rho;\nu\,\mu}\overline{V}_{n+\hat{\rho},\mu;\rho\,\nu}\overline{V}_{n+\hat{\mu},\rho;\nu\,\mu}^{\dagger}]\\ \overline{V}_{n,\mu;\nu\,\rho} &= \operatorname{Proj}_{\mathcal{SU}(3)}[(1-\alpha_3)U_{n,\mu} + \frac{\alpha_3}{2}\sum_{\pm\eta\neq\rho,\nu,\mu}U_{n,\eta}U_{n+\hat{\eta},\mu}U_{n+\hat{\mu},\eta}^{\dagger}] \end{split}$$

- Standard HYP: iterate projected APE smearing three times
- restrict contributions to fat link to the hypercube
- Iocal and efficient, widely used
- improves scaling

How to use it in dynamical simulations?

# HYP links for dynamical fermions

$$V_{n,\mu} = \operatorname{Proj}_{\mathcal{U}(3)}[(1-\alpha_{1})U_{n,\mu} + \frac{\alpha_{1}}{6}\sum_{\pm\nu\neq\mu}\widetilde{V}_{n,\nu;\mu}\widetilde{V}_{n+\hat{\nu},\mu;\nu}\widetilde{V}_{n+\hat{\mu},\nu;\mu}^{\dagger}]$$

$$\widetilde{V}_{n,\mu;\nu} = \operatorname{Proj}_{\mathcal{U}(3)}[(1-\alpha_{2})U_{n,\mu} + \frac{\alpha_{2}}{4}\sum_{\pm\rho\neq\nu,\mu}\overline{V}_{n,\rho;\nu\,\mu}\overline{V}_{n+\hat{\rho},\mu;\rho\,\nu}\overline{V}_{n+\hat{\mu},\rho;\nu\,\mu}^{\dagger}]$$

$$\overline{V}_{n,\mu;\nu\rho} = \operatorname{Proj}_{\mathcal{U}(3)}[(1-\alpha_{3})U_{n,\mu} + \frac{\alpha_{3}}{2}\sum_{\pm\eta\neq\rho,\nu,\mu}U_{n,\eta}U_{n+\hat{\eta},\mu}U_{n+\hat{\mu},\eta}^{\dagger}]$$

- n-HYP: same as HYP with projection to U(3)
- virtually indistinguishable from standard HYP
- more efficient than if built from stout smearing

How does the projection perform in MD simulations?

# Tests: Dynamical clover Wilson

- clover Wilson with  $c_{SW} = 1$
- standard HYP parameters: α<sub>1</sub> = 0.75, α<sub>2</sub> = 0.6, α<sub>3</sub> = 0.3 no tuning necessary
- Lüscher-Weisz gauge action
- ▶ 12<sup>3</sup> × 24
- *a* ≈ 0.13fm
- $m_{PS}/m_V \approx 0.6$

### Dynamical clover Wilson



- ► large spectral gap ⇒ smaller quark masses possible
- fat link cost: 11% of total budget
- gain on inversions

### Overlap: Locality

$$D_{ov} = R \big[ 1 + \gamma_5 \operatorname{sign}(H_W(-R)) \big]$$

- use dynamical clover configurations
- valence overlap with Wilson kernel
   -R tuned for optimal locality
- compare to iterated stout at  $6\rho = 0.9$

Hernandez, Jansen, Lüscher '99

$$\psi = D_{ov}\eta \text{ with } \eta(x) = \delta_{x,x_0}$$

$$f(r) = \max\{||\psi(x)|| : dist(x, x_0) = r\}$$

### Overlap: Locality

If local:  $f(r) \propto e^{-\nu r}$  for large r



#### Overlap: Cost

$$D_{ov} = R \left[ 1 + \gamma_5 \operatorname{sign}(H_W(-R)) \right]$$
  
sign $H_W \approx \sum_{\lambda} \operatorname{sign} \lambda P_{\lambda} + (1 - \sum_{\lambda} P_{\lambda}) \operatorname{sign}_{app} H_W$ 

lower eigenmode density of H<sub>W</sub>(−R)
 ⇒ easier to approximate sign function; lower cost
 n-HYP as good as 3× stout at 6ρ = 0.9



# Overlap: Cost II

|        | $\langle  \lambda_1   angle$ | $\langle  \lambda_{12}  \rangle$ | rel. cost of $D_{ov}$ |
|--------|------------------------------|----------------------------------|-----------------------|
| thin   | 0.011(2)                     | 0.093(3)                         | 1                     |
| 1stout | 0.019(3)                     | 0.156(5)                         | 0.59                  |
| 2stout | 0.031(5)                     | 0.217(6)                         | 0.43                  |
| 3stout | 0.043(6)                     | 0.289(9)                         | 0.29                  |
| n-HYP  | 0.037(6)                     | 0.272(8)                         | 0.32                  |

# Conclusions I

- smeared links can greatly reduce the cost of chiral fermion simulations
- Danger: too much smearing can introduce large cut-off effects
- stay as local as possible
- ► HYP smearing improves scaling in quenched ⇒ use in dynamical too
- no negative effect on auto-correlation times expected

# Conclusions II

- no parameter tuning required
- as efficient as  $3 \times \text{stout}$  at  $6\rho = 0.9$
- computational overhead small, even for clover Wilson
- clover Wilson stable at a = 0.13 fm,  $m_{PS}/m_V = 0.6$
- next: smaller quark mass, larger volume, dynamical overlap
- More details in
  - A. Hasenfratz, R. Hoffmann, St.S. hep-lat/0702028