A Smoothed Two- and Three-Dimensional Interface Reconstruction Method

Seventh World Congress on Computational Mechanics July 19, 2006

Stewart Mosso, Christopher Garasi, Richard Drake Sandia National Laboratories

Algorithm Outline

• Extension of the Youngs' 3D algorithm:

DL Youngs, "An Interface Tracking Method for a Three-Dimensional Hydrodynamics Code", Technical Report 44/92/35, (AWRE 1984)

- Approximate interface normal by –Grad(Vf)
- Position planar interface (polygon) in element to conserve volume
- not spatially second-order accurate
- Reconstruction uses:
 - accurately move materials through the computational mesh
 - visualization

3D Smoothing Algorithm

• 2D Smoothing using Swartz Stability Points

SJ Mosso, BK Swartz, DB Kothe, RC Ferrell, *"A Parallel Volume Tracking Algorithm for Unstructured Meshes",* Parallel CFD Conference Proceedings, Capri, Italy, 1996.

- The centroid of each interface is a 'stable' position
- Fit a surface to the neighboring centroids and compute the normal to the fit.
- Iterate to convergence.
- Volume conserving

3D Interface Fitting Algorithm

Least-Squares fit of a plane to the immediate 3D neighborhood

- Equation of a plane: $\hat{n} \circ \vec{X} p = 0$
- Normal distance of a point S from the plane: $dist = \hat{n} \circ \vec{S} - p$
- Objective Function:

$$Obj = \sum_{neighbors} (W_i * dist_i)^2 = \sum_{neighbors} \left[W_i \left(\hat{n} \circ \vec{S}_i - p \right) \right]^2$$

Fitted interface passes through the home stability point (reduces # variables to 2)

$$Obj = \sum_{neighbors} \left[W_i \left(\hat{n} \circ \vec{S}_i - p' \right) \right]^2$$

 $\hat{n} = \cos\phi\sin\theta\,\hat{i} + \sin\phi\sin\theta\,\hat{j} + \cos\theta\,\hat{k}$

Iterate until Global $Min(\hat{n}_{previous} \circ \hat{n}_{current}) > (1.0 - \varepsilon)$

Objective Function Sample for Three Stability Points

- Start with values of phi and theta from Youngs' reconstruction.
- Use Steepest Descent to descend toward the minima.
- To speed convergence, when Steepest Descent progress slows, switch to a Newton's Method finish the descent.

Slanted Slab Test

Slab is 0.4 thick and rotated 10° about y-axis and 5° about z-axis

Reconstruction Accuracy for Slanted Slab

	Coarse Grid	Fine Grid	
<u>Method</u>	<u>Error</u>	<u>Error</u>	
Unsmoothed	1.71280*10 ⁻⁴	7.17863*10 ⁻⁵	
Smoothed	4.38547*10 ⁻¹⁰	5.76368*10 ⁻¹⁰	(3 iterations)
Number of mixed elements: Coarse Mesh = 254 Fine Mesh = 1012			
Coarse grid size = 1/10, fine grid size = 1/20			
Courant number 1/10 for both			

MethodL_infErrorL_infErrorUnsmoothed6.91118*10-61.19250*10-6Smoothed4.35268*10-101.04547*10-10

Motion of Unsmoothed and Smoothed Reconstructions

Planar Smoothing Accuracy for Sphere

- *Planar* smoothing inaccuracy:
 - Least squares fit of spherical arc produces poor interface normal.
 - Inaccuracies due to linearization are small

Spherical Smoothing Accuracy for Sphere

Compute average radius of neighborhood:

$$\overline{R} = \frac{1}{\# ngbrs} \sum_{ngbrs} \frac{L}{\sqrt{2(1 - \hat{h} \circ \hat{n})}}$$

- Project radial line back from each stability points along normal to compute center, C
- New normal of home element is

$$\hat{n} = \frac{\vec{H} - \vec{C}}{\left| \vec{H} - \vec{C} \right|}$$

where H is the home element's stability point.

Smoothed Reconstruction of Sphere

unsmoothed

smoothed

perfect

Unsmoothed Sphere Reconstruction

Smoothed Sphere Reconstruction

Cautions for Smoothed Reconstruction:

- Thin layers (with same material on both sides) require caution
- Minimized through use of 'dot product' filter. For element 'b',

 $\hat{a} \circ \hat{b} > \lim, \hat{c} \circ \hat{b} < \lim, \hat{d} \circ \hat{b} < \lim$

Cautions for Smoothed Reconstruction:

- Smoothing is 'sensitive' to interface fragmentation
 - Fragmentation is caused by discontinuity of interface representation for high curvature interface problems (smoothed reconstruction is still better than unsmoothed reconstruction).
 - Fragment neighbors can be excluded from use in iteration by a fragment recognition algorithm
 - Increased Mesh refinement

Fragmented corner example

Cautions for Planar Smoothed Reconstruction:

• Degenerate (collinear) neighbors

Usually caused by 3D interfaces on problem boundary with no depth.

Objective Function for Collinear Stability Points

Summary

- A 2D and 3D smoothed interface reconstruction algorithm has been developed whose error is several orders of magnitude lower than gradient normal methods.
- Method will be presented in a future publication and Sandia National Lab webpage.
- Future work will use interface shapes other than planar polygons in 3D (spherical and corner shapes)
- sjmosso@sandia.gov

