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Classical Newton’s Method

Problem: F (u) = 0, F : IRn → IRn continuously differentiable.

Newton’s Method

Given an initial u.

Iterate:

Solve F ′(u)s = −F (u).

Update u ← u + s.

Guiding application: discretized nonlinear PDEs.

Typically . . .

quadratic, mesh-independent local convergence ⇒ globalize,

n is very large, F ′(u) is sparse and may be infeasible to evaluate/store ⇒ Krylov
subspace method.
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Globalizations of Newton’s Method

We can’t guarantee convergence to a solution . . .

. . . but we can make it more likely.

Idea: Repeat as necessary . . .

I Test a step for acceptable progress.

I If unacceptable, modify it and test again.

Major approaches:

Backtracking (linesearch, damping).

Trust region.
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Backtracking (Linesearch, Damping) Globalization

s ←− θsN for an appropriate θ > 0.

I sN is a descent direction for ‖F‖ at x

I ⇒ s is acceptable for sufficiently small θ > 0.

sN may be only a “weak” descent direction
if F ′(u) is ill-conditioned.

0

s

sN

Red: feasible s
Green: level curves of ‖F (u) + F ′(u)s‖
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Trust-Region Globalization

s = arg min‖w‖≤δ ‖F (u) + F ′(u) w‖.

Computing s accurately may be problematic.

0

sN

s

Red: feasible s
Green: level curves of ‖F (u) + F ′(u)s‖
Blue: trust region boundary
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The Dogleg Step

Define

Cauchy point sCP ≡ arg min
0≤λ<∞

‖F (u)− F ′(u)λ∇f (u)‖, f (u) ≡ 1
2
‖F (u)‖2

dogleg curve ΓDL: 0→ sCP → sN

dogleg step s = arg min
‖w‖≤δ,w∈ΓDL

‖F (u) + F ′(u) w‖

0

sN

sCP

s
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Newton–Krylov Methods

Use a Krylov subspace method to approximately solve F ′(u) s = −F (u).

For solving Ax = b . . .

Krylov Subspace Method

Given x0, determine . . .

xk = x0 + zk ,

zk ∈ Kk ≡ span {r0,Ar0, . . . ,Ak−1r0},

A few examples . . .

CG/CR, GMRES, BCG, CGS, QMR, TFQMR (QMRCGS), QMR-squared, BiCGSTAB,
BiCGSTAB2, BiCGSTAB(`), QMRCGSTAB, Arnoldi (FOM/IOM), GMRESR, GCR,
GMBACK, MINRES, SYMMLQ, ORTHODIR, ORTHOMIN, ORTHORES, Axelsson,
SYMMBK, CGNR, CGNE, LSQR,. . . .
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Newton–Krylov Methods

Special appeal of Krylov subspace methods:

Most require only products of F ′(u) with vectors =⇒ “matrix-free”
implementations.

They have desirable optimality properties.

I GMRES and other “minimum residual” methods minimize the linear
residual norm ‖F (u) + F ′(u) s‖ (the linear model norm) over each Kk .

I For optimization, say min
u∈IRn

f (u), f : IRn → IR1,

• CG minimizes the local quadratic model
q(s) ≡ f (u) +∇f (u)T s + 1

2
sT∇2f (u)s over each Kk .

• The first CG step is the steepest descent step.
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Inexact Newton Methods

Inexact Newton methods (Dembo{Eisenstat{Steihaug 1982) provide a framework
for analysis and implementation.

Inexact Newton Method

Given an initial u.

Iterate:

Find some η ∈ [0, 1) and s that satisfy

‖F (u) + F ′(u) s‖ ≤ η‖F (u)‖.
Update u ← u + s.
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Inexact Newton Methods

Regard Newton–Krylov methods as a special case . . .

I Choose η ∈ [0, 1).

I Apply the Krylov solver to F ′(u) s = −F (u) until

‖F (u) + F ′(u) s‖ ≤ η‖F (u)‖.

The issue of when to stop the linear
iterations becomes the issue of choosing
the “forcing term” η.
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Local Convergence of Inexact Newton Methods

Dembo–Eisenstat–Steihaug (1982): Local convergence is controlled by
the forcing terms.

Theorem: Suppose F (u∗) = 0 and F ′(u∗) is invertible. If {uk} is an inexact Newton
sequence with u0 sufficiently near u∗, then

I ηk ≤ ηmax < 1 =⇒ uk → u∗ linearly in the norm ‖w‖F ′(u∗) ≡ ‖F ′(u∗) w‖,

I ηk → 0 =⇒ uk → u∗ superlinearly.

If also F ′ is Hölder continuous with exponent p at u∗, then

I ηk = O(‖F (uk )‖p) =⇒ uk → u∗ with q-order 1 + p.

More on forcing terms later . . .
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Globalizations of Newton–Krylov Methods

Present a subset of results in

R. P. Pawlowski, J. P. Simonis, J. N. Shadid, HW, Globalization techniques for

Newton–Krylov methods and applications to the fully coupled solution of the

Navier–Stokes equations, SIREV, 48 (2006), 700–721.

Describe two representative Newton–Krylov globalizations:

I a backtracking method,

I a dogleg trust-region method.

Outline their theoretical support and discuss a few implementational
details.

Report on numerical experiments.
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The Backtracking Method

The backtracking method (Eisenstat-HW 1994) is . . .

Inexact Newton Backtracking (INB) Method

Given an initial u and ηmax ∈ [0, 1), t ∈ (0, 1),
and 0 < θmin < θmax < 1.

Iterate:

Choose initial η ∈ [0, ηmax] and s such that

‖F (u) + F ′(u) s‖ ≤ η‖F (u)‖.

While ‖F (u + s)‖ > [1− t(1− η)]‖F (u)‖, do:

Choose θ ∈ [θmin, θmax].

Update s ← θs and η ← 1− θ(1− η).

Update u ← u + s.
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Global Convergence Theorem

Theorem: If {uk} produced by the INB method has a limit point u∗
such that F ′(u∗) is nonsingular, then F (u∗) = 0 and uk → u∗.
Furthermore, the initial sk and ηk are accepted for all sufficiently large k.

Possibilities:

‖uk‖ → ∞.

{uk} has limit points, and F ′ is singular at each one.

{uk} converges to u∗ such that F (u∗) = 0, F ′(u∗) is nonsingular,
and asymptotic convergence is determined by the initial ηk ’s.
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The Dogleg Method

Inexact Newton Dogleg (INDL) Method

Given an initial u and ηmax ∈ [0, 1), t ∈ (0, 1),
0 < θmin < θmax < 1, and 0 < δmin ≤ δ.

Iterate:

Choose η ∈ [0, ηmax] and s IN such that

‖F (u) + F ′(u) s IN‖ ≤ η‖F (u)‖.

Evaluate sCP and determine s ∈ ΓDL: 0→ sCP → s IN .

While ared < t · pred do:

Choose θ ∈ [θmin, θmax].

Update δ ← max{θδ, δmin}.
Redetermine s ∈ ΓDL.

Update u ← u + s and update δ.
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Dogleg Details

Sufficient decrease is based on the inexact Newton condition and

ared ≡ ‖F (u)‖ − ‖F (u + s)‖

pred ≡ ‖F (u)‖ − ‖F (u) + F ′(u)s‖

(actual reduction)

(“predicted” reduction)

Update δ a la Dennis–Schnabel (1983).

Determine s ∈ ΓDL by the “standard strategy”:

I If ‖s IN‖ ≤ δ, then s = s IN ;

I else, if ‖sCP‖ ≥ δ, then s = (δ/‖sCP‖) sCP ;

I else, s = (1− τ)sCP + τs IN , where τ ∈ (0, 1) is uniquely

determined so that ‖s‖ = δ.

Alternative dogleg strategies and refinements are given in R. P. Pawlowski, J. P.

Simonis, HW, J. N. Shadid, Inexact Newton dogleg methods, SINUM, 46 (2007-2008),

2112-2132.
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Global Convergence Theorem

Recall: u is a stationary point of ‖F‖ ⇐⇒ ‖F (u)‖ ≤ ‖F (u) + F ′(u) s‖
for all s.

Theorem: If u∗ is a limit point of {uk} produced by the INDL method, then u∗ is a
stationary point of ‖F‖. If additionally F ′(u∗) is nonsingular, then F (u∗) = 0 and
uk → u∗; furthermore, sk = s IN

k for all sufficiently large k.

Possibilities:

‖uk‖ → ∞.

{uk} has limit points, and each is a stationary point of F .

{uk} converges to u∗ such that F (u∗) = 0, F ′(u∗) is nonsingular, and
asymptotic convergence is determined by the initial ηk ’s.
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Choosing θ ∈ [θmin, θmax]

Two typical procedures were used in the numerical experiments (see Dennis–Schnabel
(1983)).

Choose θ to minimize a quadratic p(t) that satisfies p(0) = 1
2
‖F (u)‖2,

p(1) = 1
2
‖F (u + s)‖2, and p′(0) = d

dt
1
2
‖F (u + ts)‖2

˛̨̨
t=0

.

Choose θ to minimize

I a quadratic on the first reduction,

I a cubic on subsequent reductions.
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Choosing the Forcing Terms

Two choices were used in the numerical experiments.

Small constant forcing terms: ηk = 10−4 for each k

⇒ fast local linear convergence.

Adaptive forcing terms: “Choice 1” from (Eisenstat{HW 1996)

ηk = min

(˛̨
‖F (uk )‖ − ‖F (uk−1) + F ′(uk−1) sk−1‖

˛̨
‖F (uk−1)‖

, ηmax

)
.

Theorem: Suppose F (u∗) = 0 and F ′(u∗) is invertible. Let {uk} be an inexact
Newton sequence with each ηk given as above. If u0 is sufficiently near u∗, then
uk → u∗ with

‖uk+1 − u∗‖ ≤ β‖uk − u∗‖ · ‖uk−1 − u∗‖, k = 1, 2, . . .

for a constant β independent of k.
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Numerical Experiments

Test problems: Three benchmark flow problems in 2D and 3D . . .

I lid-driven cavity,

I thermal convection,

I backward-facing step.

PDEs: Low Mach number Navier–Stokes equations with heat transport as
appropriate.

Discretization: Pressure stabilized streamline upwind Petrov–Galerkin FEM.

Algorithms and software: Newton–GMRES implementations in the Sandia
NOX nonlinear solver suite, with GMRES and domain-based (overlapping
Schwarz) ILU preconditioners from the Sandia Aztec package. The simulation
driver was the Sandia MPSalsa parallel reacting flow code.

Problem sizes: 25,263 to 1,042,236 unknowns.

Machines: 8 CPUs on a 16-node, 32-CPU IBM Linux cluster; 100 CPUs on
Sandia’s 256-node, 512-CPU Institutional Cluster.
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Robustness

2D and 3D Thermal Convection Ra = 103, 104, 105, 106

2D and 3D Backward Facing Step Re = 100, 200, . . . , 700, 750, 800
2D Lid Driven Cavity Re = 1000, 2000, . . . , 10, 000
3D Lid Driven Cavity Re = 100, 200, . . . , 1000

Total numbers of failures:

Method Forcing Term 2D Problems 3D Problems All Problems

Backtracking, Adaptive 0
10

0
0

0
10

Quadratic Only 10−4 10 0 10

Dogleg
Adaptive 0

10
0

0
0

10
10−4 10 0 10

No Globalization
Adaptive 15

33
4

14
19

47
10−4 18 10 28
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Efficiency

2D Thermal Convection Ra = 103, 104, 105

3D Thermal Convection Ra = 103, 104, 105, 106

2D and 3D Backward Facing Step Re = 100, 200, . . . , 700
2D and 3D Lid Driven Cavity Re = 100, 200, . . . , 1000

Inexact GMRES
Method Forcing Newton Backtracks Iterations Normalized

Term Steps per INS per INS Time

Backtracking, Adaptive 16.0 0.13 62.2 0.77

Quadratic Only 10−4 9.23 0.18 163 1.0 (REF)

Dogleg
Adaptive 17.0 NA 85.3 0.83

10−4 10.7 NA 168 1.01

←− Geometric Means −→
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Observations

These globalizations have good theoretical support and are effective on these
test problems, especially with adaptive forcing terms.

Causes of failure in our experiments:

I Fatal near-stagnation: 26/33 backtracking/linesearch failures; 10/10
dogleg failures.

I Globalization failure: 7/33 backtracking/linesearch failures.

Backtracking with quadratic minimization and adaptive forcing terms seems to
be a clear first choice for implementation.

No globalization or choice of forcing terms is always best.

Many factors contribute to success: problem formulation, discretization,
preconditioning, variable scaling, accuracy, . . .

For more, see the SIREV and SINUM papers.
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The Underdetermined System Problem

Problem: Given F : IRm → IRn with m > n, find u∗ such that F (u∗) = 0.

Assume F is continuously differentiable throughout.

Examples:

Parameter-dependent problems with unknown parameters.

Time-dependent problems with periodic solutions.

Nonlinear eigenvalue problems.
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The Bratu (Gelfand) Problem

In 2D, this is ∆u + λeu = 0 in D ≡ [0, 1]× [0, 1],

u = 0 on ∂D.

0 2 4 6
0

2

4

6

8

10

12

0 0.5 1 0

0.5

1

0

2

4

6

8

10

12

Left: ‖u‖ vs. λ. Right: solution at final λ value.
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The Model Algorithm

Extend Newton’s method with . . .

Algorithm NU: Newton’s Method (Underdetermined)

Given u0.

For k = 0, 1, . . .

Find sk ∈ IRm such that

F ′(uk )sk = −F (uk ), sk ⊥ N (F ′(uk )).

Set uk+1 = uk + sk .

Appeal:

This pseudo-inverse characterization of sk is optimally conditioned.

The algorithm has local convergence (up to quadratic) like that of
Newton’s method (HW–Watson 1990, Levin–Ben Israel 2001).
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An Inexact Newton Extension

Extend inexact Newton methods with . . .

Algorithm INU: Inexact Newton Method (Underdetermined)

Given u0.

For k = 0, 1, . . .

Find ηk ∈ [0, 1) and sk ∈ IRm such that

‖F (uk ) + F ′(uk )sk‖ ≤ ηk‖F (uk )‖, sk ⊥ N (F ′(uk )).

Set uk+1 = uk + sk .
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Local Convergence Analysis

Hypothesis: The following hold in an open, convex Ω ⊆ IRm:
I F ′ is full-rank in Ω.
I There are γ ≥ 0 and p ∈ (0, 1] such that ‖F ′(ũ)− F ′(u)‖ ≤ γ‖ũ − u‖p for all

u, ũ ∈ Ω.
I There is a µ such that ‖F ′(u)+‖ ≤ µ for all u ∈ Ω.

For ρ > 0, set Ωρ ≡ {u ∈ Ω : ‖ũ − u‖ ≤ ρ⇒ ũ ∈ Ω}.

Theorem: Suppose that this hypothesis holds and that ρ > 0 is given. Assume that
ηk ≤ ηmax < 1 for all k. Then there exists an ε > 0 depending only on γ, p, µ, ρ, and
ηmax such that if u0 ∈ Ωρ and ‖F (u0)‖ ≤ ε, then the iterates {uk} determined by
Algorithm INU are well-defined and converge to u∗ ∈ Ω such that F (u∗) = 0.
Moreover, if uk 6= u∗ for all k, then

lim sup
k→∞

‖F ′(u∗)(uk+1 − u∗)‖
‖F ′(u∗)(uk − u∗)‖

≤ ηmax. (?)

Additionally, if ηk → 0, then the convergence is q-superlinear, and if
ηk = O(‖F (uk )‖p), then the convergence is of q-order 1 + p.

Remark: One can show that ‖F ′(u∗)(uk − u∗)‖ ≥ C‖uk − u∗‖ for all large k. Then it
follows from (?) that uk → u∗ r -linearly.
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A Backtracking Method

Extend the INB method with . . .

Algorithm INBU:

Given u0 and t ∈ (0, 1), ηmax ∈ [0, 1), and 0 < θmin < θmax < 1.

For k = 0 step 1 until ∞ do:

Find initial ηk ∈ [0, ηmax] and sk such that

‖F (uk ) + F ′(uk )sk‖ ≤ ηk‖F (uk )‖, sk ⊥ N (F ′(uk )).

Evaluate F (uk + sk ).

While ‖F (uk + sk )‖ > [1− t(1− ηk )] ‖F (uk )‖, do

Choose θ ∈ [θmin, θmax].

Update sk ← θsk and ηk ← 1− θ(1− ηk ).

Evaluate F (uk + sk ).

Set uk+1 = uk + sk .
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Global Convergence Theorem

Theorem: Suppose that {uk} is generated by Algorithm INBU. If u∗ is a
limit point of {uk} such that F ′(u∗) is full-rank, then F (u∗) = 0 and
uk → u∗. Furthermore, the initial ηk and uk are accepted without
modification in the while-loop for all sufficiently large k.

Possibilities:

I ‖uk‖ → ∞.

I {uk} has limit points, and F ′ is rank-deficient at each.

I {uk} converges to u∗ such that F (u∗) = 0, F ′(u∗) is full-rank, and
asymptotic convergence is determined by the initial ηk ’s.

Note: By taking ηmax = 0 in Algorithm INBU, we obtain a bactracking
extension of Algorithm NU, to which this theorem applies.
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Solving for sk

Extend the technique in (SISC, 2000) for adapting Krylov subspace methods.

Set ` = m − n. Let {v1, . . . , v`} be an orthonormal basis of N (F ′(uk )).

I For i = 1,. . . ,`,

Obtain a Householder Pi such that Pi . . .P1vi = en−i+1 ∈ IRm.

I Set Q = P1 . . .P`

„
In
0

«
∈ IRm×n.

I Apply the Krylov subspace method to approximately solve

F ′(uk )Qs̃k = −F (uk )

.I Set sk = Qs̃k ∈ IRm.

Cost:

I O(`2m) flops and O(`m) storage for P1, . . . , P`.

I O(`m) flops for each Q-product.
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Obtaining an Orthonormal Basis of N (F ′(uk))

For i = 1, . . . , `,

I Obtain an initial vi orthogonalized against v1, . . . , vi−1 and
normalized.

I Obtain ∆vi such that F ′(uk )(vi + ∆vi ) = 0 and ∆vi ⊥ v1, . . . , vi .
(Take Pi+1 = . . . = P` = Im in forming Q.)

I Update vi ← (vi + ∆vi )
/
‖vi + ∆vi‖.

Cost: O(`2m) flops plus ` solves.
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Numerical Experiments with Algorithm INBU

Implementation details:

MATLAB code.

Parameters: t = 10−4, ηmax = .9, [θmin, θmax] = [.1, .9].

Krylov solver: Restarted GMRES applied as just outlined.

Forcing terms: “Choice 1” from (Eisenstat–W 1996), with
η0 = ηmax = .9.

Backtracking: θ ∈ [θmin, θmax] chosen to minimize an interpolating
quadratic.
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Test Problems

PDEs on D = [0, 1]× [0, 1].

2D Bratu Problem: ∆u + λeu = 0 in D, u = 0 on ∂D

I Unknowns u, λ; u0 = 2 sin(πu) sin(πy), λ0 = 7.0.
I Centered differences, 50× 50 grid ⇒ n = 2500, m = 2501.
I GMRES(20), up to 3 restarts, Poisson-solver right preconditioning.

2D Brusselator Problem:

∂u/∂t = α∆u + 1 + u2v − 4.4u in D
∂v/∂t = α∆v + 1 + 3.4u − u2v in D
∂u/∂n = ∂v/∂n = 0 on ∂D

I α = .002 ⇒ periodic solution.
I Unknowns u, v , T (period); u0 = 0.5 + y , v0 = 1 + 5x , T = 7.5.
I Centered differences, 21× 21 grid ⇒ n = 882, m = 883.
I GMRES(50), up to 10 restarts, Poisson-solver right preconditioning.
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Test Results: Bratu and Brusselator Problems
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I (Inexact) Newton iterations vs. log10 ‖F‖.

I NMU = Algorithm NU.

I INMU = Algorithm INU.

I QINMU = Algorithm INBU

Note: On the Brusselator problem, the Algorithm NU iterates converged to the trivial
solution (with zero period).
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Test Results: Lid-Driven Cavity Problem

2D Lid-Driven Cavity Problem: 1
Re

∆2u − (uy ∆ux + ux ∆uy ) = 0 in D,

with u = 0 on ∂D, un = 0 on the sides and bottom, and un = 1 on the top.

I Unknowns u, Re; u0 = 0, Re0 = 1000.
I Centered differences, 40× 40 staggered grid ⇒ n = 1600, m = 1601.
I GMRES(50), up to 10 restarts, biharmonic-solver right preconditioning.
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I (Inexact) Newton iterations vs. log10 ‖F‖.

I NMU = (exact) Newton’s method.

I INMU = Algorithm INU.

I QINMU = Algorithm INBU
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Summary

We have:

extended inexact Newton methods to underdetermined systems;

provided local and global convergence results;

reported results of limited numerical experiments.

Still needed:

extensions to trust-region methods for underdetermined systems;

much more testing.
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