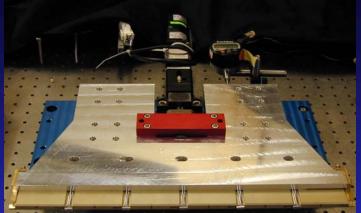
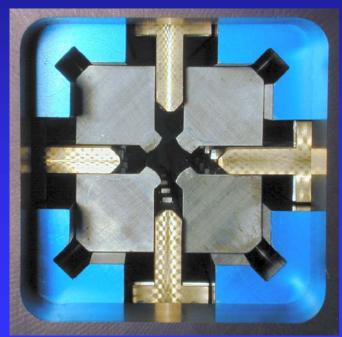
Overview of Magnet Technology at STI Optronics

Steve Gottschalk STI Optronics, Inc. May 18, 2005

e-mail: scg@stioptronics.com


Magnetic Technology Areas


- Complete, end-to-end analysis, design, fab, assemble, tune
- Wigglers and undulators
 - ◆ 25 yrs experience
 - ◆ 60 insertion devices (18mm-200mm periods)
 - Some turn-key control systems
 - Both REPM and Hybrid technologies
- Permanent Magnet (PM) Beamline Optics
 - Main focus is quads
 - Also dipoles
- Other PM units
 - ◆ Linear Dispersion Mass Spectrometer collaboration with UW
 - ◆ 20 kHz Laser Projector Scanner Telecom startup that didn't
 - ◆ 45 deg sector dipole JTO prototype
 - Lightweight NMR magnet for JPL
 - Zeeman spectrometer magnet for AFRL

Adjustable Strength PM quad- motorized

Adjustable Strength PM Quad – Manual Model

Linear Dispersion Mass Spectrometer (LDMS)*

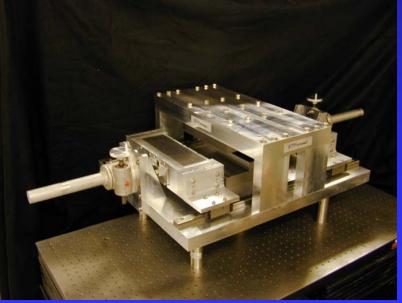
Assembly tooling

Insertion device on scanner #2\

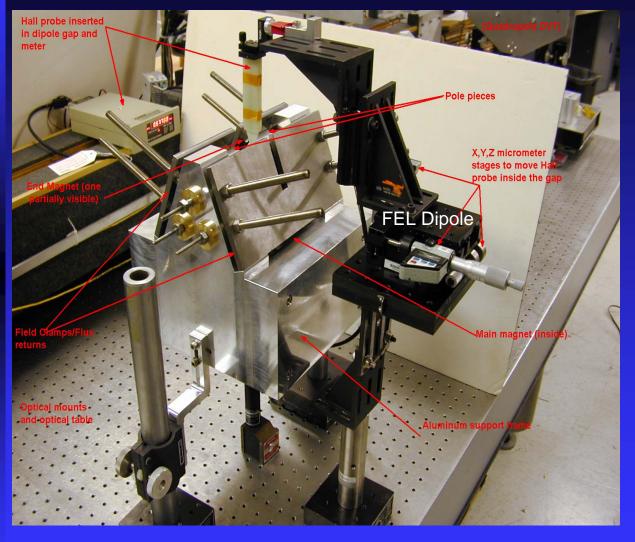
- •Standard Spectrometer
 - •Focal position scales as M^{1/2}
- •LDMS
 - •Focal Position scales as M
 - •Complex pole shape
 - •3D optimization

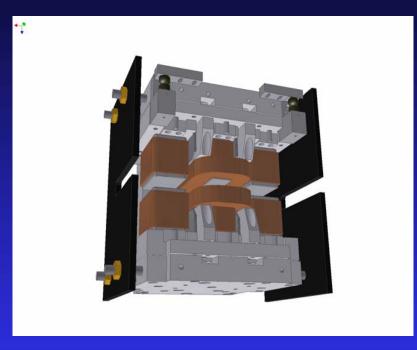
Magnet on scanner #1


NMR/EPR magnet for JPL



- •Very light weight (150 grams)
- Very high uniformity
 - •50ppm in huge volume
 - •80% of gap
 - •70% pole size
- Used stepped poles
- •Learned importance of simulating symmetry breaking fabrication errors


Zeeman Spectroscopy Magnet for AFRL


45 degree sector dipole for 25MeV Compact PM Bend

- •3D FEA uniformity agreed with measurements to 10ppm
- •Fringe fields agreed with FEA to 0.01%

Other Magnets

STELLA EM+PM Chicane

(In use at BNL)

Dispersive section, PM supplies most of L_D then EM trims it

A34 steel field clamps OK if use proper normalization. Hysteresis is < few G-cm

STELLA EM Buncher

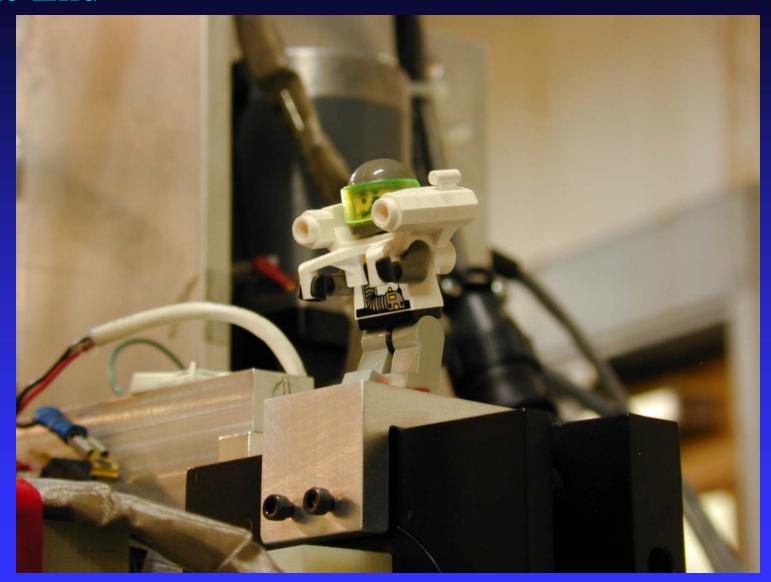
(too weak, replaced by short undulator)

Magnet Design Approach

- Specifications
- Perform parametric magnetic analysis
 - Scope problem, identify issues
 - Specify critical components
 - ◆ Analyze
 - Send 3D model to engineering
- Perform engineering analysis
 - Make initial engineering design
 - Perform NASTRAN analysis
- Interactively iterate magnetic and engineering analyses
 - Always need forces and tolerances
- 'Complete' engineering design
 - ◆ Send 3D CAD model (SAT file) to magnetic group for final analysis
- Iterate one more time
- Finalize drawings
- Release to production
- Start on tooling design
- Start on detailed sensitivity analysis and tuning analysis

Electromagnetic Analysis Tools

- MagNet from Infolytica Corp
 - ◆ 2D/3D
 - Solid modeling
 - Static
 - Transient with motion
 - Harmonic
 - Parametric modeling
 - Extremely powerful
 - PM quad model has 92 parameters
 - Scripting
 - Over 1000 API's
 - Excel, VB, MatLab, Simulink, Excel, LabView, etc can control
- OpiNet
 - Global optimizer based on evolutionary strategy
 - Discussed more later



Other analysis and design tools

- Inventor 3D CAD for solid modeling
- FEMAP mesher
- MSC NASTRAN for mechanical FEA
 - Aerospace and Defense Industry standard
 - Extremely well benchmarked
- Analyses
 - ◆ Fortran95 –Lahey
 - ◆ Fortran.NET Lahey
 - ◆ IDL
 - ◆ VB
 - MathCAD, C
 - TecPlot, Mathematica

The End

