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Abstract

In solving optimization problems for building design and control, the cost function is often evaluated using a detailed building simulation
program. These programs contain code features that cause the cost function to be discontinuous. Optimization algorithms that require
smoothness can fail on such problems. Evaluating the cost function is often so time-consuming that stochastic optimization algorithms
are run using only a few simulations, which decreases the probability of getting close to a minimum. To show how applicable direct
search, stochastic, and gradient-based optimization algorithms are for solving such optimization problems, we compare the performance
of these algorithms in minimizing cost functions with di/erent smoothness. We also explain what causes the large discontinuities in the
cost functions.
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1. Introduction

Detailed building simulation programs, such as Ener-
gyPlus [1] and TRNSYS [2], are increasingly being used
to evaluate the cost function in optimization problems.
Annual simulations with these programs are typically com-
putationally expensive. Also, these simulation programs
contain code features—such as adaptive integration meshes,
iterative solvers that iterate until a convergence criterion is
met (e.g., Newton solvers or bisection algorithms) and if–
then–else logic—that can cause optimization algorithms
that require smoothness of the cost function to fail, possibly
far from a solution. In many of these building simulation
programs the solvers are implemented in a way that does
not allow controlling the numerical error of the approx-
imations to the state variables, and the solver tolerances
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are Kxed at compile time, in some cases at coarse precision
settings [3,4]. Thus, such computer code deKnes a numerical
approximation to the cost function that is discontinuous with
respect to the design parameter, and the discontinuities can
be large.
It is, however, generally accepted in the simulation-based

optimization community that the tolerances of such adaptive
solvers must be tight if used in conjunction with optimiza-
tion algorithms that require the cost function to be smooth
[5–7]. If nonlinear programming algorithms are used to solve
such optimization problems, then convergence to a station-
ary point can be established if the approximate cost func-
tions, deKned on the numerical approximations to the state
variables, converge to a smooth function as the precision
of the simulation is increased [7,8], or if the approximation
error goes to zero suGciently fast as the optimization algo-
rithm approaches a solution [9,10]. However, many build-
ing simulation codes do not satisfy these requirements and
it has been observed [3,4] that the solver tolerances are so
coarse that optimization algorithms that require smoothness
of the cost function can indeed fail far from a minimum.
Probabilistic optimization algorithms that do not require

smoothness have frequently been used to solve building op-
timization problems with a small number of simulations
(see, for example, [11,12,4]). However, these algorithms
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are stochastic in nature, and to achieve convergence with a
high conKdence, a large number of simulations is required
[13–15], which is impractical if the computation time re-
quired to evaluate the cost function is large.
Hence, it is not clear whether optimization algorithms that

require smoothness of the cost function or stochastic algo-
rithms, used with a low number of cost function evaluations,
perform better on building optimization problems in which
the design parameter is in Rn and has box-constraints. This
is the question that we address in this paper.
We compare the performance of nine optimization al-

gorithms using numerical experiments. We compare direct
search algorithms (the coordinate search, the Hooke–Jeeves,
and two versions of the Nelder–Mead simplex algorithm),
stochastic population-based algorithms (a simple genetic al-
gorithm (GA) and two particle swarm optimization (PSO)
algorithms), a hybrid particle swarm Hooke–Jeeves algo-
rithm and a gradient-based algorithm (the discrete Armijo
gradient algorithm). Other promising methods that have suc-
cessfully been used in simulation-based optimization, such
as methods that use surrogate models [16], are beyond the
scope of this paper.
In the numerical experiments, we solved six optimization

problems using the EnergyPlus [1] whole building energy
analysis program to evaluate the cost function. We used
two simulation models, each with three di/erent weather
data. One simulation model is such that the cost function is
rather smooth and the other is such that the cost function
has discontinuities in the order of 2% of the cost function
value. By selecting cost functions with di/erent smoothness
and identifying what code features can cause such large
discontinuities, we believe that our conclusions will also be
applicable if other simulation programs are used to evaluate
the cost function.
In the Krst section, we give a formal deKnition of the op-

timization problem, which is used to identify the terms that
cause diGculties in solving the optimization problems. Next,
we discuss the two simulation models. Then we discuss the
main features of the optimization algorithms. Finally, we
compare the performance of all optimization algorithms and
discuss the causes of the observed discontinuities in the cost
functions.

2. Minimization problem

We consider problems of the form

min
x∈X

f(x); (1a)

where x∈X is the vector of independent variables, f :X →
R is the cost function, and X ⊂ Rn is the constraint set,
deKned as

X, {x∈Rn | li6 xi6 ui; i∈ {1; : : : ; n}} (1b)

with −∞6 li ¡ui6∞, for all i∈ {1; : : : ; n}. The cost
function f(·) is deKned as

f(x), F(z(x; 1)); (2)

where F :Rm → R is once continuously di/erentiable but
deKned on the solution of a coupled system of di/erential
algebraic equations of the form

dz(x; t)
dt

= h(x; �; p(x)); t ∈ [0; 1]; (3a)

z(x; 0) = z0(x); (3b)

�(x; z(x; t); �) = 0; (3c)

where h :Rn × Rl × Rq → Rm, z0 :Rn → Rm and � :Rn ×
Rm × Rl → Rl are smooth in all arguments and the matrix
with partial derivatives ��(·; ·; ·) is nonsingular. The function
h(·; ·; ·) describes the system dynamics, z(·; ·) is the vector
of state variables whose components are the room air and
construction temperatures (after the spatial discretization of
the heat equation) and the heating, cooling and lighting
power. The algebraic variable � is the solution of (3c) and its
components are state variables whose thermal capacities are
assumed to be negligible, such as the window glass tempera-
tures. The elements of the vector p(·)∈Rq are the size of the
cooling coil, heating coil, and supply and return fan. 3 Thus,
system (3) is a mathematical model of a thermal building
energy calculation. Under appropriate assumptions, one can
show that (3) has a unique once continuously di/erentiable
solution [7,17], and several optimization algorithms that use
approximate solutions of (3), and progressively decrease the
approximation error as the optimization approaches a solu-
tion, exist to solve (1) (see, for example, [7,8]).
However, we are interested in the situation where Ener-

gyPlus is used to compute an approximate numerical so-
lution of (3). EnergyPlus contains several adaptive spatial
and temporal grid generators, if–then–else logic and it-
erative solvers that iterate until a convergence criterion is
met. Due to these code features a change in the independent
variable x can cause a change in the sequence of code ex-
ecutions, which causes the approximate numerical solution
of (3) to be discontinuous in x. 4 It is generally accepted
in the simulation-based optimization community [5–7] that
in situations where (1) is solved using an optimization al-
gorithm that requires the cost function to be smooth, one
needs to compute high-precision approximate solutions of
(3). However, in EnergyPlus the numerical solvers and grid
generators are spread throughout the code and most solver

3 Clearly, the dependence of h(·; ·; ·) on p(·) can be eliminated by
deKning h(x; �; p(x)), h̃(x; �), but we Knd it convenient for our discus-
sion to show explicitly the dependence on p(·).

4 Because z(·; 1) and hence f(·) is discontinuous, f(·) may only have
an inKmum (i.e., a greatest lower bound) but no minimum even if X is
compact. Thus, to be correct, (1a) should be replaced by inf x∈X f(x).
For simplicity, we will not make this distinction.
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tolerance settings are Kxed at compile time, in some cases at
coarse precision. The implementation of the solvers is such
that it does not seem possible to control the numerical er-
ror. Thus, optimization algorithms that require smoothness
may fail far from a solution or may at best converge much
slower. Consequently, we are interested in how they per-
form compared to probabilistic population-based optimiza-
tion algorithms on rather smooth cost functions and on cost
functions with large discontinuities.

3. Simulation models

We will use two simulation models. The Krst is a simple
simulation model that has four independent variables and no
HVAC system simulation (the zone’s heating and cooling
loads are assumed to be met at each time step). The sec-
ond is a detailed simulation model that has 13 independent
variables and a detailed HVAC system simulation. To de-
termine the size of the HVAC system of the detailed simu-
lation model, EnergyPlus executes a code that contains iter-
ations. Thus, in the simple simulation model the component
size p(·) in (3a) is a constant, but in the detailed simulation
model p(·) is a discontinuous function of x.
In all optimization problems f(x) is the annual primary

energy consumption for lighting, fan, cooling and heating of
a mid-story oGce Roor. The exterior walls have aU -value of
0:25 W=(m2 K) and consist of (listed from outside to inside)
1 cm wood siding, 10 cm insulation and 20 cm concrete.
The ceiling and Roor consist of carpet, 5 cm concrete, insu-
lation and 18 cm concrete. Interior walls are 12 cm brick.
The windows are low-emissivity double pane windows with
Krypton gas Kll and exterior shading device. We use TMY2
weather data for Houston Intercontinental (TX), Chicago
O’Hare (IL), and Seattle Tacoma (WA). Fig. 1 shows the
oGce buildings.

3.1. Simple simulation model

The energy consumption of the gray shaded thermal zone
in Fig. 1 is assumed to be representative for the energy
consumption of an elongated oGce building. Both windows
have an external shading device that is activated only dur-
ing summer when the total solar irradiation on the window
exceeds 200 W=m2. Both windows have a Kxed overhang
that projects out 1 m. The zone has daylighting controls with
an illuminance setpoint of 500 lx at a point 3 m from each
window.
The annual source energy consumption is

f(x),
Qh(x)
�h

+
Qc(x)
�c

+ 3El(x); (4)

where Qh(·) and Qc(·) are the zone’s annual heating and
cooling load, respectively, El(·) is the zone’s electricity
consumption for lighting, and the eGciencies �h = 0:44 and
�c = 0:77 are typical plant eGciencies that relate the zone
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Fig. 1. Buildings used in the numerical experiments: (a) simple oGce
building, (b) detailed oGce building.

load to the primary energy consumption for heating and
cooling generation, including electricity consumption for
fans and pumps [18]. The electricity consumption is multi-
plied by 3:0 to convert site electricity to source fuel energy
consumption.
Table 1 lists the independent variables, which are the

building azimuth �, the width of the west and east windows
ww and we, respectively, and the shading device transmit-
tance �. 5 The column with header xb shows the values of
the independent variables for the base design, l and u are
the lower and upper bounds, and s is the step size of the
independent variables. (The step size will be used in the op-
timization algorithms.)

3.2. Detailed simulation model

We minimize the annual primary energy consumption for
lighting, fan, cooling and heating for the mid-story oGce
Roor shown in Fig. 1. Lighting and fan electricity are mul-
tiplied by 3:0 and then added to the cooling and heating
energy of the cooling and heating coil. All exterior zones
have daylighting control. The simulated HVAC system is a
VAV system with DX coil and outside-air economizer. The
heating and cooling coil capacities and the air Row rates
are auto-sized by EnergyPlus. Table 1 lists the independent
variables. The variable wi, i∈ {N;W;E;S}, linearly scales
the window width and height. The subscripts indicate north,
west, east, and south, respectively. (The location and shape
of the windows are used in the daylighting calculations.)
For the north and south windows a value of 0 corresponds

5 If � = 90◦, then the window that was initially facing west is facing
north.
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Table 1
Variable symbols, initial value xb, lower bound l, upper bound u and step size s of the independent variable

Variable symbols xb l u s Best iterate Best iterate Best iterate
x∗ Houston, TX x∗ Chicago, IL x∗ Seattle, WA

Optimization problem with simple simulation model
� 0 −180 180 10 92.81 86.25 87.50
wW 3 0.1 5.9 0.2 5.203 4.200 5.900
wE 3 0.1 5.9 0.2 3.565 5.900 5.900
� 0.5 0.2 0.8 0.1 0.7964 0.5875 0.5375
f(xb) in kWh=(m2 a) 208.2 185.1 164.9
f(x∗) in kWh=(m2 a) 190.3 155.8 138.0
Maximum obtained reduction in % 8.58 15.82 16.32
Optimization problem with detailed simulation model
wN 0.5 0 1 0.05 0.9969 1.000 1.000
wW 0.5 0 1 0.05 0.1813 0.4000 0.5688
oW 0.5 0 1 0.05 1.000 0.3500 0.6688
wE 0.5 0 1 0.05 0.2125 0.3000 0.8813
oE 0.5 0 1 0.05 1.000 0.4500 0.9656
wS 0.5 0 1 0.05 0.6406 0.9500 1.000
oS 0.5 0 1 0.05 1.000 0.1000 0.1438
sW 200 100 600 25 398.4 400.0 312.5
sE 200 100 600 25 406.3 450.0 200.0
sS 200 100 600 25 375.0 575.0 600.0
Tu 22 20 25 0.25 24.61 24.00 24.00
Ti 22 20 25 0.25 22.98 24.75 24.95
Td 15 12 18 0.25 12.00 12.00 12.00
f(xb) in kW h=(m2 a) 165.4 130.1 114.6
f(x∗) in kW h=(m2 a) 141.5 115.7 95.82
Maximum obtained reduction in % 14.45 11.02 16.41

The variable symbols are explained in the text. The last three columns show the best obtained iterates x∗. The bottom rows show the corresponding
cost function values and the obtained cost reductions for each optimization problem.

to a window that covers 13.6% of the facade area and 1
corresponds to 64.8%. For the west and east windows a
value of 0 corresponds to a window that covers 20.4% of
the facade area and 1 corresponds to 71.3%. The variable
oi, i∈ {W;E;S}, scales the depth of the window overhangs.
A value of 0 corresponds to a window overhang depth of
0:05 m (measured from the facade) and 1 corresponds to
1:05 m. The variable si, i∈ {W;E;S}, is the setpoint for the
shading device in W=m2. If the total solar irradiation on the
window exceeds si, then an external shading device with a
transmittance of 0:5 is activated. The variable Ti, i∈ {u; i},
is the setpoint for the zone air temperature for night cooling
during summer and winter, respectively, in ◦C. The variable
T d is the cooling design supply air temperature that is used
for the HVAC system sizing in ◦C.

4. Optimization algorithms

We compare the performance of nine optimization al-
gorithms. In the following section, we brieRy describe the
main features of all algorithms. For a more detailed descrip-
tion we refer the reader to [4] for the simple GA and to the
GenOpt manual [19] for all other algorithms, as well as to
the references cited therein. Since the performance of the
optimization algorithms depends on the algorithm parame-

ters, we list all algorithm parameters, which may be used as
initial choices for similar problems. We did not tune the al-
gorithm parameters but used values which we believe will
give good performance for the examined problems. A de-
tailed explanation of all parameters is beyond the scope of
this paper, and we refer the reader to [4,19] for details.

4.1. Algorithm descriptions

4.1.1. Coordinate search algorithm
The coordinate search algorithm searches along each co-

ordinate direction for a decrease in f(·). Let k ∈N be the
iteration number, xk ∈X be the current iterate, �k ∈Q+ be
a scaling factor, called the mesh size factor, and s∈Rn be
as in Table 1. Then, our coordinate search algorithm tests if
f(x′)¡f(xk) for any x′ ∈Lk , where

Lk , {x∈X | x = xk ± �ksiei; i∈ {1; : : : ; n}}: (5)

If there exists an x′ ∈Lk that satisKes f(x′)¡f(xk), then
the algorithm sets xk+1 = x′, �k+1 =�k , and it replaces k by
k + 1. Otherwise, it sets xk+1 = xk , decreases the mesh size
factor by setting �k+1 =�k=2, and it replaces k by k +1. If
�k is smaller than a user-speciKed limit, the search stops.
The coordinate search algorithm is a member of the family

of generalized pattern search (GPS) algorithms. For X=Rn,
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one can prove that any GPS method constructs a sequence
of iterates with stationary accumulation points if f(·) is con-
tinuously di/erentiable and has bounded level sets [20,21].
For a more detailed description of GPS algorithms and an
extension to constraint problems, see [21,8] and the re-
view [22].
For the numerical experiments, we used a mesh size di-

vider of 2, an initial mesh size exponent of 0, a mesh size
exponent increment of 1 and 4 step reductions. Hence, �0=1
and, for the last iterations, �k = 1

16 . Thus, the best iter-
ate x∗ satisKes f(x∗)6f(x′), for all x′ ∈ {x∈X | x= x∗ ±
1
16 s

iei; i∈ {1; : : : ; n}}.

4.1.2. Hooke–Jeeves algorithm
The Hooke–Jeeves algorithm is also a member of the fam-

ily of GPS algorithms and has therefore the same conver-
gence properties on smooth cost functions as the coordinate
search algorithm. It adjusts the mesh size factor �k using
the same algorithm as the coordinate search algorithm but,
in addition to the search onLk , it also makes progressively
bigger steps in the direction that has reduced the cost in pre-
vious iterations. As in the coordinate search algorithm, the
iterates of the Hooke–Jeeves algorithm belong to a mesh of
the form

M(x0; �k ; s),

{
x0 + �k

n∑
i=1

misiei |m∈Zn

}
: (6)

The introduction ofM(·; ·; ·) is convenient for the discussion
of a modiKed PSO algorithm and a hybrid algorithm below.
We used the same algorithm parameters for the Hooke–

Jeeves algorithm as for the coordinate search algorithm.

4.1.3. PSO algorithms
PSO algorithms are population-based probabilistic opti-

mization algorithms Krst proposed by Eberhart and Kennedy
[23,24]. At each iteration step, they compare the cost func-
tion value of a Knite set of points, called particles. The
change of each particle from one iteration to the next is
modeled based on the social behavior of Rocks of birds or
schools of Ksh. Each particle attempts to change its location
in X to a point where it had a lower cost function value at
previous iterations, which models cognitive behavior, and in
a direction where other particles had a lower cost function
value, which models social behavior. Since our simulation
model is computationally expensive, we run the PSO algo-
rithms with a much lower number of simulations than the
ones in [15,25,14], which makes convergence to a minimum
less likely.
We used a PSO algorithm with inertia weight and a PSO

algorithmwith constriction coeGcient. Both algorithms used
the von Neumann topology, 16 particles, 20 generations, a
seed of 0, a cognitive acceleration constant of 2:8, a social
acceleration constant of 1:3 and velocity clamping with a
maximum velocity gain of 0:5. For the PSO algorithm with
inertia weight, we used an initial inertia of 1:2 and a Knal

inertia of 0. For the PSO algorithm with constriction coeG-
cient, we used a constriction gain of 0:5.

4.1.4. PSO algorithm that searches on a mesh
This is a modiKcation of the above PSO algorithm with

constriction coeGcient which is introduced in [19]. In this
algorithm, the cost function f :Rn → R is replaced by the
function f̂ :Rn × Rn ×Q+ × Rn → R, deKned as

f̂(x; x0; �; s), f(�(x)); (7)

where �(x)∈M(x0; �; s) ∩ X is the closest feasible mesh
point andM(·; ·; ·) is as in (6). Evaluating the cost function
on the mesh reduces the number of simulations when the
particles cluster.
We run this algorithm with two di/erent settings for the

algorithm parameters. In the Krst version, which we will call
PSO on mesh (1), we used the same parameters as for the
PSO algorithm with constriction coeGcient and, in addition,
a mesh size divider of 2 and an initial mesh size exponent
of 1. Thus, � = 1

2 in (7). In the second version, which we
will call PSO on mesh (2), we increased the number of
particles from 16 to 36 and increased the constriction gain
from 0:5 to 1. This causes the particles to cluster later in the
search.

4.1.5. Hybrid particle swarm and Hooke–Jeeves
algorithm
This hybrid global optimization algorithm does a PSO on

a mesh for the Krst iterations, as described in the previous
section. This is done for a user-speciKed number of genera-
tions. Afterwards, it starts the Hooke–Jeeves algorithm us-
ing for the initial iterate the mesh point that attained the low-
est cost function value. Since the PSO algorithm evaluates
f(·) only on a Knite number of points in M(x0; �0; s) ∩ X,
the PSO search can be considered to be a global search of a
GPS algorithm. Hence, this hybrid algorithm is also a mem-
ber of the family of GPS algorithms.
We run this algorithm with two di/erent settings for the

algorithm parameters. In the Krst version, which we will call
PSO and Hooke–Jeeves (1), we used the same settings as
for the algorithm PSO on mesh (1). In addition, we used, as
for the Hooke–Jeeves and the coordinate search algorithms,
a mesh size exponent increment of 1. Because �0 = 1

2 , we
used 3 step reductions to obtain for the last iterations the
same mesh size factor as for the Hooke–Jeeves and the
coordinate search algorithms, namely �k = 1

16 . In the second
version, which we will call PSO and Hooke–Jeeves (2),
we increased the constriction gain from 0:5 to 1 to obtain
a bigger spread in the particles for the late generations, but
we kept the number of particles at 16.

4.1.6. Simple genetic algorithm
GA are algorithms that operate on a Knite set of points,

called a population. The di/erent populations are called
generations. They are derived on the principles of natural
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selection and incorporate operators for (1) Ktness assign-
ment, (2) selection of points for recombination, (3) recom-
bination of points, and (4) mutation of a point. Our GA is
an implementation of the simple GA described by [26], but
we use a Gray [27] rather than a pure binary encoding to
represent the independent variables as a concatenated string
of binary numbers.
The simple GA iterates either until a user-speciKed num-

ber of generations is exceeded, or until all iterates of the
current generation have the same cost function value.
In the numerical experiments, we used a population size

of 14, a maximum of 50 generations, 1 elite point and a
probability for recombination and mutation of 1 and 0:02,
respectively.
We selected a small population size because the number

of independent variables is small and because we expected
the cost function to have no signiKcant local minima. The
choice of a small population size was balanced by a high
probability of recombination and mutation. Small popu-
lation sizes have also been used successfully in the solu-
tion of other small scale building optimization problems
[12].

4.1.7. Simplex algorithm of Nelder and Mead with the
extension of O’Neill
The simplex algorithm of Nelder and Mead is a derivative

free optimization algorithm. It constructs an n-dimensional
simplex in the space of the independent variables. The cost
function is evaluated at each of the (n + 1) simplex ver-
tices. In each iteration step, the vertex with the highest cost
function value is replaced by a new vertex. The new vertex
is obtained either by reRecting the vertex with the highest
cost function value at the centroid of the simplex, or by con-
tracting and expanding the simplex. Despite the well-known
fact that the simplex algorithm can fail to converge to a sta-
tionary point [10,28–32], both in practice and theory, par-
ticularly if the dimension of independent variables is large,
say bigger than 10 [28], it is an often used algorithm. Sev-
eral improvements to the simplex algorithm or algorithms
that were motivated by the simplex algorithm exist, see for
example [10,28,29,33]. However, here we used the original
Nelder–Mead algorithm [34] with the extension of O’Neill
[35] and, in some of the numerical experiments, a modiK-
cation of the stopping criteria [19].
For the numerical experiments, we used an accuracy of

0:01 and a step-size factor of 0:1. In the experiments that are
labeled Nelder–Mead (1), we modiKed the stopping crite-
rion as described in [19] and prevented a new restart of the
algorithm during the 10 iterations that followed a previous
restart. In the experiments that are labeled Nelder–Mead
(2), we did not modify the stopping criterion and did not
prevent a restart of the algorithm. The second set of numer-
ical experiments has been done because the Krst set showed
poor performance. However, the change in algorithm pa-
rameters did not improve the performance.

4.1.8. Discrete Armijo gradient algorithm
We used the discrete Armijo gradient algorithm from [7],

which can be used to minimize smooth functions. It approx-
imates gradients by Knite di/erences, with the di/erence in-
crement reduced as the optimization progresses, and does
line searches using the Armijo step-size rule. If f(·) is once
continuously di/erentiable and bounded from below, then
the discrete Armijo gradient algorithm constructs sequences
with stationary accumulation points. However, the algorithm
is sensitive to discontinuities in f(·), and hence, we recom-
mend to not use this algorithm if the simulation program
contains adaptive solvers with loose precision settings, such
as EnergyPlus. However, since the simple simulation model
deKnes a cost function that has only small discontinuities,
we were interested in how this algorithm performs in solv-
ing the problems that use the simple simulation model. As
we will shortly see, it failed far from a solution.
We used the following algorithm parameters: �= 1

2 , !=
0:8, �=0:1, k0 = 0, k∗ =−10, lmax = 50, "=25, #m =0:01
and #x = 0:05.

5. Numerical experiments

The analysis presented here is in two parts. We will Krst
compare the performance of the di/erent optimization algo-
rithms and then examine the cause of the discontinuities in
the cost functions.

5.1. Comparison of the optimization results

For all optimizations, we used the optimization program
GenOpt 2.0.0 [19] 6 and EnergyPlus 1.1.0. All computations
were run on Linux computers with AMD processors. On
a 2:2 GHz processor, one simulation of the simple model
takes 14 s, and one simulation of the detailed model takes
2 min and 20 s. Thus, 300 simulations of the simple model
(which is what most optimization algorithms used in our
experiments) takes 1 h and 10 min, and 500 simulations of
the detailed simulation model takes 19 h and 30 min. The
overhead of the optimization algorithm and the Kle I/O is
negligible.
We Krst need to deKne some measures that we will use

to compare the optimization results. Let xb ∈X be the value
of the independent variables for the base design, as listed in
Table 1. For each optimization problem (i.e., for each sim-
ulation model with the corresponding weather data), we de-
note, for each optimization algorithm, by x∗ ∈X the iterate
with the lowest cost function value, and we denote for each
optimization problem by x̂∈X the iterate with the lowest
cost function value obtained by any of the tested optimiza-
tion algorithms. Then, for each optimization problem, we

6 Work for implementing a GA for GenOpt is in progress.
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Table 2
Normalized cost reduction r(x∗), distance to the maximum obtained cost reduction d(r(x∗)) and number of simulations m for all optimization problems

Algorithm Houston, TX Chicago, IL Seattle, WA

r(x∗) d(r(x∗)) m (—) r(x∗) d(r(x∗)) m (—) r(x∗) d(r(x∗)) m (—)
(%) (%) (%) (%) (%) (%)

(a) Optimization problems with simple simulation model and four independent variables.
PSOIW 8.44 0.14 316 15.42 0.41 316 16.11 0.21 314
PSOCC 8.27 0.31 313 14.49 1.34 314 14.77 1.55 315
PSOCC on a mesh (1) 8.27 0.31 169 14.57 1.25 160 14.89 1.43 146
PSOCC on a mesh (2) 8.47 0.12 672 15.75 0.07 673 16.23 0.09 652
Nelder–Mead (1) 8.58 0 259 15.71 0.11 672 16.18 0.14 1232
Nelder–Mead (2) 8.58 0 226 15.71 0.11 902 16.25 0.07 1451
PSO and Hooke–Jeeves (1) 8.58 0.01 242 15.82 0 237 16.30 0.02 215
PSO and Hooke–Jeeves (2) 8.56 0.02 326 15.74 0.08 371 16.32 0 358
Hooke–Jeeves 8.58 0.01 103 15.82 0 113 16.30 0.02 97
Coordinate search 8.58 0.01 105 15.82 0 119 16.30 0.02 116
Simple GA 8.53 0.05 194 15.52 0.31 185 16.23 0.09 176
Discrete Armijo gradient 7.93 0.66 315 13.08 2.75 364 14.95 1.37 216

(b) Optimization problems with detailed simulation model and 13 independent variables.
PSOIW 13.91 0.54 317 10.63 0.39 317 15.39 1.03 318
PSOCC 11.97 2.49 313 9.66 1.37 314 14.18 2.23 317
PSOCC on a mesh (1) 12.17 2.28 195 9.68 1.34 209 14.20 2.22 242
PSOCC on a mesh (2) 13.49 0.96 710 10.39 0.63 712 15.84 0.57 707
Nelder–Mead (1) 14.09 0.36 2330 4.27 6.76 1228 15.59 0.82 5846
Nelder–Mead (2) 13.98 0.48 1578 — — — — — —
PSO and Hooke–Jeeves (1) 14.16 0.29 653 10.94 0.09 755 16.18 0.23 843
PSO and Hooke–Jeeves (2) 14.45 0 740 10.96 0.06 669 16.41 0 889
Hooke–Jeeves 14.27 0.18 555 5.93 5.10 600 16.32 0.09 574
Coordinate search 9.60 4.86 430 4.74 6.29 552 13.04 3.37 501
Simple GA 14.06 0.40 586 11.02 0 592 16.35 0.07 583

deKne the normalized cost reduction as

r(x∗),
f(xb) − f(x∗)

f(xb)
(8)

and we deKne the distance to the maximum obtained reduc-
tion as

d(r(x∗)), r(x̂) − r(x∗) =
f(x∗) − f(x̂)

f(xb)
: (9)

Thus, d(r(x∗))=0 for the algorithm that achieves the biggest
cost reduction.
Because of the discontinuities in the cost functions, we

observed di/erent behavior of the optimization algorithms
on the problems that used the simple simulation model
compared to the problems that used the detailed simulation
model. The cost function, if evaluated by the simple simula-
tion model, is rather smooth, but, if evaluated by the detailed
simulation model, has discontinuities in the order of 2%,
which makes optimization with descent algorithms diGcult.
Table 2 shows the normalized cost reduction, the dis-

tance to the maximum obtained reduction and the number
of simulations, and Fig. 2 shows a graphical representation
of the distance to the maximum obtained cost reduction and

the required number of simulations for each optimization
problem.
We see that if the detailed simulation model is used, then

the coordinate search algorithm tends to fail far from the
minimum. On the same problems, the Hooke–Jeeves algo-
rithm jammed less often compared to the coordinate search
algorithm, which may be due to the larger steps that are
taken in the global exploration.
All nonhybrid PSO algorithms come close to the mini-

mum with a low number of simulations. By restricting the
iterates of the PSO algorithm with constriction coeGcient
to the mesh M(x0; �; s), the number of simulations could
be reduced by 50% for the problem with four independent
variables and by 30% for the problem with 13 independent
variables. Restricting the iterates to the mesh does not sig-
niKcantly a/ect the accuracy as we can see by comparing the
results of the PSOCC and the PSO on mesh (1) algorithm,
which both use the same algorithm parameters. However, in
the PSO algorithm that searches on a mesh, increasing the
number of particles from 16 to 36 and increasing the con-
striction gain from 0:5 to 1 prevented the particles to cluster
early in the search and yielded larger cost reductions at the
expense of three to four times more simulations.
The simple GA, however, got consistently closer to the

minimum than the PSO algorithms with a comparable num-
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Fig. 2. Number of simulations vs. distance to the maximum obtained cost reduction, (a) Optimization problems with simple simulation model and four
independent variables, (b) Optimization problems with detailed simulation model and 13 independent variables.

ber of simulations, except for one problem that used the sim-
ple simulation model. In this case, however, the di/erence
in cost reduction is insigniKcant.
The overall best cost reductions has been achieved by

the hybrid particle swarm and Hooke–Jeeves algorithm
although with a higher number of simulations than the
simple GA. For the hybrid algorithm, increasing the con-
striction gain from 0:5 to 1:0 did, in our experiments, only
slightly change the results. We observed, however, that
with a higher constriction gain the particles are more spread
out in the early generations, which increases the chance
to Knd a global minimum if the cost function has several
minima.
The Nelder–Mead algorithm did not perform well on our

test problems. It required a high number of simulations, and
in one test case it failed far from the minimum. We believe
that, in addition to the problems discussed in [10,28–32],
some of the problems we observed when solving the opti-
mization problems that used the detailed simulation model
may have been caused by the stopping criterion. The stop-
ping criterion used in [36,19] requires the variance of the
function values at the simplex vertices to be smaller than a

prescribed limit. However, if f(·) has large discontinuities,
then this stopping criterion may never be satisKed.
The discrete Armijo gradient algorithm failed on the

simple problem far from the minimum. This is not sur-
prising because the algorithm is sensitive to disconti-
nuities in the cost function. We recommend to not use
this algorithm if EnergyPlus is used to evaluate the cost
function.
In summary, the simple GA got close to a solution with a

low number of simulations. The hybrid particle swarm and
Hooke–Jeeves algorithm achieved the biggest cost reduction
but required more simulations. Whether the increased num-
ber of simulations is justiKed depends on the savings due
to a better solution and the expenses of a higher computa-
tion time. However, one advantage of the hybrid algorithm
is that the global search of the PSO algorithm increases the
chance to get close to the global minimum rather than only
a local minimum, and the Hooke–Jeeves algorithm then re-
Knes the search locally.
If the discontinuities in the cost function are small, then

the Hooke–Jeeves algorithm achieved a good reduction in
cost and required only few iterations.
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Fig. 3. Normalized change of the cost function value &(Tu) as a function
of the zone air setpoint temperature for night cooling during the summer
months.

5.2. Discontinuities in the cost function

We observed that EnergyPlus computes for the detailed
simulation model an energy consumption that has large dis-
continuities. Some of the discontinuities are caused by the
adaptive grid generators—such as the ones used in com-
puting the daylighting illuminance or in doing the variable
time-step integration—some are caused by iterative solvers
which fail to compute an accurate approximate solution and
some are caused by programming errors.
Due to these discontinuities, for the optimization problem

with the detailed simulation model and Chicago’s weather
data, the Hooke–Jeeves algorithm achieved only half of the
cost reduction that was obtained by other algorithms. For
this numerical experiment, we will now show the change
in cost in a one-dimensional subspace of X ⊂ R13. In par-
ticular, we will perturb one component of the independent
variable and plot the change in cost function value. We will
Krst introduce some notation. Let x∗

HJ ∈X ⊂ R13 denote the
iterate with the lowest cost function value of the Hooke–
Jeeves algorithm, let Tu ∈R denote the room setpoint tem-
perature for night cooling during summer, and let eTu ∈R13

denote the coordinate vector along Tu. We deKne T ∗
u;HJ ,

〈x∗
HJ ; eTu〉 and we deKne the normalized change in cost with

respect to Tu as

&(Tu),
f(x∗

HJ + (Tu − T ∗
u;HJ)eTu)

f(x∗
HJ)

: (10)

In Fig. 3, we show &(Tu) for Tu ∈ [21:9; 22:1] using 1201
equidistant support points. For Tu6 22:001◦C, &(·) has dis-
continuities in the order of 2%. At Tu = 22◦C is the dis-
continuity at which the Hooke–Jeeves algorithm got stuck,
which is far from the minimum of f(·). The point-wise
discontinuities in Fig. 3 are caused by round-o/ errors: de-
pending on the system’s minimum air-Row fraction, which
depends on the system sizing p(·), a di/erent branch of
an if–then–else statement is executed to determine the
part load air-Row fraction, and the two branches of the if–
then–else statement are, due to a programming error, such
that they introduce a discontinuity in the part load air-Row
fraction. 7

7 This will be Kxed in future EnergyPlus versions.

We will now show that the cost function of the detailed
simulation model also has large discontinuities that are of a
di/erent structure than those in Fig. 3. Let x∗

CS ∈Rn denote
the iterate with the lowest cost function value obtained by
the coordinate search algorithm for Chicago, and let x∗

GA de-
note the iterate with the lowest cost function value obtained
by the simple GA for Chicago. In Fig. 4, we show the nor-
malized energy consumption for total primary energy, fan,
cooling, heating and lighting energy. The normalized en-
ergy consumption is shown along part of the line x(') ,
x∗
CS + ' (x∗

GA − x∗
CS). That is, x(0) = x∗

CS and x(1) = x∗
GA.

The graph shows discontinuities of the total primary energy
consumption in the order of 1%. Clearly, such large dis-
continuities can cause optimization algorithms that require
smoothness of the cost function to fail far from a minimum.
The biggest discontinuities seem to be caused by the fan

sizing. At '=0:827, the fan energy changes by 4% and con-
sequently the cooling and heating energy is also discontinu-
ous at this point. However, at '=0:931, the cooling energy
changes by 1.2% while the fan energy is smooth around this
point. While such a discontinuity is small if one is only inter-
ested in the cooling sizing in a simulation study, it can cause
problems in optimization and sensitivity studies, particularly
if the cooling energy contributes much to the cost function.
The discontinuities in lighting energy are small (the lighting
energy does not depend on the fan, cooling or heating en-
ergy). We believe that the discontinuities in the lighting en-
ergy are caused by a change in the spatial discretization that
is used in computing the daylight illuminance. We further
believe that the large discontinuities in the fan, heating and
cooling energy are caused by the system auto-sizing, which
we expect to compute a low-precision approximate solution
to p(x), which will then be used in (3) for the whole interval
of time integration. In fact, the system sizing is done by Krst
repetitively simulating a so-called warm-up day until some
state variables do not change more than a tolerance which
is Kxed at compile time, and then one day is simulated to
determine p(·). This is done for a winter and a summer day.
Thus, a change in x can cause a discrete change in the num-
ber of warm-up days, and hence in the initial state z0(x) and
consequently in the system size p(x).

6. Conclusions

We observed that in the optimization problems that used
the detailed simulation model with auto-sizing of the HVAC
components, the cost function has discontinuities in the or-
der of 2%. On such problems optimization algorithms that
require smoothness of the cost function are likely to fail far
from a solution, which is what we indeed observed in our
numerical experiments. Such discontinuities make optimiza-
tion diGcult and can lead to limited economic gains. This
can be prevented if the solvers are implemented such that
the approximation error can be controlled, and if the simula-
tion program is written such that the approximate solutions
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Fig. 4. Normalized cost function value f(x('))=f(x(1)) and primary energy consumption for fan, cooling, heating and lighting, normalized by dividing
it by the value at the minimum point of the simple GA. The functions are evaluated on the line between the minimum point obtained by the coordinate
search algorithm (at ' = 0) and the minimum point obtained by the simple GA (at ' = 1) for Chicago, IL.

of the di/erential algebraic equations converge to a smooth
function as precision is increased. One of the authors is cur-
rently developing such a building energy analysis program.
The biggest cost reduction has been obtained with the

hybrid particle swarm and Hooke–Jeeves algorithm. If a
user is willing to accept a slight decrease in accuracy at the
beneKt of fewer simulations, then the simple GA is a good
choice. However, due to the stochastic operators, the PSO
and the simple GA can occasionally fail to get close to a
solution, particularly if the number of simulations is small.
In such situations, the second search in a hybrid algorithm
can further decrease the cost. However, with our limited
number of numerical experiments, we could not determine
how big the risk of failing is.
For neither of the problems that we examined do we

recommend using either the Nelder–Mead or the discrete
Armijo gradient algorithm.

7. Nomenclature

7.1. Conventions

(1) Elements of a set or a sequence are denoted by sub-
scripts.

(2) Vectors are always column vectors, and their elements
are denoted by superscripts.

(3) The inner product in Rn is denoted by 〈·; ·〉 and for
x; y∈Rn deKned by 〈x; y〉 , ∑n

i=1 xiyi.
(4) f(·) denotes a function where (·) stands for the undes-

ignated variables. f(x) denotes the value of f(·) for
the argument x. f :A → B indicates that the domain
of f(·) is in the space A, and that the image of f(·) is
in the space B.

(5) We say that a functionf :Rn → R is once continuously
di/erentiable on a set S ⊂ Rn with respect to x∈S
if f(·) is deKned on S, and if f(·) has a continuous
derivative on S.

(6) For x∗ ∈Rn and f :Rn → R continuously di/eren-
tiable, we say that x∗ is stationary if ∇f(x∗) = 0.

7.2. Symbols

f(·) cost function
l lower bound of the independent variable
n dimension of the independent variable
t time
u upper bound of the independent variable
x independent variable
a∈A a is an element of A
A ⊂ B A is a subset of B
A ∩ B intersection of the sets A and B
X feasible set of the independent variable
N {0; 1; 2; : : :}
Q set of rational numbers
Q+ {q∈Q | q¿ 0}
R set of real numbers
Z {: : : ;−2;−1; 0; 1; 2; : : :}
� mesh size factor
, equal by deKnition
ei unit vector along the ith coordinate direction
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