
SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

NAME
shapes − input file for the nanophotonic simulation program shapes.

SYNOPSIS
Parallel version: mpirun −np number-of-processes −machinefile node-file shapes shapes-input-file

Sequential version: shapes shapes-input-file

DESCRIPTION
Program shapes(1) takes input from a simple configuration file that describes the modeled system. This

document describes how to construct this file.

USAGE
The input file to shapes(1) is a simple text file with various keywords, one per line, and their values sepa-

rated by an equal sign. Lines that begin with the hash character are comments that are neglected by shapes.

The keywords may appear in any order, but it is a good practice to organize them in logical groups. And so

the following groups are used by the current version of shapes:

chat signal

watch metal

level0 tag

iterate refine

pml spectral

output

In the text below entries that are flagged as int must be entered as integers. Entries that are marked as Real

may be entered as reals or as integers. Arrays must be input as a row of numbers separated by spaces, all

typed on a single line.

The chat group

There are 8 keywords in this group currently.

chat.print_versions int

When set to 1, the program prints RCS versions of all component files. Setting it to 0 disables this

output.

chat.chombo_verbose int

Activates chatting by C++ functions when set to 1 or 2. When set to anything higher than 2 it may

trigger Fortran messages too. Disables the chat when set to 0.

chat.fortran_verbose int

Activates chatting by Fortran subroutines when set to 1 or higher. Disables the chat when set to 0.

chat.print_level_0_domain int

Once the level 0 has been constructed shapes prints its geometry and other level 0 related parame-

ters when chat.print_level_0_domain is set to 1 or higher. Setting it to 0 disables this output.

chat.print_levels int

When this parameter is set to 1 shapes prints information about every level that has been con-

structed. Setting this parameter to 1 sets chat.print_level_0_domain to 1 too.

chat.print_min_max int

When this parameter is set to 1 or higher shapes prints minimum and maximum values of all fields

for all levels for the time slice at which data is dumped. Historical minimum and maximum values

for the fields are printed too. Setting this parameter to 0 disables this output.

chat.print_actions int

Setting this parameter to 1 makes shapes’ functions (the Chombo shell ones) print all they do.

This can be useful in deciphering recursion, checking synchronization between levels and making

sure that data flows between the levels at appropriate times and in the correct direction. This

parameter is much the same in practice as chat.chombo_verbose.

Shapes 2.0 January 12, 2006 1



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

chat.print_dots int

When this parameter is set to 1 or higher, shapes prints a dot for every iteration. It may be useful

to set it for interactive sequential runs, so that the user knows that something happens and how

much work has been done so far. Whenever other diagnostic output is enabled, it is best to switch

it off.

Example

To make the program shut up altogether and just print a dot for each iteration set

chat.chombo_verbose = 0

chat.fortran_verbose = 0

chat.print_levels = 0

chat.print_versions = 0

chat.print_min_max = 0

chat.print_actions = 0

chat.print_dots = 1

When the program runs in parallel, every participating MPI process writes its own diagnostic out-

put, if requested, on its own file called pout.X where X evaluates to the rank number of the pro-

cess.

The watch group

This group lets a user and even more so a programmer watch specific functions and subroutines in action.

There are some 40 C++ functions in the program, each of which can be selectively asked to talk, while the

others remain mute. This way of tracing the actions of the program is much more effective in pin-pointing

ev entual problems than requesting a blanket chat.chombo_verbose or chat.print_actions. If a  giv en C++

function calls a Fortran subroutine, then setting its watch parameter to an integer larger than 2 activates

chat.fortran_verbose for this subroutine, but not for the other ones.

The way to make a select C++ function talk is to set watch followed by a dot and the name of the function

to an integer larger than 0. For example to make function push_d talk set

watch.push_d = 1

The following table lists the names of the C++ shapes functions that can be watched thusly.

advance_e exchange_media_fields

advance_h full_copy

analyze_levels initialize_level_data

build_basic_fields inject_d

build_cell_centered_fields inject_h

build_distributions interpolate_basic_fields

build_disjoint_box_lyout interpolate_fourier_fields

build_fourier_fields interpolate_media_fields

build_level main

build_media_fields patch_basic_fields

build_minmax patch_fourier_fields

convert_d_to_e patch_media_fields

copy_basic_fields push_d

copy_fourier_fields push_h

copy_media_fields regrid

dump_data tag_cells

effective_domain_size time_interpolate

evaluate_energy write_box_layout_data

exchange_basic_fields write_gnuplot_data

exchange_fourier_fields write_tags_data

Example

To see how functions convert_d_to_e, push_d, and push_h go about their business and to trigger

diagnostics in Fortran subroutines invoked from convert_d_to_e set

Shapes 2.0 January 12, 2006 2



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

watch.convert_d_to_e = 3

watch.push_d = 1

watch.push_h = 1

The level0 group

This group is used to specify the general geometry of the computational domain. The computational

domain is always rectangular. We hav e to specify its length and width, as well as the number of grid divi-

sions in each direction. Additionally we have to specify how the computational domain is going to be dis-

tributed amongst MPI processes if the program is going to run in parallel.

The geometry of the computational domain is specified in arbitrary units of length. For example, suppose

we are going to inject a plane harmonic wav e of length 5000 Angstroms into the computational domain,

which is going to be a square. We would like to resolve the wav e on, say, 40 grid segments and we would

like to fit up to four full wav elengths into the total field region.

This can be done as follows. Let us make the computational region 100 ×100 units and let us make the grid

divisions in both directions ∆x = ∆y = 0. 5. The unit of length is therefore going to be 2 × ∆x = 1 (which is

why it is called a unit).

This choice of ∆x and ∆y results in a 200 × 200 grid. Now we want to resolve our 5000 Angstrom long

wave on 40 grid segments, which means that each ∆x = ∆y = 0. 5 = 5000Α/40 = 125Α. The unit of length is

therefore going to be 2 × ∆x = 25 0Α and the wav elength itself is 40 × ∆x = 40 × 0. 5 = 20 our units of

length. In order to fit four full wav elength in the total field region in each direction the region must have

the length and width of 20 × 4 = 80 units. If we were to place the region centrally within the computational

domain of 100 ×100 units, its corners would be (1 0,10) and (90, 90).

shapes can perform its computations on a multi-grid. Here we define only the so called level 0 grid, i.e., the

coarsest grid. Higher level grids, i.e., finer grids, are built by the program automatically. The user can spec-

ify where finer gridding should be used, if at all, by using keywords of the tag group. It is not necessary to

use the multi-grid though and it is generally better not to.

We hav e 8 keywords in the level0 group with which we can convey all the information we have evaluated

above to shapes.

level0.nx int

Number of level 0 cells in the x direction.

level0.ny int

Number of level 0 cells in the y direction.

level0.nbx int

Number of boxes in the x direction. shapes will group the level 0 grid cells into boxes and will

distribute them amongst MPI processes if executed in parallel. shapes will try to make the boxes

square, so the number of boxes in the x direction defines the average size of a box both in the x

and in the y directions. If shapes is run sequentially then it is best to set this number to 1. But it is

OK to set it to something higher, e.g., 2 or 4. In this case shapes will group all level 0 grid cells

into separate boxes and will go through all the motions of moving ghost data between the boxes,

as if it was running on multiple CPUs. But all these operations will take place within memory of

the single sequential process. This can be used, for example, in test runs before submitting a job

to a multi-computer.

level0.x0 Real

Value of the x coordinate of the (0, 0) point of the level 0 grid.

level0.y0 Real

Value of the y coordinate of the (0, 0) point of the level 0 grid.

level0.delta_x Real

Level 0 grid constant in the x direction, i.e., ∆x.

Shapes 2.0 January 12, 2006 3



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

level0.delta_y Real

Level 0 grid constant in the y direction, i.e., ∆y.

level0.time Real

The value of initial time that corresponds to the
→
E field within the level 0 grid. The

→
H field is

defined on a time slice that is ∆t/2 (∆t for level 0  is defined in the iteration group) ahead of the
→
E

time slice.

Example

The configuration discussed in this section would be described as follows with an additional speci-

fications in the signal group:

level0.nx = 200

level0.ny = 200

level0.nbx = 1

level0.x0 = 0

level0.y0 = 0

level0.delta_x = 0.5

level0.delta_y = 0.5

level0.time = 0

...

signal.x_lo = 10

signal.y_lo = 10

signal.x_hi = 90

signal.y_hi = 90

signal.lambda = 20

The iterate group

This group tells shapes how the level 0 should be iterated, i.e., what should be the iteration time step, how

many iterations should be performed altogether and how often should field images by dumped.

shapes performs its computations in the natural units in which the speed of light in vacuum, c, is 1. This

means that in one unit of time the wav e front is going to propagate by one unit of length in vacuum. If we

were to re-use the example discussed in the previous section, where the unit of length has turned out to be

250 Angstroms we would end up with the unit of time of

25 0A/c = 25 0 ×10−10m/2. 997925 ×108m/s = 8. 3391 ×10−17s

This number will be needed to convert various material properties to natural units, but it is not needed to

define iteration parameters of this section.

Instead, the iteration time step is specified by telling shapes in how many steps is the wav e front going to

traverse a single grid cell in the x direction, i.e., how many iterations are needed to push the wav efront

through a distance of ∆x. This number is called level 0 stride. And so, if we set, say, lev el 0 stride to 4, the

time step will be chosen so that ∆x (in the case of the example discussed above, this was 250 Angstroms)

will be traversed in 4 level 0 iterations.

It is not always the best idea to make the time step as long as the stability criterion for vacuum electrody-

namics lets it be, i.e., ∆t = ∆x/√  n where n is the number of dimensions. The reason for this is that this num-

ber does not take into account stability conditions for the auxiliary differential equations. In the presence of

a multi-grid, this number may have to be shortened too.

There are 4 keywords in this group

iterate.level0.stride Real

This is the level 0 stride discussed above.

iterate.level0.image_frequency int

This parameter tells shapes how often to dump images. shapes will dump images every iter-

ate.level0.stride times iterate.level0.image_frequency time steps. For example, if iter-

ate.level0.stride is 4 and iterate.level0.image_frequency is 2, the image will be dumped every

Shapes 2.0 January 12, 2006 4



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

4 × 2 = 8 time steps. Because in 4 time steps the wav e front propagates by one ∆x the wav e front

will be shifted by 2 × ∆x between adjacent images. In the case of the example discussed above, the

wave front shift between adjacent images will be by one unit of length.

iterate.level0.number_of_steps int

This number tells shapes how many time steps to perform altogether.

iterate.use_substep int

This parameter matters only when the computations are carried out on a multi-grid. If it is set to 0

shapes will use the same time step for each multi-grid level. This, of course, implies that in this

case the time step should be chosen based on the finest grid level spacing requested. If it is set to 1

shapes will use a shorter time step for finer grid levels. The space refinement ratio between adja-

cent grid levels is 2 and the time refinement level between adjacent grid levels is 3. This is

required to synchronize
→
E and

→
H time slices between adjacent levels.

Example

iterate.level0.stride = 4

iterate.level0.image_frequency = 4

iterate.level0.number_of_steps = 4800

iterate.use_substep = 0

Here we are going to time-step so that the wav e-front crosses a single level 0 ∆x in 4 time steps.

Images will be dumped every 4 × 4 = 16 lev el 0 time steps and the total number of level 0 time

steps will be 4,800. The wav e front will traverse 1200 × ∆x in this time. If ∆x = 0. 5 units of length,

as in the above example, the total distance travelled by the wav e front throughout the simulation

will be 600 units of length.

The pml group

PMLs are characterized just by specifying the boundary of the PML region. The user needs to specify the

lower left and the upper right corners of the boundary box. shapes takes care of all the rest. The keywords

used to do this are

pml.x_lo Real

pml.y_lo Real

The x and y coordinates of the lower left corner of the PML boundary box.

pml.x_hi Real

pml.y_hi Real

The x and y coordinates of the upper right corner of the PML boundary box.

Example

Consider again the example discussed above. Here we have decided on the total field region being

restricted to a box defined by the (1 0,10) and (90, 90) corner points. We can therefore define our

PML region by the (5, 5) and (95, 95) corner points. This is still within the (0, 0) and (100,100) com-

putational domain and it yields 10 grid segments to attenuate the signal on each boundary. The dis-

tance between the PML boundary and the total field region boundary is 5, which is again 10 grid

segments:

pml.x_lo = 5

pml.y_lo = 5

pml.x_hi = 95

pml.y_hi = 95

The signal group

shapes defines 11 signals, which are summed up in the following table.

Shapes 2.0 January 12, 2006 5



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

mode description formula

0 nothing

1 harmonic wav e f (ζ ) = sin


2π

λ
ζ




2 step ramped harmonic wav e f (ζ ) = θ(−ζ ) sin


2π

λ
ζ




3 tanh ramped harmonic wav e f (ζ ) =
1

2
(1 − tanh(αζ )) sin



2π

λ
ζ




4 Gaussian pulse f (ζ ) = exp


−

ζ 2

2σ 2




5 Gaussian envelope harmonic wav e f (ζ ) = exp


−

ζ 2

2σ 2




sin


2π

λ
ζ




6 Gaussian envelope linear chirp f (ζ ) = exp


−

ζ 2

2σ 2




sin



2π

λ + βζ
ζ




7 Gaussian envelope quadratic chirp f (ζ ) = exp


−

ζ 2

2σ 2




sin



2π

λ + βζ 2
ζ




8 Gaussian envelope exp chirp f (ζ ) = exp


−

ζ 2

2σ 2




sin



2π

λ + α exp(βζ )
ζ




9 Gaussian envelope sin chirp f (ζ ) = exp


−

ζ 2

2σ 2




sin



2π

λ + α sin(βζ )
ζ




10 Gaussian envelope tanh chirp f (ζ ) = exp


−

ζ 2

2σ 2




sin



2π

λ + α tanh(βζ )
ζ




11 Gaussian envelope Gaussian chirp f (ζ ) = exp


−

ζ 2

2σ 2




sin







2π

λ + α exp


−

ζ 2

2β 2




ζ







The various chirps work by modulating the wav elength of the basic signal either linearly or in some other

way. Normally we want this modulation to be slow compared to the fundamental wav elength λ and to the

length of the envelope. Otherwise we’ll get a complicated beat instead of a chirp. It is normally best to set

the parameters of a chirp or any other signal by drawing it with, e.g., gnuplot, before entering them into the

shapes input file. One should especially ensure that the effective wav elength is not going to become zero

during the program execution. This may happen when using a linear chirp. But a tanh chirp is a good alter-

native here, because we can set a minimum and a maximum wav elength in this model and then modulate

the effective wav elength smoothly and almost linearly in between.

The Gnuplot command to plot a function such as one of the above is

set sample 800,800

plot [z=-200:200] [-1.5:1.5] \

f(z) = 0.5 * (1 - tanh(a * z)) * sin(6.2831853 * z / l), \

a = 0.02, l = 20, f(z)

Using this command the user can play with a (i.e., α ) and l (i.e., λ) until the right shape of the pulse is

found.

The signal shape defined by a given mode and its various constants is injected into the computational region

by substituting

ζ = nx(x − x0) + ny(y − y0) − (t − t0)

The actual fields that are injected into the total field region are then

Hz = f (ζ )

E x = −ny f (ζ )

E y = nx f (ζ )

One can easily check that these indeed satisfy the Maxwell vacuum equations.

Shapes 2.0 January 12, 2006 6



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

The parameters x0 and y0 are set to either the lower or the upper value of x and y respectively within the

total field region, depending on the direction from which the signal is injected. But t0 is set by the user.

This parameter specifies how far from the total field region boundary is the center of the signal when the

program begins its execution.

The input file parameters that define the signal are now as follows.

signal.x_lo Real

signal.y_lo Real

The x and y coordinates of the lower-left corner of the total field region.

signal.x_hi Real

signal.y_hi Real

The x and y coordinates of the upper-right corner of the total field region.

signal.mode int

A type of signal to be injected, see the table above.

signal.t0 Real

Signal delay.

signal.lambda Real

The fundamental wav elength λ - it may get modulated in chirps.

signal.sigma Real

The half-width of the Gaussian pulse or envelope.

signal.alpha Real

signal.beta Real

Additional parameters to specify the signal, see the table above.

signal.vx Real

signal.vy Real

The x and y components of the signal direction vector. They don’t hav e to be normalized. shapes

uses vx and vy to calculate nx and ny.

Example

signal.x_lo = 10

signal.y_lo = 10

signal.x_hi = 90

signal.y_hi = 90

signal.mode = 7

signal.t0 = 300

signal.lambda = 10

signal.sigma = 60

signal.alpha = 0

signal.beta = 0.0012

signal.vx = 0

signal.vy = 1

Here we define our total field region by specifying two corners (10,10) and (90, 90) within the com-

putational domain. The signal that is going to be injected will be a Gaussian envelope quadratic

chirp. The signal is going to be injected with the delay of 300, i.e., 300 time units will have to pass

before the signal center enters the total field region. The fundamental wav elength λ is 10. In this

case, because the chirp is quadratic and β is positive, the signal will start with a longer

wavelength, then the wav elength will get progressively shorter until it reaches λ = 10 and then it

will stretch again. The half-width of the Gaussian envelope is 60 and the β parameter is 0. 001 2.

The signal will propagate in the y direction.

Shapes 2.0 January 12, 2006 7



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

The metal group

This group is used to specify the media and their layout. The user can specify an arbitrary number of media

that can be distributed in a quite arbitrary way within the total field region of the computational domain.

The media models is a multiple resonance Drude/Lorentz model described by the following equation

→
D(ω) = 


ε∞ +

k
Σ ε k

α k + i2δ k(ω /ω k) − (ω /ω k)2




→
E(ω)

Observe that ε0 is absorbed into
→
D. We also absorb µ0 into

→
H so that these two constants do not float

around the code. Consequently, in vacuum we have that
→
E =

→
D.

The above formula captures both Drude and Lorentz models. For a Drude model simply substitute

ω k = ω D

α k = 0

δ k =
ΓD

2ω D

ε k = 1

which yields a Drude term

−
ω 2

D

ω 2 − iΓDω

The metal group is internally divided into various subgroups of which the first one is the metal.media sub-

group. It is here that we define the actual metals. The definition begins with two parameters.

metal.media.number_of_media int

This parameter tells shapes how many different metals we are going to have in the system.

metal.media.number_of_terms int

This parameter tells shapes how many resonance terms we are going to use for each metal. All

metals must be defined by the same number of resonances. If we have two metals and one is

defined by 3 resonances, whereas the other one by 2 resonances only, then the second metal must

be still entered in therms of 3 resonances, but the last resonance should be set to zero.

The numbers that characterize the metals must now be entered as a vectors of reals, i.e.,

metal.media.epsilon_infty vector of Real

The values of ε∞ for each of the metals must be entered in a single line and separated by spaces.

metal.media.omega vector of Real

The values of ω k for each of the metals must be entered in a single line and separated by spaces.

For multiple resonance metals enter first the numbers for the first metal, then for the second metal,

and so on.

metal.media.alpha vector of Real

The values of α k for each of the metals must be entered in a single line and separated by spaces.

For multiple resonance metals enter first the numbers for the first metal, then for the second metal,

and so on.

metal.media.delta vector of Real

The values of δ k for each of the metals must be entered in a single line and separated by spaces.

For multiple resonance metals enter first the numbers for the first metal, then for the second metal,

and so on.

metal.media.epsilon vector of Real

The values of ε k for each of the metals must be entered in a single line and separated by spaces.

For multiple resonance metals enter first the numbers for the first metal, then for the second metal,

and so on.

Example

Shapes 2.0 January 12, 2006 8



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

metal.media.number_of_media = 2

metal.media.number_of_terms = 3

#-----------------------------------------------------------------------------

# metal 1 metal 2 (pure Drude)

#-----------------------------------------------------------------------------

# k = 1  k = 2 k = 3  k = 1 k = 2  k = 3

#-----------------------------------------------------------------------------

metal.media.epsilon_infty = 2.36461 2.36461

metal.media.omega = 0.66285 0.33229 0.39318 0.66285 0 0

metal.media.alpha = 0 1 1 0 0 0

metal.media.delta = 0.00429 0.06393 0.10576 0.00429 0 0

metal.media.epsilon = 1 0.31504 0.86805 1 0 0

#-----------------------------------------------------------------------------

The actual values must be given in natural units. This is not hard to do because ε∞, ε k , α k and δ k

are all unit-less. So they can be evaluated in any units and whatever comes out can be typed into

the shapes input file right away. The only quantities that have to be converted are the omegas. And

here the rule is as follows. I demonstrated how to evaluate the length of the natural unit of time in

seconds above. Let us call this number ∆t. Let us call a frequency expressed in terms of the natu-

ral unit of time ω∆t and frequency expressed in Herz (1/s) ω s. Then

ω∆t = ω s

1

s
= ω s

1

s



∆t

∆t




= ω s


∆t

s




1

∆t
In other words, all that needs to be done is to multiply ω s by ∆t/s, which is the length of the natu-

ral unit of time in seconds.

The next subgroup of parameters, metal.mask, tells shapes where we do not want to have any metal. It can

be useful sometimes to define media layout in terms of masks. A mask is defined by a combination of basic

shapes the program knows how to handle. These are rectangles (here for historic reasons called boxes) tri-

angles and circles (here for historic reasons called cylinders). The user may define any number of these

including none. Wherever a mask figure is declared shapes will not put any metal there. The figures may

overlap.

The keywords in this subgroup are as follows.

metal.mask.boxes.number int

Number of mask boxes that are going to be defined.

metal.mask.boxes.x_lo vector of Real

metal.mask.boxes.y_lo vector of Real

x and y coordinates of the lower left corners of the boxes. Each vector must contain

metal.mask.boxes.number of elements.

metal.mask.boxes.x_hi vector of Real

metal.mask.boxes.y_hi vector of Real

x and y coordinates of the upper right corners of the boxes. Each vector must contain

metal.mask.boxes.number of elements.

metal.mask.cylinders.number int

Number of mask cylinders that are going to be defined.

metal.mask.cylinders.xc vector of Real

metal.mask.cylinders.yc vector of Real

x and y coordinates of the centers of the cylinders. Each vector must contain metal.mask.cylin-

ders.number of elements.

metal.mask.cylinders.rc vector of Real

Radii of the cylinders. Each vector must contain metal.mask.cylinders.number of elements.

Shapes 2.0 January 12, 2006 9



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

metal.mask.rings.number int

Number of mask rings that are going to be defined.

metal.mask.rings.xc vector of Real

metal.mask.rings.yc vector of Real

x and y coordinates of the centers of the rings. Each vector must contain metal.mask.rings.num-

ber of elements.

metal.mask.rings.r_lo vector of Real

metal.mask.rings.r_hi vector of Real

Low and high radii of the rings. Each vector must contain metal.mask.rings.number of elements.

metal.mask.ellipses.number int

Number of mask ellipses that are going to be defined.

metal.mask.ellipses.xa vector of Real

metal.mask.ellipses.ya vector of Real

x and y coordinates of the first focus of the ellipses. Each vector must contain

metal.mask.ellipses.number of elements.

metal.mask.ellipses.xb vector of Real

metal.mask.ellipses.yb vector of Real

x and y coordinates of the second focus of the ellipses. Each vector must contain

metal.mask.ellipses.number of elements.

metal.mask.ellipses.sum vector of Real

The sum of distances between the point on the circumference of the ellipse and the two foci, i.e.,

S(x, y) = √  (x − xa)2 + (y − ya)2 + √  (x − xb)2 + (y − yb)2

metal.mask.triangles.number int

Number of triangles that are going to be defined.

metal.mask.triangles.xa vector of Real

metal.mask.triangles.ya vector of Real

x and y coordinates of point A of each triangle. Each vector must contain metal.mask.trian-

gles.number of elements.

metal.mask.triangles.xb vector of Real

metal.mask.triangles.yb vector of Real

x and y coordinates of point B of each triangle. Each vector must contain metal.mask.trian-

gles.number of elements.

metal.mask.triangles.xc vector of Real

metal.mask.triangles.yc vector of Real

x and y coordinates of point C of each triangle. Each vector must contain metal.mask.trian-

gles.number of elements.

Example

metal.mask.boxes.number = 2

metal.mask.boxes.x_lo = 30 60

metal.mask.boxes.y_lo = 30 30

metal.mask.boxes.x_hi = 40 70

metal.mask.boxes.y_hi = 70 70

#

metal.mask.cylinders.number = 3

metal.mask.cylinders.xc = 50 60 70

Shapes 2.0 January 12, 2006 10



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

metal.mask.cylinders.yc = 50 60 70

metal.mask.cylinders.rc = 10 5 5

#

metal.mask.triangles.number = 2

metal.mask.triangles.xa = 30 40

metal.mask.triangles.ya = 30 30

metal.mask.triangles.xb = 70 80

metal.mask.triangles.yb = 30 30

metal.mask.triangles.xc = 50 60

metal.mask.triangles.yc = 70 70

Here we have 2 boxes, 3 circles and 2 triangles. The first box is defined by two points, (30, 30) and

(40, 70). The second box is defined by points (6 0, 30) and (70, 70). The first of the three circles has

its center at (5 0, 50) and radius 10. The second circle has its center at (6 0, 60) and radius 5 and the

third circle has its center at (70, 70) and radius 5. We also have two triangles that actually overlap.

The first one is defined by three points A = (3 0, 30), B = (70, 30) and C = (5 0, 70), and the second

one is defined by A = (40, 30), B = (8 0, 30) and C = (6 0, 70).

To kill the mask it is sufficient to just set the numbers of mask boxes, cylinders and triangles to zeros, leav-

ing the coordinates unchanged.

The last subgroup of the metal group lets us specify where we do want a metal and what kind of metal. The

semantics are very similar to the mask definition semantics with two differences: (1) we skip the word mask

and (2) there is an additional keyword for each of the figures that specifies the medium number, where the

medium number is as defined in the media definition section above.

The actual keywords are as follows.

metal.boxes.number int

metal.boxes.x_lo vector of Real

metal.boxes.y_lo vector of Real

metal.boxes.x_hi vector of Real

metal.boxes.y_hi vector of Real

metal.boxes.medium vector of int

metal.cylinders.number int

metal.cylinders.xc vector of Real

metal.cylinders.yc vector of Real

metal.cylinders.rc vector of Real

metal.cylinders.medium vector of int

metal.rings.number int

metal.rings.xc vector of Real

metal.rings.yc vector of Real

metal.rings.r_lo vector of Real

metal.rings.r_hi vector of Real

metal.rings.medium vector of int

metal.ellipses.number int

metal.ellipses.xa vector of Real

metal.ellipses.ya vector of Real

Shapes 2.0 January 12, 2006 11



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

metal.ellipses.xb vector of Real

metal.ellipses.yb vector of Real

metal.ellipses.sum vector of Real

metal.ellipses.medium vector of int

metal.triangles.number int

metal.triangles.xa vector of Real

metal.triangles.ya vector of Real

metal.triangles.xb vector of Real

metal.triangles.yb vector of Real

metal.triangles.xc vector of Real

metal.triangles.yc vector of Real

metal.triangles.medium vector of int

Example

metal.cylinders.number = 3

metal.cylinders.xc = 20 40 70

metal.cylinders.yc = 20 40 70

metal.cylinders.rc = 5 5 10

metal.cylinders.medium = 1 2 1

Here we have 3 circles defined. The first one is centered at (2 0, 20), its radius is 5 and it is made of

metal number 1. The second circle is centered at (40, 40), its radius is 5 and it is made of metal

number 2. Finally, the third circle is centered at (70, 70), its radius is 10 and its made of metal num-

ber 1.

Different figures may overlap. If two figures representing different metals overlap, the last one wins in

terms of metal assignment. If figures are of different shapes then cylinders win over boxes and triangles win

over cylinders. A mask always wins over any metal shape. This is why it is called a mask.

The tag group

The next two groups, i.e., the tag group and the refine group are related to each other and relevant only if a

construction of a multi-grid has been requested.

Program shapes can be run in a single level mode, i.e., without the multi-grid, and this is always preferable.

The reason for this is that (1) computation on a multi-grid is costly and (2) multi-grid introduces noise and

instabilities.

So why bother with a multi-grid at all? Well, sometimes it is useful. It is useful when we need very high

resolution at certain locations only and when it would be prohibitively costly to impose the same resolution

on the whole computational domain. Admittedly this is seldom the case in 2 dimensions, which is why

multi-grid in this 2-dimensional version of shapes is a bit of an overkill. But this happens more often in 3

dimensions and this code is a prelude to a 3 dimensional code that is yet to follow.

A multi-grid can be generated dynamically - this is the Adaptive Mesh Refinement (AMR) technique, or

statically. AMR is not really necessary for the type of problems that shapes is designed to simulate, but it is

available. A static generation of a multi-grid is preferable and results in cheaper time-stepping, because

regridding is a very expensive procedure. It is also possible to have a combination of static and dynamic

multi-gridding in shapes.

Multi-gridding works by generating progressively finer meshes in selected locations. The meshes are

organized into a vector with each mesh referred to as a level. Lev el 0 is the coarsest mesh that is defined in

the level0 group. Then we have lev el 1, which must be embedded entirely within level 0, lev el 2, which

must be embedded entirely within level 1, and so on. The levels sit inside each other like Russian dolls.

Each level may consist of disconnected patches.

Shapes 2.0 January 12, 2006 12



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

The procedures that build a multi-grid work by looking at level 0 grid cells first and tagging them for refine-

ment if need be. The cells get refined, generating a level 1 grid in the process. The procedures are then

repeated within the level 1 grid, tagging its cells and refining them so as to generate level 2 grid, and so on

until the whole hierarchy of grids is built. The hierarchy stops when the maximum desired number of levels

is reached. This number is passed through the following keyword.

tag.max_number_of_levels int

Setting this number to 1 disables the multi-grid building procedure and multi-grid computations.

If multi-gridding has been requested by setting tag.max_number_of_levels to, say, 3  or 4, then the multi-

grid generation procedures look at the next three keywords.

tag.on_location int

tag.on_diffs int

tag.on_values int

Each of these is a logical switch. When set to zero it disables tagging on location or on diffs or on values.

When set to one it enables tagging. When all these switches are set to zero then no multi-grid is built, even

if tag.max_number_of_levels is greater than 1.

Tagging on location means that cells are tagged for refinement depending on where they are. Tagging on

diffs means that cells are tagged for refinement if energy density in the cells changes faster than a certain

threshold value. Tagging on values means that cells are tagged for refinement if energy density in the cells

exceeds a certain threshold value.

When tagging on diffs or on values is on, then the user must provide vectors of thresholds, i.e., a vector of

values that will be used as thresholds within subsequent levels. The keywords here are

tag.diff_thresholds vector of Real

tag.value_thresholds vector of Real

Example

tag.max_number_of_levels = 4

tag.on_diffs = 1

tag.diff_thresholds = 0.02 0.05 0.08

tag.on_values = 1

tag.value_thresholds = 0.03 0.08 0.12

In this example we have requested 4 levels, level 0, lev el 1, lev el 2 and level 3. We hav e also

requested that tagging cells for refinement be done by looking at how fast energy density changes

within the cells and how large the value of energy density actually is. And so, cells of level 0 will

be tagged if energy density within the cell changes by 0.02 within ∆t0. Cells of level 1 will be

tagged if energy density within the cell changes by 0.05 within ∆t0 (yes, this is because energy

density is computed for all levels every level 0 time step, ∆t0, only). And, finally, cells of level 2

will be tagged if energy density within the cell changes by 0.08 within ∆t0. Cells within level 3

will not be tagged, because we don’t want level 4. This is why there are only 3 Reals in the vector,

not 4. Additionally cells of level 0 will be tagged for refinement if the value of energy density

within the cell exceeds 0.03, cells of level 1 will be tagged if the value of energy density within the

cell exceeds 0.08 and cells of level 2 will be tagged for refinement if energy density within the cell

exceeds 0.12.

If tagging is also activated on location then the tagging procedures look at the following list of keywords.

tag.mask.boxes.number int

tag.mask.boxes.x_lo vector of Real

tag.mask.boxes.y_lo vector of Real

Shapes 2.0 January 12, 2006 13



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

tag.mask.boxes.x_hi vector of Real

tag.mask.boxes.y_hi vector of Real

tag.mask.cylinders.number int

tag.mask.cylinders.xc vector of Real

tag.mask.cylinders.yc vector of Real

tag.mask.cylinders.rc vector of Real

tag.mask.triangles.number int

tag.mask.triangles.xa vector of Real

tag.mask.triangles.ya vector of Real

tag.mask.triangles.xb vector of Real

tag.mask.triangles.yb vector of Real

tag.mask.triangles.xc vector of Real

tag.mask.triangles.yc vector of Real

tag.boxes.number int

tag.boxes.x_lo vector of Real

tag.boxes.y_lo vector of Real

tag.boxes.x_hi vector of Real

tag.boxes.y_hi vector of Real

tag.cylinders.number int

tag.cylinders.xc vector of Real

tag.cylinders.yc vector of Real

tag.cylinders.rc vector of Real

tag.triangles.number int

tag.triangles.xa vector of Real

tag.triangles.ya vector of Real

tag.triangles.xb vector of Real

tag.triangles.yb vector of Real

tag.triangles.xc vector of Real

tag.triangles.yc vector of Real

The semantics of these constructs are identical to the semantics of similar constructs discussed in the sec-

tion about the metal group. But here, instead of applying metals, we apply subgridding. As was the case

with metals, applying a tag mask disables the generation of a sub-grid in this area. The mask always wins

over other shapes.

Observe that if tag.boxes.number, tag.cylinders.number and tag.triangles.number are all zero then no on

location tagging will be performed, even if tag.on_location is one.

The refine group

Once the cells of a given lev el hav e been tagged they need to be refined. shapes uses a fixed refinement

ratio of 2, i.e., the distance between adjacent nodes of level n is equal to half the distance between adjacent

nodes of level n −1. The time refinement between adjacent levels is 3, i.e., the time step used in level n is

equal to one third of the time step used in level n −1, unless the user has requested the same time step for

all levels explicitly by switching off the iterate.use_substep option.

Shapes 2.0 January 12, 2006 14



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

There are four parameters in the refine group that can be used to provide additional specifications as to how

the refinement should be done.

refine.fill_ratio Real

This parameter tells Chombo how tightly to wrap subgrids around the shapes provided by the user.

The generated subgrids will be tightest when this parameter is set to 1.0. But this may produce a

large number of very small boxes of grid points on top of some larger boxes. The boxes of grid

points we are talking about here are the atomic unit of Chombo parallelization. Each CPU gets

either nothing or a box of grid points to work on or several boxes. If some boxes are very small

and other very large, some CPUs may get very little work whereas other CPUs may get over-

loaded. The fit will be most relaxed, i.e., the grids will be oversized and boxes will be large, when

this parameter is set to 0.0. Setting it to, e.g., 0.5, results in a pretty oversized and relaxed grid

already. I seldom use anything lower than 0.8.

refine.block_factor int

This is the smallest size of a box, in the generated grid cells, that Chombo will use when building

a refined grid. From my experience - this number should be a power of 2. If set to, e.g., 3, 5 or 10

it may result in a subgrid build failure. When set, e.g., to 4, the smallest box that Chombo is going

to generate will be 4x4.

refine.buffer_size int

This parameter tells Chombo how deep to nest a finer level within a coarser level. The distance

between, say, lev el 3 border and level 2 border will be refine.buffer_size level 2 cells.

refine.max_size int

The maximum size of a box that is going to be generated. When set, e.g., to 100, the largest boxes

that Chombo is going to generate will be 100 ×100.

Example

refine.fill_ratio = 1.0

refine.block_factor = 2

refine.buffer_size = 8

refine.max_size = 50

The meaning of this input is as follows. Generate subgrids as tight as you can around the shapes

provided. Let the smaller boxes in the generated sub-grids be 2 × 2 and the largest ones 50 × 50.

Generate an 8-cell wide margin between the borders of adjacent levels.

The spectral group

shapes will calculate spectral response for E x , E y, Hz and energy density, (H2 + E2)/2, on request, for any

number of frequencies ω . This is done by running the following summations and evaluating the amplitude

and the phase angle of the response for a selected field f (x, y, t):

f̂r(x, y, ω) =
k=n

k=1
Σ f (x, y, tk) cos(ω tk)∆t

f̂i(x, y, ω) =
k=n

k=1
Σ f (x, y, tk) sin(ω tk)∆t




f̂ (x, y, ω)


= √  f̂
2

r (x, y, ω) + f̂
2

i (x, y, ω)

Φ(x, y, ω) = arc tan



f̂i(x, y, ω), f̂r(x, y, ω)



where k is the step number and n is the number of time steps, ∆t, performed so far.

The computation is enabled by setting the

spectral.response int

switch to 1. It is disabled by setting it to 0.

If spectral.response is activated then the user must also specify the number of frequencies and the frequen-

cies themselves.

Shapes 2.0 January 12, 2006 15



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

spectral.number_of_frequencies int

A number of angular frequencies for which the spectral response is to be evaluated.

spectral.frequencies vector of Real

A vector of angular frequencies in natural units for which the spectral response is to be evaluated.

Example

spectral.response = 1

spectral.number_of_frequencies = 4

spectral.frequencies = 0.1570 0.2093 0.3140 0.6280

The frequencies must be provided in the natural units like everything else in the program. Also,

note that they are angular frequencies, i.e., 2π /T , where T is the period of vibration. In the natural

units T of a harmonic wav e is the same as its length λ , so the angular frequency that matches that

of a harmonic wav e of length λ is 2π /λ . In this example, the frequencies are 2π /40, 2π /3 0, 2π /20

and 2π /1 0.

The actual fields for which spectral response is going to be computed are specified in the output group dis-

cussed in the next section. If no fields are specified for spectral response then obviously no spectral

response computations will take place, even if spectral.response is set to 1 and the vector of angular fre-

quencies specified.

The output group

shapes can generate output in HDF5 or Gnuplot formats. The Gnuplot format can be used only in the

sequential version of the program, otherwise Gnuplot format directives are ignored. The HDF5 format can

be used always. shapes can be asked to output data in both formats too.

The keywords used for this are

output.gnuplot int

Set it to 1 to enable Gnuplot output. Set it to 0 to disable Gnuplot output.

output.hdf5 int

Set it to 1 to enable HDF5 output. Set it to 0 to disable HDF5 output.

Disabling both HDF5 and Gnuplot outputs disables all data generation altogether. The program will still

run though and it will print various diagnostics on standard output or on the MPI output files if run in paral-

lel and if such diagnostics have been requested. This mode of operation can be used for debugging.

In the Gnuplot output mode the program generates separate files for each field. The Gnuplot data file names

are as follows

<field_name>_<level_number>_<snapshot_number>.dat

where field_name can be one of

Dx Dy Ex Ey E Hz Energy Distrib_Dx Distrib_Dy

Additionally for the spectral analysis output we have

Ex_amplitude_<frequency> Ex_phase_<frequency>

Ey_amplitude_<frequency> Ey_phase_<frequency>

E_amplitude_<frequency> E_phase_<frequency>

Hz_amplitude_<frequency> Hz_phase_<frequency>

Energy_amplitude_<frequency> Energy_phase_<frequency>

For example Ex_3_074.dat will be a file that contains E x data for level 3 and snapshot 74, whereas

Ex_amplitude_0.1570_3_074.dat will be a file that contains 


Ê x



data at ω = 0. 1570 for level 3 and snap-

shot 74.

The data in the Gnuplot files can be displayed by using the Gnuplot splot command. For example

set xrange[10:90]

set yrange[10:90]

Shapes 2.0 January 12, 2006 16



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

splot "Ex_0_074.dat" with lines

Gnuplot data files contain extensive annotations in the headers, in which the full computational system is

described. For example

# program: shapes, function: write_gnuplot_data

# header:

# program author: Zdzislaw (Gustav) Meglicki, Indiana University

# @Id: shapes.cpp,v 1.21 2005/12/22 18:41:29 gustav Exp @

# @Id: shapes.h,v 1.64 2005/12/17 23:41:59 gustav Exp @

# @Id: levels.cpp,v 1.88 2005/12/22 22:14:34 gustav Exp @

# @Id: io.cpp,v 1.18 2005/12/22 17:37:10 gustav Exp @

# @Id: update.f,v 1.42 2005/12/18 18:41:10 gustav Exp @

# system kernel: CYGWIN_NT-5.1.1.5.18(0.132/4/2).2005-07-02 20:30

# machine: i686

# node: woodlands

# time of dump: Thu Dec 22 18:25:35 2005

# Signal injection group:

# x_lo: 20.000000

# y_lo: 20.000000

# x_hi: 80.000000

# y_hi: 80.000000

# mode: 7 (Gaussian envelope quadratic chirp)

# t0: 300.000000

# lambda: 10.000000

# sigma: 60.000000

# alpha: 0.000000

# beta: 0.001200

# vx: -1.000000

# vy: 0.000000

# Media group:

# No media defined

# Data group:

# data for: Hz

# level: 0

# label: 173

# time_e: 346.000000

# time_h: 346.062500

# delta_t: 0.125000

# delta_t_0: 0.125000

# xmin: 0.000000

# xmin_0: 0.000000

# xmax: 99.500000

# xmax_0: 99.500000

# ymin: 0.000000

# ymin_0: 0.000000

# ymax: 99.500000

# ymax_0: 99.500000

# delta_x: 0.500000

# delta_x_0: 0.500000

# delta_y: 0.500000

# delta_y_0: 0.500000

# data minimum: -1.010560

# global minimum: -1.010560

# data maximum: 1.011332

Shapes 2.0 January 12, 2006 17



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

# global maximum: 1.011332

# data:

# x: y: Hz:

-0.500 -0.500 0.00000

0.000 -0.500 0.00000

0.500 -0.500 0.00000

...

Gnuplot data files can be converted to GIF animations as follows.

1. For each data file from the series to be animated, e.g., Hz_0_005.dat set Gnuplot terminal to png,

set Gnuplot output to Hz_0_005.png, define a title for the plot and then splot the data file. Gnuplot

will write an image in the png format on Hz_0_005.png.

2. Convert each png image first to the gd2 image with pngtogd2 and then convert it to a gif file with

gd2togif.

3. Finally assemble all the gif files into a movie by calling gifsicle, for example

gifsicle --delay 20 --loopcount Hz_0_[0-9][0-9][0-9].gif > Hz_0_movie.gif

There are three scripts provided with the source in the script subdirectory, dattomovie.sh, write_gif_files.sh

and pngtomovie.sh, that show how to automate this process.

HDF5 data files collate all fields selected for a given snapshot at all levels on a single file called

fields_<snapshot_number>.hdf5. The field data is written first in a special machine independent IEEE

approved format, not as text, and it is additionally compressed, so the files take much, much less space than

Gnuplot files, which are all plain, human readable text files and are therefore huge. On the other hand

extracting data from the HDF5 files and doing anything with it is a major pain. A special tool called Chom-

boVis must be used to post-process and visualize data from the HDF5 files dumped by shapes. HDF5 files

contain some additional information in the headers, but not as much as Gnuplot files. This may change in

future versions of the program. There should be no side-effects to this change.

Now we get to specify the actual fields that are dumped. This is done by the following keywords.

output.Dx int

Output the Dx field. 1 enables, 0 disables. The Dx field is dumped for the centers of the cells, not

for the sides, where it resides during the computations. This means that it is space interpolated

between Dx(x, y − ∆y/2) and Dx(x, y + ∆y/2) before dumping.

output.Dy int

Output the Dy field. 1 enables, 0 disables. The Dy field is dumped for the centers of the cells, not

for the sides, where it resides during the computations. This means that it is space interpolated

between Dy(x − ∆x/2, y) and Dx(x + ∆x/2, y) before dumping.

output.Ex int

Output the E x field. 1 enables, 0 disables. This field is space interpolated before dumping the

same way as Dx .

output.Ey int

Output the E y field. 1 enables, 0 disables. This field is space interpolated before dumping the

same way as Dy.

output.E int

Ouput the E = √  E2
x + E2

y field. 1 enables, 0 disables.

output.Hz int

Output the Hz field. 1 enables, 0 disables. The Hz field is output for the same time slice as the
→
E

field. The data is actually interpolated between Hz(t − ∆t/2) and Hz(t + ∆t/2) prior to the dump.

output.Energy int

Ouput the energy density. 1 enables, 0 disables. The energy density is output for the same time

slice as the
→
E field. Time interpolated Hz data (see above) is used in the computation. It is also

Shapes 2.0 January 12, 2006 18



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

output for the centers of the cells, so that space interpolated
→
E data is used in the computation.

output.Distrib_Dx int

Output the distribution of metal on the Dx grid sites. 1 enables, 0 disables. Because the distribu-

tion of metal does not change with time, it is pointless to dump it for every snapshot. This option is

meant to be used for initial runs only. Once the user is happy with the metal distribution and can

get the picture, this option should be disabled.

output.Distrib_Dy int

Output the distribution of metal on the Dy grid sites. 1 enables, 0 disables. Same comments apply.

output.Ex_ft int

Output the Ê x field for frequencies specified by the spectral.frequencies vector. 1 enables, 0 dis-

ables. Cell centered E x data is used in this computation.

output.Ey_ft int

Output the Ê y field for frequencies specified by the spectral.frequencies vector. 1 enables, 0 dis-

ables. Cell centered E y data is used in this computation.

output.E_ft int

Output the Ê field for frequencies specified by the spectral.frequencies vector. 1 enables, 0 dis-

ables.

output.Hz_ft int

Output the Ĥz field for frequencies specified by the spectral.frequencies vector. 1 enables, 0 dis-

ables. Time centered Hz data is used in this computation.

output.Energy_ft int

Output the energy density spectral response field for frequencies specified by the spectral.frequen-

cies vector. 1 enables, 0 disables. Cell and time centered data is used in this computation.

output.tags int

Output cells tagged for refinment. This option works with Gnuplot output only. 1 enables, 0 dis-

ables.

output.boxes int

Output subgrids. This option works with Gnuplot output only. Subgrids are always included in the

HDF5 output. 1 enables, 0 disables.

output.some_levels_only int

Sometimes we are interested in the highest level only, or in a range of levels. This option enables

(1) or disables (0) such output. If enabled, it must be followed by output.from_level and out-

put.to_level keywords.

output.from_level int

When output.some_levels_only is activated dump levels beginning with this one (inclusive).

output.to_level int

When output.some_levels_only is activated dump levels up to this one (inclusive).

Example

output.gnuplot = 1

output.hdf5 = 0

output.Dx = 0

output.Distrib_Dx = 0

output.Dy = 0

output.Distrib_Dy = 0

output.Ex = 1

output.Ex_ft = 1

output.Ey = 1

output.Ey_ft = 1

Shapes 2.0 January 12, 2006 19



SHAPES(5) Nanophotonics Programmer’s Manual SHAPES(5)

output.Hz = 0

output.Hz_ft = 0

output.Energy = 0

output.Energy_ft = 0

output.tags = 0

output.boxes = 0

output.some_levels_only = 1

output.from_level = 3

output.to_level = 4

Here we have requested Gnuplot style output, but HDF5 output is disabled. We are going to dump

data for
→
E and for its spectral response, but not for

→
H or energy. Only data for levels 3 and 4 will

be dumped. Note that if the program is run in parallel, no data will be dumped at all, because only

HDF5 data can be dumped for parallel runs.

EXAMPLES
Example input files can be found in

/soft/apps/packages/photonic-packages/Confs

NOTES
At this stage the 2-dimensional version of shapes is pretty much complete. I hope to maintain the input file

comptability from this point onwards as small modifications and improvements are made to the program.

BUGS
Some design shortcomings that may be rectified in due course are listed here.

There is no way to specify if a given figure should be used with or without its boundary.

There is no way to specify multiple concentric rings, although a single ring can be specified with a circle

and a mask.

Material (and geometric) parameters cannot be input in eV or SI units.

The keyword cylinders is used instead of circles and boxes is used instead of rectangles.

Very complex layouts may be difficult to input. An interactive graphical user interface could be provided

that would generate a shapes input file automatically.

The HDF5 file headers do not contain as much information as the Gnuplot file headers.

AUTHOR
Zdzislaw (Gustav) Meglicki and his cats, Bambosz and Sofa.

SEE ALSO
shapes(1)

Shapes User Guide

Shapes 2.0 January 12, 2006 20


