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Surrogate-based optimization (SBO) methods have become established as effective tech-
niques for engineering design problems through their ability to tame nonsmoothness and
reduce computational expense. Possible surrogate modeling techniques include data fits
(local, multipoint, or global), multifidelity model hierarchies, and reduced-order models,
and each of these types has unique features when employed within SBO. This paper explores
a number of SBO algorithmic variations and their effect for different surrogate modeling
cases. First, general facilities for constraint management are explored through approx-
imate subproblem formulations (e.g., direct surrogate), constraint relaxation techniques
(e.g., homotopy), merit function selections (e.g., augmented Lagrangian), and iterate ac-
ceptance logic selections (e.g., filter methods). Second, techniques specialized to particular
surrogate types are described. Computational results are presented for sets of algebraic
test problems and an engineering design application solved using the DAKOTA software.

I. Introduction

Optimization methods employing approximation models originated in the 1970’s1 and have proved ex-
tremely popular within the engineering community. Numerous surveys of these methods exist.2,3 However,
many of these methods have been inherently heuristic, lacking the mathematical rigor necessary to have pre-
dictable performance. In particular, they perform well on some problems, yet fail to converge to a minimum
of the original model on others.

In recent years, supporting mathematical theory has been developed to provide the foundation of provable
convergence for a broad class of approximation-based optimization methods. The terms surrogate-based

optimization and model management framework are used to describe these rigorous methods.4,5 Provided
that one employs a sufficiently rigorous globalization approach (e.g., trust region management) and satisfies
first-order consistency between the surrogate model and the underlying truth model, then convergence of
the surrogate-based optimization process to an optimum of the original model can be guaranteeda.

A number of surrogate model selections are possible. First, the surrogate may be of the data fit type,
which is a non-physics-based approximation typically involving interpolation or regression of a set of data
generated from the original model. Data fit surrogates can be further characterized by the number of data
points used in the fit, where local approximations (e.g., first or second-order Taylor series) use data from a
single point, multipoint approximations (e.g., two-point exponential approximations6 (TPEA) or two-point
adaptive nonlinearity approximations7 (TANA)) use a small number of data points often drawn from the
previous iterates of a particular algorithm, and global approximations (e.g., polynomial response surfaces,
kriging, neural networks, radial basis functions, splines) use a set of data points distributed over the domain
of interest, often generated using a design of computer experiments. A second type of surrogate is the model

hierarchy type (also called multifidelity, variable fidelity, variable complexity, etc.). In this case, a model
that is still physics-based but is of lower fidelity (e.g., coarser discretization, reduced element order, relaxed
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solver tolerances, omitted physics) is used as the surrogate in place of the high-fidelity model. A third type of
surrogate model involves reduced-order modeling techniques such as proper orthogonal decomposition (POD)
in computational fluid dynamics (also known as principal components analysis or Karhunen-Loeve in other
fields) or spectral decomposition (also known as modal analysis) in structural dynamics. These surrogate
models are generated directly from a high-fidelity model through the use of a reduced basis (e.g., eigenmodes
for modal analysis or left singular vectors for POD) and projection of the original high-dimensional system
down to a small number of generalized coordinates. These surrogates are still physics-based (and may
therefore have better predictive qualities than data fits), but do not require multiple system models of
varying fidelity (as required for model hierarchy surrogates).

This paper focuses on algorithmic approaches which enable efficient and reliable trust-region surrogate-
based optimization, both in general and for specific surrogate types. In the following sections, important
features of surrogate-based optimization algorithms are described, including approximate subproblem formu-
lation, iterate acceptance logic, merit function selection, constraint relaxation, and convergence assessment.
A number of possible variations within these areas are compared within several computational experiments
and concluding remarks are presented.

II. Surrogate-Based Optimization

A generally-constrained nonlinear programming problem takes the form

minimize f(x)

subject to gl ≤ g(x) ≤ gu

h(x) = ht

xl ≤ x ≤ xu (1)

where x ∈ ℜn is the vector of design variables, and f , g, and h are the objective function, nonlinear
inequality constraints, and nonlinear equality constraints, respectivelyb. Individual nonlinear inequality
and equality constraints are enumerated using i and j, respectively (e.g., gi and hj). The corresponding
surrogate-based optimization (SBO) algorithm may be formulated in several ways. In all cases, SBO solves a
sequence of k approximate optimization subproblems subject to a trust region constraint ∆k; however, many
different forms of the surrogate objectives and constraints in the approximate subproblem can be explored.
In particular, the subproblem objective may be a surrogate of the original objective or a surrogate of a merit
function (most commonly, the Lagrangian or augmented Lagrangian), and the subproblem constraints may
be surrogates of the original constraints, linearized approximations of the surrogate constraints, or may be
omitted entirely. Each of these combinations is shown in Table 1, where black indicates an inappropriate
combination, gray indicates an acceptable combination, and blue indicates a common combination.

Table 1. SBO approximate subproblem formulations.

Original Objective Lagrangian Augmented Lagrangian

No constraints TRAL

Linearized constraints SQP-like

Original constraints Direct surrogate IPTRSAO

Initial approaches to nonlinearly-constrained SBO optimized an approximate merit function which incor-
porated the nonlinear constraints:8,9

minimize Φ̂k(x)

subject to ‖ x − xkc ‖∞ ≤ ∆k (2)

where the surrogate merit function is denoted as Φ̂(x), xc is the center point of the trust region, and the
trust region is truncated at the global variable bounds as needed. The merit function to approximate was
typically chosen to be a standard implementation10–12 of the augmented Lagrangian merit function (see
Eqs. 11–12), where the surrogate augmented Lagrangian is constructed from individual surrogate models

bAny linear constraints are not approximated and may be added without modification to all formulations
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of the objective and constraints (approximate and assemble, rather than assemble and approximate). In
Table 1, this corresponds to row 1, column 3, and is known as the trust-region augmented Lagrangian
(TRAL) approach. While this approach was provably convergent, convergence rates to constrained minima
have been observed to be slowed by the required updating of Lagrange multipliers and penalty parameters.13

Prior to converging these parameters, SBO iterates did not strictly respect constraint boundaries and were
often infeasible. A subsequent approach (IPTRSAO13) that sought to directly address this shortcoming
added explicit surrogate constraints (row 3, column 3 in Table 1):

minimize Φ̂k(x)

subject to gl ≤ ĝk(x) ≤ gu

ĥk(x) = ht

‖ x − xkc ‖∞ ≤ ∆k . (3)

While this approach does address infeasible iterates, it still shares the feature that the surrogate merit
function may reflect inaccurate relative weightings of the objective and constraints prior to convergence of
the Lagrange multipliers and penalty parameters. That is, one may benefit from more feasible intermediate
iterates, but the process may still be slow to converge to optimality. The concept of this approach is similar
to that of SQP-like SBO approaches9 which use linearized constraints:

minimize Φ̂k(x)

subject to gl ≤ ĝk(xkc ) + ∇ĝk(xkc )
T (x − xkc ) ≤ gu

ĥk(xkc ) + ∇ĥk(xkc )
T (x − xkc ) = ht

‖ x − xkc ‖∞ ≤ ∆k . (4)

in that the primary concern is minimizing a composite merit function of the objective and constraints, but
under the restriction that the original problem constraints may not be wildly violated prior to convergence
of Lagrange multiplier estimates. Here, the merit function selection of the Lagrangian function (row 2,
column 2 in Table 1; see also Eq. 10) is most closely related to SQP, which includes the use of first-order
Lagrange multiplier updates (Eq. 16) that should converge more rapidly near a constrained minimizer than
the zeroth-order updates (Eqs. 13-14) used for the augmented Lagrangian.

All of these previous constrained SBO approaches involve a recasting of the approximate subproblem
objective and constraints as a function of the original objective and constraint surrogates. A more direct
approach is to use a formulation of:

minimize f̂k(x)

subject to gl ≤ ĝk(x) ≤ gu

ĥk(x) = ht

‖ x − xkc ‖∞ ≤ ∆k (5)

This approach has been termed the direct surrogate approach since it optimizes surrogates of the original
objective and constraints (row 3, column 1 in Table 1) without any recasting. It is attractive both from its
simplicity and potential for improved performance, assuming that all of the trust region updating machinery
can be rendered compatible with the lack of an explicitly-optimized merit function.

While the formulation of Eq. 2 (and others from row 1 in Table 1) can suffer from infeasible intermediate
iterates and slow convergence to constrained minima, each of the approximate subproblem formulations with
explicit constraints (Eqs. 3-5, and others from rows 2-3 in Table 1) can suffer from the lack of a feasible
solution within the current trust region. Techniques for dealing with this latter challenge involve some form
of constraint relaxation. Homotopy approaches13 or composite step approaches such as Byrd-Omojokun,14

Celis-Dennis-Tapia,15 or MAESTRO9 may be used for this purpose (see Section II.A.4).
After each of the k iterations in the SBO strategy, the predicted step is validated by computing f(xk∗),

g(xk∗), and h(xk∗). One approach forms the trust region ratio ρk which measures the ratio of the actual
improvement to the improvement predicted by optimization on the surrogate model. When optimizing on
an approximate merit function (Eqs. 2–4), the following ratio is natural to compute

ρk =
Φ(xkc ) − Φ(xk∗)

Φ̂(xkc ) − Φ̂(xk∗)
. (6)
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The formulation in Eq. 5 may also form a merit function for computing the trust region ratio; however,
the omission of this merit function from explicit use in the approximate optimization cycles can lead to
synchronization problems with the optimizer. In this case, penalty-free and multiplier-free trust region
ratios (see Section II.A.2) become attractive.

Once computed, the value for ρk can be used to define the step acceptance and the next trust region size
∆k+1 using logic similar to that shown in Table 2. Typical factors for shrinking and expanding are 0.5 and
2.0, respectively, but these as well as the threshold ratio values are tunable parameters in the algorithm. In
addition, the use of discrete thresholds is not required, and continuous relationships using adaptive logic can
also be explored.16,17 Iterate acceptance or rejection completes an SBO cycle, and the cycles are continued
until either soft or hard convergence criteria (see Section II.A.3) are satisfied.

Table 2. Sample trust region ratio logic.

Ratio Value Surrogate Accuracy Iterate Acceptance Trust Region Sizing

ρk ≤ 0 poor reject step shrink

0 < ρk ≤ 0.25 marginal accept step shrink

0.25 < ρk < 0.75 or ρk > 1.25 moderate accept step retain

0.75 ≤ ρk ≤ 1.25 good accept step expandc

A. Constraint Management in SBO

1. Iterate acceptance logic

constraint violation

ob
je

ct
iv

e 
va

lu
e

Figure 1. Depiction of filter
method.

When a surrogate optimization is completed and the approximate solution
has been validated, then the decision must be made to either accept or
reject the step. The traditional approach is to base this decision on the
value of the trust region ratio, as outlined previously in Table 2. An
alternate approach is to utilize a filter method,18 which does not require
penalty parameters or Lagrange multiplier estimates. The basic idea in a
filter method is to apply the concept of Pareto optimality to the objective
function and constraint violations and only accept an iterate if it is not
dominated by any previous iterate. Mathematically, a new iterate is not
dominated if at least one of the following:

either f < f (i) or c < c(i) (7)

is true for all i in the filter, where c is a selected norm of the constraint
violation. This basic description can be augmented with mild require-
ments to prevent point accumulation and assure convergence, known as
a slanting filter.18 Figure 1 illustrates the filter concept, where objective
values are plotted against constraint violation for accepted iterates (blue circles) to define the dominated
region (denoted by the gray lines). A filter method relaxes the common enforcement of monotonicity in
constraint violation reduction and, by allowing more flexibility in acceptable step generation, often allows
the algorithm to be more efficient.

The use of a filter method is compatible with any of the SBO formulations in Eqs. 2–5; however, it is the
latter that is of primary interest. When used with Eq. 5, the only remaining purpose for a merit function is
for managing trust region expansion/retention/contraction when the filter accepts a step. If alternate logic
can be developed for that portion, then the entire SBO algorithm can become penalty and multiplier free. In
Ref. 18, for example, trust region updates are less structured than in Table 2 and only basic logic is provided
(no ρk is used).

cException: retain if xk
∗ in trust region interior for design of experiments-based surrogates (global data fits, S-ROM, global

E-ROM)

4 of 20

American Institute of Aeronautics and Astronautics



2. Merit functions

The merit function Φ(x) used in Eqs. 2-4,6 may be selected to be a penalty function, an adaptive penalty
function, a Lagrangian function, or an augmented Lagrangian function. In each of these cases, the more
flexible inequality and equality constraint formulations with two-sided bounds and targets (Eqs. 1,3-5), have
been converted to a standard form of g(x) ≤ 0 and h(x) = 0 (in Eqs. 8,10-16). The active set of inequality
constraints is denoted as g+.

The penalty function employed in this paper uses a quadratic penalty with the penalty schedule linked
to SBO iteration number

Φ(x, rp) = f(x) + rpg
+(x)Tg+(x) + rph(x)Th(x) (8)

rp = e(k+offset)/10 (9)

The adaptive penalty function is identical in form to Eq. 8, but adapts rp using monotonic increases in the
iteration offset value in order to accept any iterate that reduces the constraint violation.

The Lagrangian merit function is

Φ(x,λg,λh) = f(x) + λTg g+(x) + λThh(x) (10)

for which the Lagrange multiplier estimation is discussed in Section II.A.3. Away from the optimum, it is
possible for the least squares estimates of the Lagrange multipliers for active constraints to be zero, which
equates to omitting the contribution of an active constraint from the merit function. This is undesirable
for tracking SBO progress, so usage of the Lagrangian merit function is normally restricted to approximate
subproblems and hard convergence assessments.

The augmented Lagrangian employed in this paper follows the sign conventions described in Ref. 10

Φ(x,λψ,λh, rp) = f(x) + λTψψ(x) + rpψ(x)Tψ(x) + λThh(x) + rph(x)Th(x) (11)

ψi = max

{

gi,−
λψi

2rp

}

(12)

where ψ(x) is derived from the elimination of slack variables for the inequality constraints. In this case,
simple zeroth-order Lagrange multiplier updates may be used:

λk+1
ψ = λkψ + 2rpψ(x) (13)

λk+1
h = λkh + 2rph(x) (14)

The updating of multipliers and penalties is carefully orchestrated19 to drive reduction in constraint violation
of the iterates. The penalty updates can be more conservative than in Eq. 9, often using an infrequent
application of a constant multiplier rather than a fixed exponential progression.

As mentioned previously, a goal for the formulation in Eq. 5 is to employ a penalty and multiplier free
approach for the merit function and/or trust region logic. A Lagrangian merit function is penalty free and
a penalty merit function is multiplier free, but no merit functions to this point are both. One concept5 is to
bypass the need for a merit function by forming a set of trust region ratios, one for each surrogate function
(f̂ , ĝi, and ĥj). In this case, a single ratio could be determined from the minimum (or average, norm, etc.)
of the set, or a composite step approach could be used with different trust region sizes for the constraint
reduction and objective reduction subproblems.9 Another concept is to utilize a merit function derived from
the filter concept using, for example, metrics of filter area swept out by accepted iterates. This concept will
be investigated further in future work.

3. Convergence assessment

To terminate the SBO process, hard and soft convergence metrics are monitored. It is preferable for SBO
studies to satisfy hard convergence metrics, but this is not always practical (e.g., when gradients are un-
available or unreliable). Therefore, simple soft convergence criteria are also employed which monitor for
diminishing returns (relative improvement in the merit function less than a tolerance for some number of
consecutive iterations).
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To assess hard convergence, one calculates the norm of the projected gradient of a merit function whenever
the feasibility tolerance is satisfied. The best merit function for this purpose is the Lagrangian merit function
from Eq. 10. This requires a least squares estimation for the Lagrange multipliers that best minimize the
projected gradient:

∇xΦ(x,λg,λh) = ∇xf(x) + λTg∇xg
+(x) + λTh∇xh(x) (15)

where gradient portions directed into active global variable bounds have been removed. This can be posed
as a linear least squares problem for the multipliers:

Aλ = −∇xf (16)

where A is the matrix of active constraint gradients, λg is constrained to be non-negative, and λh is
unrestricted in sign. To estimate the multipliers using non-negative and bound-constrained linear least
squares, the NNLS and BVLS routines20 from NETLIB are used, respectively.

4. Constraint relaxation

The goal of constraint relaxation is to achieve efficiency through the balance of feasibility and optimality
when the trust region restrictions prevent the location of feasible solutions to constrained approximate
subproblems (Eqs. 3-5, and other formulations from rows 2-3 in Table 1). The SBO algorithm starting from
infeasible points will commonly generate iterates which seek to satisfy feasibility conditions without regard
to objective reduction.21

One approach for achieving this balance is to use relaxed constraints when iterates are infeasible with
respect to the surrogate constraints. We follow Perez, Renaud, and Watson,13 and use a global homotopy

mapping the relaxed constraints and the surrogate constraints. For formulations in Eqs. 3 and 5 (and others
from row 3 in Table 1), the relaxed constraints are defined from

g̃k(x, τ) = ĝk(x) + (1 − τ)bg (17)

h̃k(x, τ) = ĥk(x) + (1 − τ)bh (18)

For Eq. 4 (and others from row 2 in Table 1), the original surrogate constraints ĝk(x) and ĥk(x) in Eqs. 17-
18 are replaced with their linearized forms (ĝk(xkc ) + ∇ĝk(xkc )

T (x − xkc ) and ĥk(xkc ) + ∇ĥk(xkc )
T (x − xkc ),

respectively). The approximate subproblem is then reposed using the relaxed constraints as

minimize f̂k(x) or Φ̂k(x)

subject to gl ≤ g̃k(x, τk) ≤ gu

h̃k(x, τk) = ht

‖ x − xkc ‖∞ ≤ ∆k (19)

in place of the corresponding subproblems in Eqs. 3-5. Alternatively, since the relaxation terms are constants
for the kth iteration, it may be more convenient for the implementation to constrain ĝk(x) and ĥk(x) (or
their linearized forms) subject to relaxed bounds and targets (g̃kl , g̃ku, h̃kt ). The parameter τ is the homotopy
parameter controlling the extent of the relaxation: when τ = 0, the constraints are fully relaxed, and when
τ = 1, the surrogate constraints are recovered. The vectors bg,bh are chosen so that the starting point, x0,
is feasible with respect to the fully relaxed constraints:

gl ≤ g̃0(x0, 0) ≤ gu (20)

h̃0(x0, 0) = ht (21)

At the start of the SBO algorithm, τ0 = 0 if x0 is infeasible with respect to the unrelaxed surrogate
constraints; otherwise τ0 = 1 (i.e., no constraint relaxation is used). At the start of the kth SBO iteration
where τk−1 < 1, τk is determined by solving the subproblem

maximize τk

subject to gl ≤ g̃k(x, τk) ≤ gu

h̃k(x, τk) = ht

‖ x − xkc ‖∞ ≤ ∆k

τk ≥ 0 (22)
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starting at (xk−1
∗ , τk−1), and then adjusted as follows:

τk = min
{

1, τk−1 + α
(

τkmax − τk−1
)}

(23)

The adjustment parameter 0 < α < 1 is chosen so that that the feasible region with respect to the relaxed
constraints has positive volume within the trust region. Determining the optimal value for α remains an
open question and will be explored in future work.

After τk is determined using this procedure, the problem in Eq. 19 is solved for xk∗. If the step is accepted,
then the value of τk is updated using the current iterate xk∗ and the validated constraints g(xk∗) and h(xk∗):

τk = min

{

1,min
i
τi,min

j
τj

}

(24)

where

τi = 1 +
min

{

gi(x
k
∗) − gli , gui

− gi(x
k
∗)

}

bgi

(25)

τj = 1 −
|hj(x

k
∗) − htj |

bhj

(26)

Figure 2. Illustration of SBO iter-
ates using surrogate (red) and relaxed
(blue) constraints.

Figure 2 illustrates the SBO algorithm on a two-dimensional
problem with one inequality constraint starting from an infeasible
point, x0. The minimizer of the problem is denoted as x∗. Iterates
generated using the surrogate constraints are shown in red, where
feasibility is achieved first, and then progress is made toward the
optimal point. The iterates generated using the relaxed constraints
are shown in blue, where a balance of satisfying feasibility and op-
timality has been achieved, leading to fewer overall SBO iterations.

The behavior illustrated in Fig. 2 is an example where using the
relaxed constraints over the surrogate constraints may improve the
overall performance of the SBO algorithm by reducing the number of
iterations performed. This improvement comes at the cost of solving
the minimization subproblem in Eq. 22, which can be significant in
some cases (i.e., when the cost of evaluating ĝk(x) and ĥk(x) is not negligible, such as with multifidelity or
ROM surrogates). As shown in the numerical experiments involving the Barnes problem presented at the
end of this paper, the directions toward constraint violation reduction and objective function reduction may
be in opposing directions. In such cases, the use of the relaxed constraints may result in an increase in the
overall number of SBO iterations since feasibility must ultimately take precedence.

B. Surrogate Corrections

Surrogate correction approaches are closely related to data fit surrogates. As with data fits, correction
approaches may be local, multipoint, or global. Local corrections are derived by generating Taylor series
approximations to the ratio or difference between surrogate and original models. A multipoint correction
(Eq. 29) can combine additive and multiplicative local corrections in order to satisfy an additional matching
condition at a previous design iterate. Finally, global corrections use global data fit surrogates to model
the relationship (difference or ratio) between surrogate and original models at distributed sets of points. A
benefit to this latter approach is that the relationship between two model fidelities can tend to be more linear
or well-behaved than the models themselves. However, the consistency enforcement with global correction
approaches is often zeroth-order (e.g., kriging) or worse (e.g., polynomial regression), which falls short of
satisfying the requirements of the provable convergence theory. For each of these correction approaches, the
correction is applied to the surrogate model which is then interfaced with the optimization algorithm for
search over the current trust region.

The simplest correction approaches are those that enforce consistency in function values between the
surrogate and original models at a single point in parameter space through use of a simple scalar offset or
scaling applied to the low-fidelity model. These zeroth-order approaches are limited and are insufficient to
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guarantee SBO convergence. First-order corrections such as the first-order multiplicative correction (also
known as beta correction22) and the first-order additive correction23 provide a much more substantial cor-
rection capability and are sufficient for ensuring provable convergence of SBO algorithms. However, the
convergence rates can be similar to those achieved by first-order optimization methods such as steepest-
descent or sequential linear programming. More efficient optimization methods use at least approximate
second-order information to achieve super-linear or quadratic convergence rates in the neighborhood of the
minimum, and one would expect the same principle to hold for correction approaches within SBO methods.
In Ref. 24, the benefits of second-order additive, multiplicative, and combined corrections were demonstrated
using analytic, finite-difference, and quasi-Newton Hessians.

Correcting surrogate models with additive corrections involves

ˆfhiα(x) = flo(x) + α(x) (27)

where multifidelity notation has been adopted for clarity. For multiplicative approaches, corrections take the
form

ˆfhiβ (x) = flo(x)β(x) (28)

where, for local corrections, α(x) and β(x) are first or second-order Taylor series approximations to the exact
correction functions.

A combination of additive and multiplicative corrections can provide for additional flexibility in mini-
mizing the impact of the correction away from the trust region center. In other words, both additive and
multiplicative corrections can satisfy local consistency, but through the combination, global accuracy can be
addressed as well. This involves a convex combination of the additive and multiplicative corrections:

ˆfhiγ (x) = γ ˆfhiα(x) + (1 − γ) ˆfhiβ (x) (29)

where γ is calculated to satisfy an additional matching condition, such as matching values at the previous
design iterate.

C. SBO with Data Fits

Figure 3. SBO iteration progres-
sion for global data fits.

When performing SBO with local, multipoint, and global data fit surro-
gates, it is necessary to regenerate or update the data fit for each new
trust region.

In the global data fit case, this can mean performing a new design of
experiments on the original high-fidelity model for each trust region, which
can effectively limit the approach to use on problems with, at most, tens
of variables. Figure 3 displays this case. However, an important benefit of
the global sampling is that the global data fits can tame poorly-behaved,
nonsmooth, discontinuous response variations within the original model
into smooth, differentiable, easily navigated surrogates. This allows SBO
with global data fits to extract the relevant global design trends from
noisy simulation data.

When enforcing local consistency between a global data fit surrogate
and a high-fidelity model at a point, care must be taken to balance this
local consistency requirement with the global accuracy of the surrogate.
In particular, performing a correction on an existing global data fit in
order to enforce local consistency can skew the data fit and destroy its
global accuracy. One approach for achieving this balance is to include the consistency requirement within the
data fit process by constraining the global data fit calculation (e.g., using constrained linear least squares).
This allows the data fit to satisfy the consistency requirement while still addressing global accuracy with
its remaining degrees of freedom. Embedding the consistency within the data fit also reduces the sampling
requirements. For example, a quadratic polynomial normally requires at least (n+ 1)(n+ 2)/2 samples for
n variables to perform the fit. However, with embedded first-order consistency constraints, the minimum
number of samples is reduced by n+1 to (n2 +n)/2. This corresponds to defining the terms of a symmetric
Hessian matrix and points to an alternate approach. Rather than enforcing consistency through constrained
least squares, one can embed consistency directly by employing a Taylor series centered at the point of
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local consistency enforcement and globally estimating the higher order terms. In the quadratic polynomial
example, a second-order Taylor series with globally estimated Hessian terms requires the same (n2 + n)/2
samples and directly satisfies first-order consistency. To further reduce sampling requirements in this case,
one can choose to perform only partial updates (e.g., the diagonal) of the Hessian matrix.25

In the local and multipoint data fit cases, the iteration progression will appear as in Fig. 4. Both cases
involve a single new evaluation of the original high-fidelity model per trust region, with the distinction that
multipoint approximations reuse information from previous SBO iterates. Like model hierarchy surrogates,
these techniques scale to larger numbers of design variables. Unlike model hierarchy surrogates, they generally
do not require surrogate corrections, since the matching conditions are embedded in the surrogate form (as
discussed for the global Taylor series approach above). The primary disadvantage to these surrogates is that
the region of accuracy tends to be smaller than for global data fits and multifidelity surrogates, requiring
more SBO cycles with smaller trust regions.

D. SBO with Model Hierarchies

Figure 4. SBO iteration progres-
sion for model hierarchies.

When performing SBO with model hierarchies, the low-fidelity model is
normally fixed, requiring only a single high-fidelity evaluation to com-
pute a new correction for each new trust region. Figure 4 displays this
case. This renders the multifidelity SBO technique more scalable to larger
numbers of design variables since the number of high-fidelity evaluations
per iteration (assuming no finite differencing for derivatives) is indepen-
dent of the scale of the design problem. However, the ability to smooth
poorly-behaved response variations in the high-fidelity model is lost, and
the technique becomes dependent on having a well-behaved low-fidelity
model. In addition, the parameterizations for the low and high-fidelity
models may differ, requiring the use of a mapping between these param-
eterizations. Space mapping, corrected space mapping, POD mapping,
and hybrid POD space mapping are being explored for this purpose.26,27

When applying corrections to the low-fidelity model, there is no con-
cern for balancing global accuracy with the local consistency requirements.
However, with only a single high-fidelity model evaluation at the center
of each trust region, it is critical to use the best correction possible on the
low-fidelity model in order to achieve rapid convergence rates to the optimum of the high-fidelity model.24

E. SBO with Reduced Order Models

When performing SBO with reduced-order models (ROMs), the ROM is mathematically generated from the
high-fidelity model. A critical issue in this ROM generation is the ability to capture the effect of parametric
changes within the ROM. Two approaches to ROM generation are extended ROM (E-ROM) and spanning
ROM (S-ROM) techniques.28 Closely related techniques include tensor singular value decomposition meth-
ods.29 In the single-point and multipoint E-ROM cases, the SBO iteration can appear as in Fig. 4, whereas
in the S-ROM and global E-ROM cases, the SBO iteration will appear as in Fig. 3. In addition to the
high-fidelity model analysis requirements, procedures for updating the system matrices and basis vectors are
also required.

Relative to data fits and multifidelity models, ROMs have some attractive advantages. Compared to
data fits such as regression-based polynomial models, they are more physics-based and would be expected
to be more predictive (e.g., in extrapolating away from the immediate data). Compared to multifidelity
models, ROMS may be more practical in that they do not require multiple computational models or meshes
which are not always available. The primary disadvantage is potential invasiveness to the simulation code
for projecting the system using the reduced basis.

III. Computational Experiments

The following computational experiments have been performed using the trust-region surrogate-based
optimization implementation in the DAKOTA open-source software toolkit.30 The intent is to compare the

9 of 20

American Institute of Aeronautics and Astronautics



performance of SBO using different constraint management techniques (approximate subproblem, merit func-
tion, iterate acceptance, and constraint relaxation approaches) applied to the data fit and model hierarchy
cases.

A. Experiments with Data Fits

1. Barnes Problem

The Barnes problem31 is a test problem with 2 continuous design variables and 3 nonlinear inequality
constraints. A plot of the contours of the function along with the constraints is shown in Fig. 5a; the feasible
region is the region in the center of the plot. At the local constrained minimum at the bottom of Fig. 5a,
only one inequality constraint is active, which requires exact opposition of objective and constraint gradients
for hard convergence.

Two sets of experiments were performed using the Barnes function. In the first set of experiments, we
explored the use of the homotopy constraint relaxation over a specified region of the design space. For this
experiment, the approximate subproblem was formulated using the original objective and original constraints,
a filter was used for the iterate acceptance logic, the augmented Lagrangian was used as the merit function,
and global data fits using quadratic polynomials and zeroth-order corrections were used in constructing f̂k,
ĝk, and ĥk. The constraint relaxation used adjustment parameter α = 0.9, the initial size of the trust
region was 10% of the range of the variable bounds, and the basic Lagrangian function was used for hard
convergence assessment.

As an example of the behavior of the SBO algorithm using constraint relaxation, Fig. 5a shows the
iterates generated using the surrogate (red circles) and relaxed (blue circles) constraints starting from the
point (9.2,32). As was illustrated in Fig. 2, the iterates generated using the surrogate constraints move toward
reducing constraint violation first and then toward feasibility. In contrast, the path of the iterates generated
using the relaxed constraints reflects more balanced steps toward constraint satisfaction and optimality,
bending toward the optimal point to which the iterates eventually converge. Although this balance leads to
fewer overall SBO iterations from this particular starting point (12 using the relaxed constraints versus 20
using the surrogate constraints), the use of relaxed constraints does not always lead to such a decrease.

To illustrate this point, two sets of optimization runs were performed each starting from 106 starting
points on a uniform grid on [0, 80] × [0, 80]—one using the surrogate constraints and one using the relaxed
constraints. The differences in the number of SBO iterations (surrogate−relaxed) performed in these two
tests are presented in Fig. 5b. Each colored box represents the difference in the numbers of SBO iterations
performed using the surrogate and relaxed constraints, when each method was started at the point in the
center of the box. Red/yellow boxes denote fewer SBO iterations using the surrogate constraints, blue boxes
denote fewer SBO iterations using the relaxed constraints, and black boxes denote that the same number of
SBO iterations was taken using both the surrogate and relaxed constraints.
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Figure 5. Results of experiments of minimizing the Barnes function using SBO with surrogate and relaxed
constraints. Use function evaluations instead of iteration counts if possible.
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In the bottom of Fig. 5b, there are two regions where the use of one type of constraints results in fewer
SBO iterations. At points in the predominantly blue region to the left, the direction of the maximum
reduction in constraint violation and the direction of steepest descent with respect to the objective function
are generally different, with the angle between them less than 90◦. As expected, using relaxed constraints
when starting from infeasible points in this region results in more rapid progress toward an optimal point
than when using the original surrogate constraints. Once within the feasible region, the constraint relaxation
becomes inactive and the two formulations are equivalent; however, the improvements while infeasible result
in fewer SBO iterations overall using the relaxed constraints. At points in the predominantly yellow region
to the right, the angle between the two directions is generally greater than 90◦, with many of these pairs
of directions pointing in almost opposite directions. The balance achieved in using the relaxed constraints
results in slower progress toward constraint satisfaction, such that SBO was more efficient when strictly
enforcing the original surrogate constraints. Future work will include investigation into whether the angle
between the two directions can be incorporated into a relaxation criterion (e.g., α) aimed at automatically
accounting for these different scenarios.

We note that the cost per iteration is higher when using constraint relaxation due to an increase in the
number of surrogate function evaluations associated with solving Eq. 22 to update the homotopy parameter
τ . However, for problems where the computational cost of performing surrogate evaluations is negligible
relative to the true model evaluations (e.g., data fit surrogates), constraint relaxation can be significantly
more efficient.

In the second set of experiments, we tested the most sensible combinations of the following constraint man-
agement techniques discussed in Section II: approximate subproblem formulation (augmented Lagrangian,
basic Lagrangian, or original objective; no, linearized, or original constraints), iterate acceptance logic (filter
or trust region ratio), merit function selection (augmented Lagrangian, basic Lagrangian, adaptive penalty,
or basic penalty) and constraint relaxation (no relaxation or homotopy relaxation). For each of these com-
binations, test runs were performed using global surrogates constructed using linear polynomial fits (with
first-order additive correction), local surrogates constructed using first-order Taylor series approximations,
and multipoint approximations constructed using the two-point adaptive nonlinearity approximation (TANA-
3) method. The hard convergence assessment and trust region and constraint relaxation parameters were
the same as those in the first set of experiments.

Table 3 presents the number of true and surrogate (in parentheses) function evaluations performed for
each test combination starting from the feasible starting point (30,40). Combinations where the SBO strategy
failed to converge to a locally optimal solution are denoted by “—.” The most efficient runs are highlighted in
bold in the table, with italicized entries denoting convergence to the global optimum (80,80) in the domain.
The best combinations seem to be those using original/original subproblem formulations and the trust region
ratio for iterate acceptance. Compared to the other surrogates, the use of local Taylor series surrogates was
the most efficient, followed by the TANA-3 multipoint surrogates, followed by the global surrogates. In
the case of the global surrogates, we expect these differences to increase as the number of variables in the
problem increase, but then smooth algebraic test problems do not really showcase the strengths of global
approximations.

We performed the same set of tests starting from two infeasible points, one where using no relaxation
resulted in fewer SBO iterations in the first set of experiments, (65,1), and one where using the homotopy
constraint relaxation resulted in fewer iterations, (10,20). Table 4 shows the results of the tests starting
from the point (65,1). The best combinations for this starting point use TANA-3 surrogates and trust region
ratios for iterate acceptance. As expected, the tests using constraint relaxation from this starting point
required more iterations (and thus more function evaluations) in general than the tests using the surrogates
without relaxation.

Table 5 shows the results from the starting point (10,20). Again, the local Taylor series surrogates
performed the best, but this time the use of constraint relaxation produced the two most efficient runs. In
many cases, it appears that the use of constraint relaxation leads to more efficient solutions. Moreover, more
of the approaches successfully converged to a local minimizer when using constraint relaxation.

The number of formulations that are currently failing to converge is surprising, and indicate the need for
more careful investigation of the failure modes. It is too early to say if the original/original formulation is
as superior as it initially appears in these experiments.
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Table 3. Number of true (surrogate) function evaluations performed in finding a local minimizer for the Barnes
problem starting from the feasible point (30,40). Entries marked with “—” denote runs where the method did
not converge to a local minimizer, and those marked with “×” denote that constraint relaxation was not tested
in cases where the subproblem did not contain constraints. Bold entries denote the most efficient combinations,
and italicized entries denote convergence to the global minimizer (80,80) on the domain.

Global Surrogates Local Surrogates TANA-3 Surrogates

Approx. No Constr. No Constr. No Constr.

Sub. Constr. Merit Accept Relax Relax Relax Relax Relax Relax

Orig. Orig. AL F 508 (271) 508 (310) 58 (221) 58 (241) 192 (375) 192 (375)

R 535 (258) 535 (288) 66 (212) 66 (223) 138 (272) 138 (272)

BL F 350 (204) 350 (241) 40 (169) 40 (189) 192 (311) 192 (311)

R 323 (198) 323 (235) 33 (165) 33 (185) 214 (298) 214 (298)

AP F 384 (217) 383 (254) 43 (179) 43 (199) 192 (311) 192 (311)

R 352 (143) 351 (180) 41 (108) 41 (128) 214 (298) 214 (298)

BP F 362 (209) 362 (246) 42 (173) 42 (193) 192 (311) 192 (311)

R 272 (103) 272 (139) 32 (80) 32 (97) 214 (298) 214 (298)

Lin. AL F — — — — 287 (908) 287 (919)

R — — — — — —

BL F — — — — 206 (442) 206 (455)

R — — — — 206 (574) 206 (587)

AP F — — — — 204 (439) 204 (452)

R — — — — — —

BP F — — — — 201 (433) 201 (446)

R — — — — — —

BL None BL F — × — × — ×

R — × — × — ×

Orig. BL F — — — — 9 (51) 9 (55)

R — — — — 9 (51) 9 (55)

Lin. BL F — — — — — —

R — — — — — —

AL None AL F 37 (32) × 7 (29) × 9 (59) ×

R 37 (32) × 7 (29) × 9 (59) ×

Orig. AL F — — — — 9 (41) 9 (45)

R — — — — — —

Lin. AL F — — — — 201 (1483) 201 (1488)

R — — — — — —

12 of 20

American Institute of Aeronautics and Astronautics



Table 4. Number of true (surrogate) function evaluations performed in finding a local minimizer for the Barnes
problem starting from the infeasible point (65,1). Entries marked with “—” denote runs where the method
did not converge to a local minimizer, and those marked with “×” denote that constraint relaxation was
not tested in cases where the subproblem did not contain constraints. Bold entries denote the most efficient
combinations, and italicized entries denote convergence to the global minimizer (80,80) on the domain.

Global Surrogates Local Surrogates TANA-3 Surrogates

Approx. No Constr. No Constr. No Constr.

Sub. Constr. Merit Accept Relax Relax Relax Relax Relax Relax

Orig. Orig. AL F 593 (270) 618 (365) 73 (219) 93 (417) 205 (379) 164 (365)

R 457 (245) 532 (331) 46 (204) 63 (278) 131 (328) 131 (386)

BL F 308 (151) 345 (187) 38 (124) 44 (153) 216 (248) 169 (295)

R — — — — — —

AP F 359 (192) 427 (308) 40 (160) 48 (264) 111 (205) 169 (295)

R 296 (102) 392 (184) 36 (76) 52 (150) 111 (715) 168 (525)

BP F 327 (186) 364 (247) 37 (155) 45 (216) 183 (288) 165 (282)

R 271 (94) 283 (146) 31 (69) 33 (122) 212 (349) 196 (454)

Lin. AL F — — — — 1002 (6613) 1002 (6647)

R — — — — — —

BL F — — — — 216 (1261) 216 (1298)

R — — — — — —

AP F — — — — 214 (1249) 214 (1285)

R — — — — 20 (97) 20 (133)

BP F — — — — 214 (1249) 214 (1283)

R — — — — 14 (83) 14 (174)

BL None BL F — × — × — ×

R — × — × — ×

Orig. BL F — — — — — —

R — — — — — —

Lin. BL F — — — — — —

R — — — — — —

AL None AL F 49 (63) × 9 (59) × 7 (41) ×

R — × — × 7 (41) ×

Orig. AL F — — — — 11 (85) 11 (110)

R — — — — 11 (85) 11 (110)

Lin. AL F — — — — 192 (853) 192 (867)

R — — — — 159 (1487) 159 (1501)
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Table 5. Number of true (surrogate) function evaluations performed in finding a local minimizer for the Barnes
problem starting from the infeasible point (10,20). Entries marked with “—” denote runs where the method
did not converge to a local minimizer, and those marked with “×” denote that constraint relaxation was
not tested in cases where the subproblem did not contain constraints. Bold entries denote the most efficient
combinations, and italicized entries denote convergence to the global minimizer (80,80) on the domain.

Global Surrogates Local Surrogates TANA-3 Surrogates

Approx. No Constr. No Constr. No Constr.

Sub. Constr. Merit Accept Relax Relax Relax Relax Relax Relax

Orig. Orig. AL F 546 (259) 486 (298) 66 (224) 37 (330) 135 (232) —

R — 578 (293) — 68 (260) 110 (255) 107 (744)

BL F 428 (208) 414 (286) 58 (167) 54 (241) — —

R — — — — — —

AP F 406 (222) 444 (299) 48 (181) 55 (280) — —

R 376 (139) 399 (209) 48 (101) 49 (202) 109 (479) 89 (743)

BP F 431 (238) 383 (274) 51 (206) 44 (240) — 86 (240)

R — 899 (359) — 89 (280) — 103 (842)

Lin. AL F — — — — — —

R — — — — — —

BL F — — — — — —

R — — — — — —

AP F — — — — — —

R — — — — — —

BP F — — — — — —

R — — — — — —

BL None BL F — × — × — ×

R — × — × — ×

Orig. BL F — — — — — —

R — — — — — —

Lin. BL F — — — — — —

R — — — — — —

AL None AL F 49 (56) × 9 (52) × 7 (38) ×

R — × — × — ×

Orig. AL F — — — — — —

R — — — — — —

Lin. AL F — — — — 182 (979) 182 (997)

R — — — — — —
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2. CUTE Test Problems

Test problems from the Constrained and Unconstrained Testing Environment (CUTE)32 were also used in
testing the data fit surrogates. The problems chosen provide a mix of design, optimal control/planning, and
academic test problems. The problems involve more variables and constraints (including nonlinear equality
constraints) than the Barnes problem, yet they are still reasonably-sized for global data fit surrogates to be
of practical use. Descriptions of the problems and a sampling of results for the most efficient algorithmic
approaches are presented in Table 6. The table lists the CUTE reference name; a short description; the
numbers of variables, inequality constraints, and equality constraints; the three best (i.e., most efficient)
approaches; and the number of true (surrogate) function evaluations performed.

The results suggest that using the original function and constraints for the approximate subproblem is
the most effective as well as robust choice. As with the Barnes problem, the filter appears more robust
than using trust region ratios for acceptance logic, but that it is not clear which is more efficient in general
from the CUTE tests. For these problems, both penalty functions and the basic Lagrangian merit functions
appear promising, as does the use of constraint relaxation. Note that work on these algorithms is ongoing
and a determination of a single combination that is most promising for general use cannot be made at this
point. More extensive tests are planned to this end.

B. Experiment with Model Hierarchies

In this section, we describe tests performed using model hierarchy surrogates applied to a real engineering
design problem. Dealing with simulation failures and the lack of known solutions makes the use of such
problems a challenge for algorithm testing, however. In these tests, we use the approximate subproblem of
original objective and original constraints, an augmented Lagrangian merit function, and trust region ratios
for the acceptance logic. Our rationale is that the augmented Lagrangian is often the most robust merit
function in our testing. This robustness is offset by the use of trust region ratios for acceptance logic, which
are more efficient but less robust than the filter at this point in our studies.

1. MEMS Device Design Optimization Problem

Our test problem for the model hierarchy surrogates is a deterministic version of the bistable microelec-
tromechanical system (MEMS) switch design problem presented in Ref. 33. For such bistable switches, the
goal is to determine a shape for the switch arms that will reliably exhibit the desired force-displacement
characteristics despite variability in the manufacturing process. The deterministic version of this problem
seeks an optimal design with the uncertain manufacturing parameters fixed at their mean values.

The problem consists of 13 geometric design variables (d) and three nonlinear constraints on minimum
force, displacement, and maximum stress. An example force-displacement curve for this switch is shown in
Fig. 6. Positions E1 and E3 are stable equilibrium points and E2 is unstable. The force required to actuate
the switch by displacing the switch arms from E1 through E2 and have them come to rest at E3 is denoted
by Fmax. The force required to pass the switch arms from position E3 back through E2 to E1 is denoted as
Fmin. The design problem we are interested in solving can be formulated as follows:

max Fmax(d)

s.t. E2(d) ≤ 8

Smax(d) ≤ 3000

Fmin(d) = −5.

(30)

where Smax is the maximum material stress and Fmax, Fmin, and E2 are as described above. To compute
the quantities of interest, finite element analysis of the switch is performed using the Aria simulation code34

developed at Sandia National Laboratories.
The model hierarchy for this problem arises from the finite element analysis of the switch. Different

grid sizes (h-refinement) and element orders (p-refinement) lead to low-fidelity and high-fidelity models. For
the experiments presented here, 160 linear elements (resulting in 205 nodes) were used for the low-fidelity
model and 1200 quadratic elements (5061 nodes) were used for the high fidelity model. As a simple gauge
of the complexity of the different models, Table 7 shows the average times (over 10 runs) for performing
a single function evaluation for these models. The times reported here are for those on a single 3.06 GHz
Xenon processor with 4 GB of RAM. These times suggest that on average, the cost of a high-fidelity function
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Table 6. Example CUTE problems for testing SBO using data fit surrogates. The strategy labels indicate
original (OR), basic Lagrangian (BL), or augmented Lagrangian (AL) approximate subproblem; original (OR),
linearized (LI), or no (NO) constraints; global (G), local (L), or TANA-3 (T) surrogates, augmented Lagrangian
(AL), basic Lagrangian (BL), adaptive penalty (AP), or basic penalty (BP) merit function, filter (F) or trust region
ratio (R) acceptance logic, and no relaxation (N) or constraint relaxation (C). A star (*) indicates all choices
produced the same results.

CUTE Short Ineq. Eq. Best Function

Reference Description Var. Constr. Constr. Strategies Evaluations

AVGASA Academic 6 6 0 OR-OR-T-**-R-* 59 (348)

problem OR-OR-L-**-R-* 75 (419)

OR-OR-L-BL-F-* 84 (358)

CSFI1 Continuous 5 2 2 OR-OR-L-AP-R-C 45 (226)

caster design OR-OR-L-AP-R-N 47 (194)

OR-OR-L-AP-R-N 48 (257)

CSFI2 Continuous 5 2 2 OR-OR-T-AL-R-N 44 (404)

caster design AL-OR-T-AL-R-N 44 (534)

AL-OR-T-AL-R-C 44 (647)

FCCU Fluid catalytic 19 0 8 OR-OR-T-**-R-N 72 (543)

cracker modeling OR-OR-T-**-F-N 79 (534)

OR-OR-L-**-R-N 80 (532)

HEART8 Dipole model 8 0 8 OR-OR-T-AL-R-N 83 (997)

of the heart OR-OR-T-AL-F-N 88 (1012)

OR-OR-T-*P-*-N 91 (1289)

HIMMELBK Nonlinear 24 14 0 OR-LI-T-BL-R-N 27 (94)

blending OR-LI-T-AP-R-N 31 (102)

OR-OR-L-AP-R-N 42 (261)

HS073 Optimal cattle 4 2 1 OR-LI-*-*P-R-N 24 (48)

feeding OR-LI-*-*P-R-C 24 (55)

OR-LI-*-BL-R-N 27 (52)

HS087 Electrical 9 0 4 OR-OR-T-BP-R-N 41 (219)

networks OR-OR-L-AP-R-N 65 (325)

OR-OR-L-AL-F-N 70 (285)

HS093 Transformer 6 2 0 OR-OR-T-*L-F-N 66 (404)

design OR-OR-T-BL-F-C 164 (1137)

OR-OR-T-AL-F-C 573 (2864)

HS100 Academic 7 4 0 OR-OR-T-BP-R-* 47 (457)

problem OR-OR-T-BP-F-* 50 (414)

OR-OR-T-BL-R-N 52 (425)

HS114 Alkylation 10 8 3 OR-OR-T-BL-F-C 67 (724)

OR-OR-T-BL-F-N 71 (249)

OR-OR-L-AP-F-N 75 (298)

HS116 Membrane 13 15 0 OR-OR-L-AP-R-C 39 (106)

separation OR-OR-L-BP-R-C 40 (288)

OR-OR-L-AP-R-N 42 (65)

LEWISPOL Number 6 0 9 OR-OR-T-**-*-N 23 (63)

theory OR-OR-L-**-R-N 38 (298)

OR-OR-L-**-F-N 44 (354)

PENTAGON Applied 6 12 0 OR-OR-L-AL-R-N 40 (281)

geometry OR-OR-L-BP-R-N 40 (281)

OR-OR-L-BP-R-C 41 (271)
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Figure 6. Example Force-displacement curve for the MEMS device design optimization problem.

evaluation is about 38–39 times as expensive as that for the low-fidelity model for the two models used in
our tests.

Table 7. Average function evaluation times (seconds) for different models of the finite element analysis of the
MEMS bistable switch.

Number of Elements

Element Type 160 1200

Linear 5.0465 39.414

Quadratic 24.757 194.98

The NPSOL
35 and DOT

36 optimization codes were used for optimizing the high-fidelity models in single-
fidelity approaches and the corrected low-fidelity surrogate models in SBO approaches. Finite differences
with steps of 10−3 were used for approximating the derivative information required for the minimization in
both approaches and for the first-order additive corrections used in SBO. The initial design was provided by
a MEMS design analyst as a useful starting point, but was initially infeasible with respect to the equality
constraint involving Fmin in Eq. 30. Convergence tolerances have slightly different meanings in the SBO
strategy, NPSOL, and DOT, so we present our findings as plots of the iterates determined by each algorithm
for comparison. In all of the optimization runs, the inequality constraints E2 and Smax were inactive.

Figure 7(a) shows the relative error of Fmin with respect to the target value of −5 for iterates computed
by NPSOL in single-fidelity and multifidelity SBO approaches. NPSOL single-fidelity approaches using either
forward differences computed by DAKOTA or a mix of forward and central differences computing internally
(see Ref. 35 for a description of how these are determined) were unable to locate a feasible design. The NPSOL
single-fidelity approach using forward differences did not yield much progress from the initial design, and
thus the more successful of the two approaches is shown. The SBO multifidelity approach, on the other hand,
did converge successfully to a feasible design using only forward differences. The horizontal axes in Fig. 7
represent the amount of high-fidelity work units performed by each method. A work unit is the equivalent
of a single high-fidelity function evaluation in terms of the times presented in Table 7. Thus, the amount of
work performed in the SBO strategy is given by

WSBO = nH + 38 × nL (31)

where nH and nL are the numbers of high-fidelity and low-fidelity function evaluations performed, respec-
tively. Figure 7(a) suggests the SBO is able to solve the problem more quickly and reliably than NPSOL and
using less accurate derivatives. For problems such as this one, where function evaluations are very costly for
the high-fidelity model, the use of forward over central differences is preferred.

Figure 7(b) shows the plot of the relative error in Fmin when using DOT for single-fidelity and multifidelity
SBO approaches. Again, central difference results are presented for single-fidelity DOT, since the use of forward
differences did not yield a feasible design. The DOT multifidelity SBO approach with forward differences
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Figure 7. Relative error of the MEMS design constraint Fmin with respect to the target value of −5 using
NPSOL and DOT for optimizing the low-fidelity surrogates in the SBO strategy (blue) and the high-fidelity model
in the single model strategy.

and the single-fidelity approach using internally-computed central differences converged to the same locally
optimal design, within the numerical tolerances determined by each algorithm. These results again suggest
that the SBO strategy is able to produce a locally optimal solution with less work.

IV. Conclusions

This paper presents and compares a number of algorithmic variations for surrogate-based optimization,
including approximate subproblem formulations, merit function selections, iterate acceptance logic options,
constraint relaxation approaches, and convergence assessment techniques. In addition, tailoring of these
techniques for data fit, multifidelity, and ROM cases is discussed. One research theme is the streamlining of
the SBO process through the elimination (or reduction) of requirements for external management of penalty
parameters and Lagrange multipliers. Not only does this simplify, but it can also improve performance
through elimination of additional SBO cycles needed to converge penalty parameter and Lagrange multiplier
estimates. Use of the direct surrogate approach for the approximate subproblems and use of a filter method
for iterate acceptance tests moves the SBO algorithm toward the state of being penalty- and multiplier-free.

Extensive computational results are presented for SBO with local, multipoint, and global data fit sur-
rogates applied to a number of algebraic test problems (Barnes and selected CUTE test problems). Initial
results indicate that the direct surrogate approach, combined with an augmented Lagrangian merit function,
is the most efficient and reliable technique developed to this point. This technique is carried forward for an
engineering design study in the multifidelity optimization of microelectromechanical systems. The multifi-
delity technique is shown to result in significant computational savings relative to single-fidelity approaches.

The SBO performance results in this paper reflect an ongoing work in progress. Future work will include
investigation of fully penalty- and multiplier-free approaches which define a filter-based merit function,
constraint relaxation approaches which link the relationship between optimal and feasible directions to
the homotopy control parameters, and careful investigation of current SBO algorithm failures observed for
alternative subproblem formulations.
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25Pérez, V. M., Renaud, J. E., and Watson, L. T., “Reduced Sampling for Construction of Quadratic Response Surface
Approximations Using Adaptive Experimental Design,” Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures,
Sttural Dynamics, and Materials Conference, Denver, CO, April 22-25, 2002, AIAA Paper 2002-1587.

26Robinson, T. D., Eldred, M. S., Willcox, K. E., and Haimes, R., “Strategies for Multifidelity Optimization with Variable
Dimensional Hierarchical Models,” Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference (2nd AIAA Multidisciplinary Design Optimization Specialist Conference), Newport, RI, May 1–4,
2006, AIAA Paper 2006-1819.

27Robinson, T. D., Willcox, K. E., Eldred, M. S., and Haimes, R., “Multifidelity Optimization for Variable-Complexity
Design,” Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA,
September 6–8, 2006, AIAA Paper 2006-7114.

28Weickum, G., Eldred, M. S., and Maute, K., “Multi-point Extended Reduced Order Modeling For Design Optimization
and Uncertainty Analysis,” Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference (2nd AIAA Multidisciplinary Design Optimization Specialist Conference), Newport, RI, May 1–4, 2006,
AIAA Paper 2006-2145.

19 of 20

American Institute of Aeronautics and Astronautics



29Lathauwer, L. D., Moor, B. D., and Vandewalle, J., “A Multilinear Singular Value Decomposition,” SIAM Journal on
Matrix Analysis and Applications, Vol. 21, No. 4, 2000, pp. 1253–1278.

30Eldred, M. S., Giunta, A. A., van Bloemen Waanders, B. G., Wojtkiewicz Jr., S. F., Hart, W. E., and Alleva, M. P.,
“DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis. Version 3.0 Users Manual.” Tech. Rep. SAND2001-3796, Sandia National Laboratories,
April 2002.

31Wujek, B. A., Automation Enhancements in Multidisciplinary Design Optimization, Ph.D. thesis, Department of
Aerospace and Mechanical Engineering, Univ. of Notre Dame, South Bend, IN, July 1997.

32Bongartz, I., Conn, A. R., Gould, N., and Toint, P., “CUTE: Constrained and Unconstrained Testing Environment,”
ACM Transactions on Mathematical Software, Vol. 21, No. 1, 1995, pp. 123–160.

33Adams, B. A., Eldred, M. S., and Wittwer, J. W., “Reliability-Based Design Optimization for Shape Design of Compli-
ant Micro-Electro-Mechanical Systems,” Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Portsmouth, VA, Sept. 6–Sept. 8, 2006, AIAA Paper 2006-7000.

34Notz, P. K., Subia, S. R., Hopkins, M. H., and Sackinger, P. A., “A Novel Approach to Solving Highly Coupled Equations
in a Dynamic, Extensible and Efficient Way,” Computation Methods for Coupled Problems in Science and Engineering, edited
by M. Papadrakakis, E. . Onate, and B. Schrefler, Intl. Center for Num. Meth. in Engng. (CIMNE), Barcelona, Spain, April
2005, p. 129.

35Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H., “User’s Guide for NPSOL (Version 4.0): A Fortran Package
for Nonlinear Programming,” Tech. Rep. SOL-86-2, System Optimization Laboratory, Stanford University, 1986.

36Vanderplaats Research and Development, Inc., DOT Users Manual, Version 4.20 , 1995.

20 of 20

American Institute of Aeronautics and Astronautics


