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1. Introduction



Technical ChallengesTechnical Challenges
- Include risk & reliability at early design phases
- Reduce enormous testing costs and design 

cycle times via reliability assessment with 
bounded estimates of uncertainty 

- Reduce intractable computational cost of 
probabilistic methods

- Create optimization and robust control 
methods which include uncer tainties

ApproachApproach
- Develop multidisciplinary probabilistic-

oriented analysis tools and design methods
- Develop technology to construct failure 

scenarios at conceptual design stage
- Develop and validate structural reliability and 

robust control synthesis techniques
- Develop effective algor ithms for  

optimization under  uncer tainties

Vision:  Vision:  Develop and validate design methods and tools for aerospace vehicle systems
that incorporate reliability, robustness and risk (the 3 R’s) concepts in all phases of design

Par tnersPar tners
- DoD, FAA, Boeing, Sandia, NASA (ISE , 

Propulsion, 3rd Gen RLV, Design for Safety, 
HPCC, OSMA) — Leverage related programs

• SwRI, ARA, SGI — collaboration on 
commercial software development

• Universities — basic research

NASA Langley Risk-based Design Group



2. Airfoil Optimization and Related Topics
(samples of past research works)

• Airfoil shape optimization:  high fidelity CFD 
codes, reliable grid generation, and numerically 
efficient sensitivity calculations

Anderson and Venkatakrishnan (1997), Drela (1998), 

Nielsen and Anderson (1998), Anderson and Bonhaus (1999)

• Optimization of 3-D wings
Elliott and Peraire (1997,1998), Nielsen and Anderson (2001)

• Coupled structural-aerodynamic optimization 
Gumbert,  Hou, and Newman (2001)

Except Drela’s paper, uncertainty was not considered in these works.



3. Two Robust Optimization Formulations

• What is Robust Optimization?
– Identify designs that minimize the variability of the 

performance under uncertain operating conditions. 
(Taguchi methods)

– Mitigate the detrimental effects of the worst-case 
performance. (Ben-Tal and Nemirovski)

– Provide the best overall performance of a system by 
maximizing the expected value of its utility. (Huyse 
and Lewis)

– Achieve consistent improvements of the performance 
over a given range of uncertain parameters.



• Expected Value Optimization

• Continuous Minimax Optimization

Lift Constrained Drag Minimization



4. Approximations of Robust 
Optimization Formulations

• Multipoint Optimization With Lift Constraints

• Discrete Minimax Optimization With Lift Constraints



5. Critical Number of Design Points for 
the Multipoint Optimization

Gradient of the Drag at M1 Gradient of the Drag at M2

Optimal Solution for M1 and M2

Gradient of the Drag at M3

A Descent Direction for the Average Drag at M1, M2, and M3
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For the multipoint optimization method, it is 
necessary to use (m+1) design points, where 
m is the number of free-design variables.

Gradient of the Drag at M1

Gradient of the Drag at M2

Optimal Solution for M1, M2, and M3

Gradient of the Drag at M3

A first-order decrease of the drag for any Mach number leads to a 
first-order increase of the drag for another Mach number. 



6. Equivalence of Two Approximation 
Formulations

Under the strict complementarity condition, the equivalence of the 
above two problems can be established by using the following 
conversion formulas:



7. Profile Optimization for a Consistent Drag 
Reduction over a Mach Range
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A Descent Direction for a Consistent Drag 
Reduction over a Mach Range

Convex hull of the
two gradients



The Profile Optimization Method

1) Initialize the angles of attack at r Mach numbers M1, 
M2,…,Mr when started.

2) Adjust weights: i = 1/cd(Dk, i,k,Mi) for 1 i r.
3) Find the size of a trust region for an LP subproblem of 

the discrete minimax optimization problem so that a 
predicted percentage reduction of the drag for all 
sampled Mach numbers is achieved.

4) Compute the least norm solution of the LP 
subproblem: ( Dk, 1,k,…, r,k ).

5) Generate the new iterate:
Dk+1 := Dk + Dk, and i,k+1 := i,k + i,k  for 1 i r.

6) Repeat the process until a termination criterion is 
satisfied.
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Choose a Trust Region and Compute 
the Least Norm Solution

• Choose such that the optimal objective function value of 
the above LP subproblem is (1- ), where is the predicted 
percentage reduction of the drag.

• Solve a quadratic perturbation of the above LP subproblem 
to get the least norm solution. (Mangasarian 1984)



Heuristic Termination Criterion



8. Numerical Results

The grid for solving the Euler equation

Airfoil shape is represented by spline
functions with 20 free-design parameters.



Typical Mach Contours, for M∞= 0.796
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(a) NACA-0012 (b) ProfileOptimization

A strong shock wave for NACA-0012 is reduced to several weaker 
shock waves for an optimal airfoil generated by the profile optimization.

c = 0.4, cd = 0.0255  c = 0.4, cd = 0.0048  



Comparison of Optimal Solutions

• The profile optimization method uses a very conservative 
optimization strategy to achieve the robustness of the optimal 
solution. 

• The number of design points has no impact on the profile 
optimization method.
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(b) Profile Optimization

From Left to Right: NACA-0012, 6-th, 12-th, 18-th, 25-th, and 33-th Iterates
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(d) Multipoint Optimization

Comparison of Optimal Airfoils With Lift at 0.4

For the profile optimization method, far fewer design points (4) than 
free-design variables (20) are needed to generate robust optimal 
solutions and there is no random airfoil shape distortion.



Case Study II: Drag Reduction for Lift at 0.2
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The only compromise made by the optimal airfoil to the NACA-0012 is a small 
increase of the drag around the original drag bucket for the NACA-0012.

.



Case Study II: Changes of the Airfoil Shape

From Left to Right: NACA-0012, 6-th, 12-th, 18-th, 24-th, and 33-th Iterates
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(b) Profile Optimization With Lift at 0.2

There is no random distortion of airfoil shapes during the optimization process.



9. Conclusion
1) For the multipoint optimization method, in order to avoid any 

degradation in the off-design performance, it is necessary to 
use more design points than the number of free-design 
variables.

2) With adaptive adjustment of weights, the profile optimization 
method generates robust optimal solutions for airfoil shape 
optimization under uncertain flight conditions with far fewer design 
points (4) than free-design variables (20).

3) The profile optimization method finds a drag reduction 
direction for all design conditions, which leads to a 
consistent drag reduction over a given Mach range from 
iteration to iteration.

4) There is no random airfoil shape distortion for any iterate 
generated by the profile optimization method.

5) The profile optimization method allows a designer to make 
a trade-off between a truly optimized airfoil and the amount 
of computing time consumed.

6) The profile optimization method has the potential of 
becoming a practical design tool for optimization under 
uncertainty.
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