
CCA
Common Component Architecture

The State of the CCA ISIC
(aka CCTTSS)

PI: Rob Armstrong
rob@sandia.gov

Co-Investigators:
David Bernholdt (ORNL), Lori Freitag Diachin (SNL), Dennis Gannon (Indiana Univ.),

James Kohl (ORNL), Gary Kumfert (LLNL), Lois Curfman McInnes (ANL), Jarek
Nieplocha (PNNL), Steven Parker (Univ. of Utah), Craig Rasmussen (LANL)

http://www.cca-forum.org/ccttss

March 2003

Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific
Computing Research, U. S. Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

mailto:rob@sandia.gov
mailto:rob@sandia.gov
http://www.cca-forum.org/ccttss

CCA
Common Component Architecture

2

Outline

• Introduction
• Frameworks and Infrastructure
• Scientific Components
• “MxN” Parallel Data Redistribution
• User Outreach and Applications Integration
• Conclusion

CCA
Common Component Architecture

3

Introduction

• Who are we?
– Center for Component Technology for Terascale Simulation

Software (CCTTSS)
– Subset of members of the Common Component Architecture

(CCA) Forum, an open grass-roots effort that started in 1998
• What are HPC components?

– Generic vocabulary
– CCA’s idea of what they are
– Parallel component vocabulary

• State of the CCA
– Applications involvement, present and future
– CCA responds to developers
– Collaborations external to SciDAC

CCA
Common Component Architecture

4

What are Components, Frameworks?

• No universally accepted definition…yet
– Working definition: software that is composable
– Framework is everything that is not a component

• Interacts with the outside world only through
well-defined interfaces
– Otherwise implementation is opaque to the outside world

• Can be composed with other components
– “Plug-and-play” model to build applications
– Composition based on these interfaces

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

5

Ports: Connections Interface Exchange

• Components interact through well-defined interfaces,
or ports
– In OO languages, a port is a virtual class or interface
– In Fortran, a port is a bunch of subroutines or a module

• Components may provide ports – implement the
class or subroutines of the port

• Components may use ports – call methods or
subroutines in the port

• Links denote a caller/callee relationship, not
dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out Result)

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

6

Framework Stays “Out of the Way”
of Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

• Each process loaded with the
same set of components wired
the same way

P0 P1 P2 P3

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.,
MPI, PVM, GA)

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

CCA
Common Component Architecture

7

CCA Research Thrusts
and Application Domains

• Frameworks
– Framework interoperability
– Language interoperability
– Deployment

• Scientific Components
– Domain-specific interfaces
– Component implementations
– Etc….

• MxN Parallel Data
Redistribution
– Component-based
– Framework-based

• Applications Outreach
– Education
– Best practices for use
– Chemistry, climate

SciDAC:
• Combustion (CFRFS)
• Climate Modeling (CCSM)
• Meshing Tools (TSTT)
• (PDE) Solvers (TOPS)
• IO, Poisson Solvers (APDEC)
• Fusion (CMRS)
• Supernova simulation (TSI)
• Accelerator simulation (ACCAST)
DOE Outside of SciDAC:
• ASCI: C-SAFE, Views, Data Svc’s
• Quantum Chemistry
Outside of DOE:
• NASA: ESMF, SWMF
• Etc.…

CCA
Common Component Architecture

8

Reacting Flow Software “Facility”
• A Computational Facility for Reacting Flow Science (CFRFS),

SciDAC application center, PI: H. Najm
• Epitome of componentized applications

– There is no one application, but a component “facility”

CCA
Common Component Architecture

CCA Frameworks and Infrastructure

Coordinator:
Gary Kumfert (LLNL)

CCA
Common Component Architecture

10

Iterate on
SCMD/Grid
multiplexer
(IU,SNL)

Develop
distributed
multiplexer and
XML prototype
(IU,SNL)

Evolve
concurrency
(all)

Complete
concurrency
standard (all)

Add COM and
.NET to Babel
(LLNL)

Add Perl or
other to Babel
(LLNL)

Add Matlab to
Babel (LLNL)

Add Fortran 90
to Babel (LLNL)

Add Python and
Java to Babel
(LLNL)

Deploy
Alexandria
(LLNL)

Remote access
by frameworks
(LLNL)

XML to access
Alexandria

Final version
(IU,SNL)

Beta version of
framework
(IU,SNL)

Integrate MS
.NET. Initial
Grid support (IU)

Finish initial
distributed
framework (UI)

IterateIterateImprove UI of
SCMD (SNL)

Generalize
SCMD for HPC
(SNL)

SCMD build &
implementation
(SNL)

’05’04’03’02’01

Original Frameworks Deliverables

CCA
Common Component Architecture

11

Iterate on
SCMD/Grid
multiplexer
(IU,SNL)

Develop
distributed
multiplexer and
XML prototype
(IU,SNL)

Evolve
concurrency
(all)

Complete
concurrency
standard (all)

Add COM and
.NET to Babel
(LLNL)

Add Perl or
other to Babel
(LLNL)

Add Matlab to
Babel (LLNL)

Add Fortran 90
to Babel (LLNL)

Add Python and
Java to Babel
(LLNL)

Deploy
Alexandria
(LLNL)

Remote access
by frameworks
(LLNL)

XML to access
Alexandria

Final version
(IU,SNL)

Beta version of
framework
(IU,SNL)

Integrate MS
.NET. Initial
Grid support (IU)

Finish initial
distributed
framework (UI)

IterateIterateImprove UI of
SCMD (SNL)

Generalize
SCMD for HPC
(SNL)

SCMD build &
implementation
(SNL)

July 2006July 2005July 2004July 2003July 2002

CCA
Common Component Architecture

12

Iterate on
SCMD/Grid
multiplexer
(IU,SNL)

Develop
distributed
multiplexer and
XML prototype
(IU,SNL)

Evolve
concurrency
(all)

Complete
concurrency
standard (all)

Add COM and
.NET to Babel
(LLNL)

Add Perl or
other to Babel
(LLNL)

Add Matlab to
Babel (LLNL)

Add Fortran 90
to Babel (LLNL)

Add Python and
Java to Babel
(LLNL)

Deploy
Alexandria
(LLNL)

Remote access
by frameworks
(LLNL)

XML to access
Alexandria

Final version
(IU,SNL)

Beta version of
framework
(IU,SNL)

Integrate MS
.NET. Initial
Grid support (IU)

Finish initial
distributed
framework (UI)

IterateIterateImprove UI of
SCMD (SNL)

Generalize
SCMD for HPC
(SNL)

SCMD build &
implementation
(SNL)

July 2006July 2005July 2004July 2003July 2002

Ccaffeine

CCA
Common Component Architecture

13

Ccaffeine
Characteristics Achievements

• SPMD
• GUI and scripted

interfaces
• Interactive or batch
• Serial or parallel

• Separates CCA pattern
from implementation
– Three bindings

• Classic components
• SIDL components
• Chasm components

• Demonstrated at
SC2001 & SC2002

• Used in CCA tutorials

CCA
Common Component Architecture

14

Iterate on
SCMD/Grid
multiplexer
(IU,SNL)

Develop
distributed
multiplexer and
XML prototype
(IU,SNL)

Evolve
concurrency
(all)

Complete
concurrency
standard (all)

Add COM and
.NET to Babel
(LLNL)

Add Perl or
other to Babel
(LLNL)

Add Matlab to
Babel (LLNL)

Add Fortran 90
to Babel (LLNL)

Add Python and
Java to Babel
(LLNL)

Deploy
Alexandria
(LLNL)

Remote access
by frameworks
(LLNL)

XML to access
Alexandria

Final version
(IU,SNL)

Beta version of
framework
(IU,SNL)

Integrate MS
.NET. Initial
Grid support (IU)

Finish initial
distributed
framework (UI)

IterateIterateImprove UI of
SCMD (SNL)

Generalize
SCMD for HPC
(SNL)

SCMD build &
implementation
(SNL)

July 2006July 2005July 2004July 2003July 2002

XCAT

CCA
Common Component Architecture

15

XCAT
Characteristics Achievements

• Distributed/Grid model
• Web services

Material Archive

Go
Data

GSCntl

Go
GoGS

GSGo

Data Provider Comp
Simulation
Component

exported
exported

exportedApplication
Coordinator

sendParameters, start, kill
Application

Specific component
Application
Factory
Service

Directory/
Discovery Service 1

2
3

5

6
7 wsdl

Ensemble Application

• Developed Proteus
multi-protocol
communication
package

• Novel MxN work at
MPI-I/O level

8 Application control

4
Authorization

Service
Resource
Broker
Service

CCA
Common Component Architecture

16

Iterate on
SCMD/Grid
multiplexer
(IU,SNL)

Develop
distributed
multiplexer and
XML prototype
(IU,SNL)

Evolve
concurrency
(all)

Complete
concurrency
standard (all)

Add COM and
.NET to Babel
(LLNL)

Add Perl or
other to Babel
(LLNL)

Add Matlab to
Babel (LLNL)

Add Fortran 90
to Babel (LLNL)

Add Python and
Java to Babel
(LLNL)

Deploy
Alexandria
(LLNL)

Remote access
by frameworks
(LLNL)

XML to access
Alexandria

Final version
(IU,SNL)

Beta version of
framework
(IU,SNL)

Integrate MS
.NET. Initial
Grid support (IU)

Finish initial
distributed
framework (UI)

IterateIterateImprove UI of
SCMD (SNL)

Generalize
SCMD for HPC
(SNL)

SCMD build &
implementation
(SNL)

July 2006July 2005July 2004July 2003July 2002

Uintah

CCA
Common Component Architecture

17

SCIRun/BioPSE/Uintah
Characteristics Achievements

• Multithreaded &
distributed

• C++ only
• Used in “real science”

(gov’t, academic,
commercial) 2K procs

• Testbed for CCA Concepts
• Novel work in IDL-based

MxN
• Parallelism and

concurrency research for
CCA done on Uintah

• SCIRun2 will integrate
SCIRun, BioPSE and
Uintah

CCA
Common Component Architecture

18

Why three CCA Frameworks?

Ccaffeine

SPMD
Distributed

Threaded

U
in

ta
h

• We address three different types of high-performance
scientific computing.

CCA
Common Component Architecture

19

Iterate on
SCMD/Grid
multiplexer
(IU,SNL)

Develop
distributed
multiplexer and
XML prototype
(IU,SNL)

Evolve
concurrency
(all)

Complete
concurrency
standard (all)

Add COM and
.NET to Babel
(LLNL)

Add Perl or
other to Babel
(LLNL)

Add Matlab to
Babel (LLNL)

Add Fortran 90
to Babel (LLNL)

Add Python and
Java to Babel
(LLNL)

Deploy
Alexandria
(LLNL)

Remote access
by frameworks
(LLNL)

XML to access
Alexandria

Final version
(IU,SNL)

Beta version of
framework
(IU,SNL)

Integrate MS
.NET. Initial
Grid support (IU)

Finish initial
distributed
framework (UI)

IterateIterateImprove UI of
SCMD (SNL)

Generalize
SCMD for HPC
(SNL)

SCMD build &
implementation
(SNL)

July 2006July 2005July 2004July 2003July 2002

Framework
Integration

Ccaffeine-XCAT coupling

demonstra
ted at SC2002

March 4: SCIRun 2 successfully

loaded a SIDL Ccaffeine

component without modification

CCA
Common Component Architecture

20

Course Correction: Framework
Interoperability, not Integration

• Before
– We planned a single CCA “reference framework”

• Now
– We better understand the goals/constraints of

different teams
• SCIRun has commercial clients
• XCAT needs to experiment and generate papers
• Ccaffeine supports the base of the CCA community

– We realize that interoperability is sufficient
• Frameworks can load same SIDL components
• Frameworks expose themselves as components to

foreign frameworks

CCA
Common Component Architecture

21

Iterate on
SCMD/Grid
multiplexer
(IU,SNL)

Develop
distributed
multiplexer and
XML prototype
(IU,SNL)

Evolve
concurrency
(all)

Complete
concurrency
standard (all)

Add COM and
.NET to Babel
(LLNL)

Add Perl or
other to Babel
(LLNL)

Add Matlab to
Babel (LLNL)

Add Fortran 90
to Babel (LLNL)

Add Python and
Java to Babel
(LLNL)

Deploy
Alexandria
(LLNL)

Remote access
by frameworks
(LLNL)

XML to access
Alexandria

Final version
(IU,SNL)

Beta version of
framework
(IU,SNL)

Integrate MS
.NET. Initial
Grid support (IU)

Finish initial
distributed
framework (UI)

IterateIterateImprove UI of
SCMD (SNL)

Generalize
SCMD for HPC
(SNL)

SCMD build &
implementation
(SNL)

July 2006July 2005July 2004July 2003July 2002

Babel

Finish server-

side Java

CCA
Common Component Architecture

22

SIDL/Babel
Characteristics Achievements

• SIDL: Scientific
Interface Definition
Language

• Babel: uses SIDL to
generate wrappers

• CCA specification is in SIDL
• Decaf:

– 1st Babelized CCA framework
(experimental)

– Code reused in Ccaffeine’s
SIDL components

• SIDL used in TOPS & TSTT

C++

f77

f90

Python

C

C++

f77

f90

Python
Java

C

Java

CCA
Common Component Architecture

23

Course Correction: Open Babel

• Before
– No CVS access, quarterly releases
– All development at LLNL

• Now
– On CCA’s critical path
– CVS access on cca-forum.org
– babel-dev@llnl.gov includes LLNL team + SNL +

Utah + IU + ANL
– Developer meetings (2x / year)
– Babel extensions
– Babel published by Debian & has official Debian

maintainer

mailto:babel-dev@llnl.gov

CCA
Common Component Architecture

24

Course Correction: Fortran 90
• Before

– Demand for Fortran 90 much higher than anticipated
– Fortran 77-style binding was inadequate for users

• Now
– Fortran 90 is Babel’s top priority

• completed original vision 6 months early
• continuous refining based on community feedback

– Engaging Fortran 90 developers via
cca-fortran@cca-forum.org

– Leveraging Chasm’s technology for Fortran 90
Arrays

mailto:cca-fortran@cca-forum.org

CCA
Common Component Architecture

25

Iterate on
SCMD/Grid
multiplexer
(IU,SNL)

Develop
distributed
multiplexer and
XML prototype
(IU,SNL)

Evolve
concurrency
(all)

Complete
concurrency
standard (all)

Add COM and
.NET to Babel
(LLNL)

Add Perl or
other to Babel
(LLNL)

Add Matlab to
Babel (LLNL)

Add Fortran 90
to Babel (LLNL)

Add Python and
Java to Babel
(LLNL)

Deploy
Alexandria
(LLNL)

Remote access
by frameworks
(LLNL)

XML to access
Alexandria

Final version
(IU,SNL)

Beta version of
framework
(IU,SNL)

Integrate MS
.NET. Initial
Grid support (IU)

Finish initial
distributed
framework (UI)

IterateIterateImprove UI of
SCMD (SNL)

Generalize
SCMD for HPC
(SNL)

SCMD build &
implementation
(SNL)

July 2006July 2005July 2004July 2003July 2002

Chasm

CCA
Common Component Architecture

26

Chasm
Characteristics Contribution/Impact

• Integral player in CCA
language
interoperability

• Parses C++/F90 source
code to generate
wrappers

• Array library allows
exchange of memory
created in C++ or F90

• Babel will use Chasm’s
Array Cracking library

• Chasm will generate
SIDL

Chasm
Array Descriptor Library

Fortran ArrayC++ Bridge C++ Array Class

CCA
Common Component Architecture

27

Iterate on
SCMD/Grid
multiplexer
(IU,SNL)

Develop
distributed
multiplexer and
XML prototype
(IU,SNL)

Evolve
concurrency
(all)

Complete
concurrency
standard (all)

Add COM and
.NET to Babel
(LLNL)

Add Perl or
other to Babel
(LLNL)

Add Matlab to
Babel (LLNL)

Add Fortran 90
to Babel (LLNL)

Add Python and
Java to Babel
(LLNL)

Deploy
Alexandria
(LLNL)

Remote access
by frameworks
(LLNL)

XML to access
Alexandria

Final version
(IU,SNL)

Beta version of
framework
(IU,SNL)

Integrate MS
.NET. Initial
Grid support (IU)

Finish initial
distributed
framework (UI)

IterateIterateImprove UI of
SCMD (SNL)

Generalize
SCMD for HPC
(SNL)

SCMD build &
implementation
(SNL)

July 2006July 2005July 2004July 2003July 2002

Alexandria

CCA
Common Component Architecture

28

Component Packaging and Deployment
Characteristics Achievements

• Source code distribution
of components
– Hard problem!
– Not done in commercial

world

• Long term:
– XML-based specification

of components, build
info, meta-data

– Alexandria repository to
handle human and
automated requests for
components

• Short term:
– RPMs of Babel,

Ccaffeine, and various
components (more info in
‘scientific components’
section)

CCA
Common Component Architecture

29

Cross Fertilization

time
SCIRun SCIRun2

Babel / SIDL

Chasm F90 Arrays

F9
0

Chasm

D
ec

af

XCAT Proteus

Uintah C+
+2

SID
L

R
M

I

SIDL

SC2002 Demo

Caffeine Classic

CCA
Common Component Architecture

Scientific Components

Coordinator:
Lois Curfman McInnes (ANL)

CCA
Common Component Architecture

31

Approach

• Define domain-specific common interface specifications
• Develop high-performance scientific components
• Explore related research issues of importance in the

DOE computational science environment

This is an iterative process, in collaboration with
scientists outside of the CCTTSS, including
– SciDAC applications groups
– Other SciDAC Integrated Software Infrastructure Centers (ISICs)
– The high-performance scientific computing community in general

CCA
Common Component Architecture

32

Motivation for Common Interfaces

Overture
SuperLU

AOMD• Many-to-Many couplings
require Many 2 interfaces

– Often a heroic effort to understand
details of both codes

– Not a scalable solution

• Common Interfaces: Reduce
the Many-to-Many problem to
a Many-to-One problem

– Allow plug-and-play
interchangeability & interoperability

– Require domain specific experts
– Typically difficult & time-consuming
– A success story: MPI
– Challenges

• Interface agreement
• Functionality limitations
• Maintaining performance

Hypre
MDB/CUBIT

PETSc
NWGrid

linear solver
librariesmesh libraries

NWGrid

Overture

MDB/CUBIT

AOMD

SuperLU

PETSc

Hypre
D
a
t
a

S
o
l
v
e
r
s

Others …

Others …
TSTT
Data

Interfaces

TOPS
Solver

Interfaces

CCA
Common Component Architecture

33

Current Interface Development Activities
CCA Scientific Data Components

Working Group

• Basic Scientific Data Objects
– Lead: D. Bernholdt (ORNL)

• Unstructured Meshes
– Lead: L.F. Diachin (SNL, formerly ANL)
– Collaboration with TSTT ISIC
– TSTT = Terascale Simulation Tools and

Technologies, PIs: J. Glimm, D. Brown,
L.F. Diachin, http://www.tstt-scidac.org

• Structured Adaptive Mesh
Refinement

– Lead: P. Colella (LBNL)
– Collaboration with APDEC ISIC
– APDEC = Algorithmic and Software

Framework for Applied PDEs, PI: P.
Colella, http://davis.lbl.gov/APDEC

Other Groups

• Linear and nonlinear solvers,
eigensolvers, and optimizers

– Coordinator: L.C. McInnes (ANL)
– Collaboration with TOPS ISIC
– TOPS = Terascale Optimal PDE

Simulations, PI: D. Keyes,
http://tops-scidac.org

• MxN Parallel Data Redistribution
– Lead: J. Kohl (ORNL)
– Part of CCTTSS MxN Thrust

• Quantum Chemistry
– Leads: C. Janssen (SNL) and T.

Windus (PNNL)
– Part of CCTTSS Applications

Integration Thrust

CCA
Common Component Architecture

34

A Case Study: The TSTT/CCA Mesh Interface

Geometry
Information
(Level A)

Full
Geometry
Meshes
(Level B)

Mesh
Components
(Level C)

• Goal is to enable
– Hybrid solution strategies
– High-order discretization
– Adaptive techniques

• Approach
– Create small set of interfaces that

existing packages can support
– Balance performance and flexibility
– Work with tool developers and

application community to ensure
applicability

• Required interfaces
– Entity queries (geometry, adjacencies), entity iterators,

array-based query, workset iterators, mesh/entity tags,
mesh services

CCA
Common Component Architecture

35

TSTT: Issues that have arisen …
• Nomenclature is harder than we first thought
• Cannot achieve the 100 percent solution, so...

– What level of functionality should be supported?
• Minimal interfaces only?
• Interfaces for convenience and performance?

– What about support of existing packages?
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be required?

– What about additional functionalities such as locking?
• Language interoperability is a problem

– Most TSTT tools are in C++, while most target applications are in
Fortran

– How can we avoid the “least common denominator” solution?
– Exploring SIDL/Babel for language interoperability

CCA
Common Component Architecture

36

Scientific Components and Applications
• Recognized as one of the “Top Ten Science Achievements

in 2002” by the DOE Office of Science (see
http://www.sc.doe.gov/sub/accomplishments/top_10.htm)

• Many demonstrated at SC2001 and SC2002
• Combine application-specific components with more

general-purpose components that can be reused across a
range of applications

– More than 40 components, many reused in apps such as
• PDEs on unstructured and adaptive structured meshes
• Unconstrained minimization problems

• Leverage and extend parallel software developed at
different institutions

– Including CUMULVS, CVODES, Global Arrays, GrACE,
MPICH, PETSc, PVM, and TAO

• Download source code & documentation: http://www.cca-forum.org/software.html
• Component Inventory: See Appendix A of progress report

– Current snapshot; all components are evolving

http://www.sc.doe.gov/sub/accomplishments/top_10.htm
http://www.cca-forum.org/software.html

CCA
Common Component Architecture

37

Component Inventory:
Data Management, Meshing and Discretization

• Global Array Component – M. Krishnan and J. Nieplocha (PNNL) –
classic and SIDL – Provides capabilities for manipulating multidimensonal
dense distributed arrays; supports DADF common interface.

• TSTTMesh – L.F. Diachin (SNL, formerly ANL) – classic – Provides
prototype capabilities for querying unstructured meshes based on
interfaces being designed within the TSTT SciDAC Center.

• FEMDiscretization – L.F. Diachin (SNL, formerly ANL) – classic –
Provides finite element discretization of diffusion and advection PDE
operators and linear system assembly capabilities.

• GrACEComponent – J. Ray (SNL) – classic – Provides parallel AMR
infrastructure, which follows a hierarchy-of-patches methodology for
meshing and includes load-balancing; based on GrACE (Rutgers); being
used in combustion applications within the SciDAC CFRFS project.

CCA
Common Component Architecture

38

A Component Example Close-up: GAComponent

• Global Arrays: Efficient and portable shared-
memory programming environment for
distributed-memory computers, supporting
dense distributed arrays.

• GAComponent: Classic and SIDL Interfaces
• 36+98 (direct+indirect) global arrays classic

methods are available through GAClassicPort
• GADADFPort provides methods, proposed by

the CCA Scientific Data Working Group for
creating array descriptors and templates

physically distributed dense array

GA
Linear Algebra

DADF

GA Classic

single, shared data structure
global indexing

CCA
Common Component Architecture

39

Component Inventory:
Integration, Optimization, and Linear Algebra

• CvodesComponent – Radu Serban (LLNL, TOPS collaborator) –
classic – Provides a generic implicit ODE integrator and an implicit
ODE integrator with sensitivity capabilities; based on CVODES;
used in combustion applications within the CFRFS.

• TaoSolver – S. Benson, L.C. McInnes, B. Norris, and J. Sarich
(ANL) – SIDL – Provides solvers for unconstrained and bound
constrained optimization problems, which build on infrastructure
within TAO (ANL); uses external linear algebra capabilities.

• LinearSolver – B. Norris (ANL) – classic – Provides a prototype
linear solver port; in the process of evolving to support common
interfaces for linear algebra that are under development within the
TOPS SciDAC center.

CCA
Common Component Architecture

40

Component Inventory:
Parallel Data Description, Redistribution, and Visualization

• DistArrayDescriptorFactory – D. Bernholdt and W. Elwasif (ORNL) –
classic – Provides a uniform means for applications to describe dense
multi-dimensional arrays; based upon emerging interfaces from the
CCA Scientific Data Components Working Group.

• CumulvsMxN – J. Kohl, D. Bernholdt, and T. Wilde (ORNL) – classic –
Builds on CUMULVS (ORNL) technology to provide an initial
implementation of parallel data redistribution interfaces that are under
development by the CCA “MxN” Working Group.

• VizProxy – J. Kohl and T. Wilde (ORNL) – classic – Provides a
companion “MxN” endpoint for extracting parallel data from component-
based applications and then passing this data to a separate front-end
viewer for graphical rendering and presentation. Variants exist for
structured data and unstructured triangular mesh data as well as text-
based output.

CCA
Common Component Architecture

41

Component Inventory:
Services, Graphical Builders, and Performance

• Ccaffeine Services – B. Allan, R. Armstrong. M. Govindaraju, S.
Lefantzi, and E. Walsh (SNL) – classic and SIDL – Services for
parameter ports, connections between SIDL and classic ports, MPI
access, connection events, etc.

• Graphical Builders – B. Norris (ANL) and S. Parker (Univ. of Utah)
– Prototype graphical builders that can be used to assemble
components, set parameters, execute, and monitor component-
based simulations.

• Performance Observation – S. Shende and A. Malony (Univ. of
Oregon), C. Rasmussen and M. Sotille (LANL), and J. Ray (SNL) –
classic and SIDL – Provides measurement capabilities to
components, thereby aiding in the selection of components and
helping to create performance aware intelligent components; based
on TAU (Oregon).

CCA
Common Component Architecture

42

GA and TaoSolver Components:
Interoperability, Performance, and Applications

• Applications Usage
– Lennard-Jones molecular dynamics

• Uses force decomposition method and dynamic load balancing
• Component overhead is negligible (<1%)
• Good scaling (simulation of 12,000 atoms yields a speedup of 7.86

on 8 processors of PNNL Linux cluster)
– Molecular geometry optimization

• Ongoing collaboration, including SC2002 demo
• Electronic structure components based on NWChem (PNNL) and

MPQC (SNL) for energy, gradient, and Hessian computations
• Optimization components based on TAO (ANL)
• Linear algebra components based on GA (PNNL) and PETSc (ANL)

• GA/TaoSolver Interoperability
– GA provides core linear algebra

for manipulating vectors, matrices,
and linear solvers through a
LinearAlgebraPort; these can be
used by TaoSolver

• Future work: Refine interfaces, examine performance issues, explore more complex problems

CCA
Common Component Architecture

43

Scalability of Scientific Data Components
in CFRFS Combustion Applications

• Investigators: S. Lefantzi, J. Ray,
and H. Najm (SNL)

• Uses GrACEComponent,
CvodesComponent, etc.

• Shock-hydro code with no
refinement

• 200 x 200 & 350 x 350 meshes
• Cplant cluster

– 400 MHz EV5 Alphas
– 1 Gb/s Myrinet

• Negligible component overhead
• Worst perf : 73% scaling efficiency

for 200x200 mesh on 48 procs

Reference: S. Lefantzi, J. Ray, and H. Najm, Using the Common Component Architecture to Design High Performance
Scientific Simulation Codes, Proc of Int. Parallel and Distributed Processing Symposium, Nice, France, 2003, accepted.

CCA
Common Component Architecture

44

Collaborations with the TSTT, APDEC,
and TOPS SciDAC Centers

• Approach: Define common interfaces and component implementations
– Goal: These can eventually be employed by scientists who collaborate

directly with these mathematics ISICs
• TSTT and APDEC Centers

– Focus: Collaborating with the CCA Scientific Data Working Group to define
interfaces for accessing mesh geometry and topology information

– Current status: Prototype TSTT component implementations are used in
simple PDE-based examples and CCA tutorials

– Future work: Ongoing further development and testing with various apps
• TOPS Center

– Focus: Collaborating to define interfaces for linear and nonlinear solvers,
eigensolvers, and unconstrained and constrained optimizers

– Current status: Have explored early prototype interfaces that use SIDL as
the interface definition language

– Future work: Next will experiment with these interfaces in various apps,
including a SciDAC fusion simulation under development by the Center for
Magnetic Reconnnection Studies (CMRS, PI: A. Bhattacharjee)

CCA
Common Component Architecture

45

Future Work Summary
• Cross-cutting integration among various SciDAC centers

– Collaborations with TSTT, APDEC, and TOPS ISICs
– Collaborations with SciDAC applications in chemistry, climate, fusion, etc.

• Evaluate, extend, and refine first-generation components
– Complete development of abstract interfaces and component prototypes
– Develop new component functionality

• multi-threading, load redistribution, computational steering, fault tolerance, etc.
– Develop advanced components, including

• multi-level nonlinear solvers
• hybrid mesh management schemes
• application-specific components for chemistry, combustion, and climate

• Investigate Quality-of-Service (QoS) issues for numerical components
– In collaboration with the PERC ISIC
– Recently started preliminary work to identify motivating scenarios,

analyze requirements, develop a catalog of QoS metrics for numerical
components, and design a QoS architecture

CCA
Common Component Architecture

“MxN” Parallel Data Redistribution

Coordinator: James Kohl (ORNL)
David Bernholdt (ORNL), Randy Bramley (Indiana),

Pat Fasel (LANL), Kate Keahey (ANL, formerly LANL),
Jay Larson (ANL), Sue Mniszewski (LANL),

Steven Parker (Utah), Reid Rivenburgh (LANL)

CCA
Common Component Architecture

47

Cooperating Parallel Components…?!

• CCA-specific capability
• Requirement of emerging scientific apps

– Generalized model coupling
– Efficient daisy-chaining of numerical libraries
– Visualization (parallel rendering / serial gathering)

• Fundamental issue ~ data decompositions
– Different distribution for each parallel component
– Need to reconcile disparate data organizations

• And, more than just parallel data …
… Parallel method invocations, too!

CCA
Common Component Architecture

48

The “Basic” Problem:
Parallel Data Exchange

“N”

“M”

CCA
Common Component Architecture

49

Current MxN Capabilities

• Parallel data exchange operations
– Describe and register data / decompositions
– Map communication schedules
– Build MxN connections

• Various synchronization options

– Initiate data transfers, per parallel instance
• Local dataReady() method

• Foundation for generalized model coupling
– Spatial and temporal interpolation
– Units conversion …

CCA
Common Component Architecture

50

MxN Progress to Date…

• Generalized MxN specification
– Built on CUMULVS (ORNL) and PAWS (LANL)

• SCMD peer MxN component solution
– Visualization, combustion and climate apps …

• Parallel Remote Method Invocation (PRMI)
– Preliminary semantics and specifications

• Distributed MxN solution
– MPI I/O approach

CCA
Common Component Architecture

51

MxN Interface Specification

• Generalizes many existing tools
– Primarily CUMULVS (ORNL) and PAWS (LANL)

• Also “DataCutter” at U. Maryland and others

– Several synchronization models subsumed
• Point-to-point send & receive (PAWS)
• Persistent channel w/periodic transfers (CUMULVS)

– Dense, rectangular data distributions supported
• A la HPF ~ e.g. block, cyclic, collapse
• Some unstructured mesh experiments (incl. triangular)

• Several interface evolutions (ongoing)
– Reconciling the appropriate level of detail & flexibility
– End result surpasses original tools

CCA
Common Component Architecture

52

MxN “Explicit” Component Solution
• Port-based direct invocation of MxN methods

– Most general solution, but …
– Most challenging to the end-user scientist

• “Assembly language” level interface …
• Preliminary platform for experimentation, higher-level functs

• Several demonstrations (SC2001, SC2002)
– Increasingly elaborate visualization solutions

• Incorporated generalized data description since SC2001
(DADF)

– Two main prototypes (reused in several apps)
• CumulvsMxN ~ first inter-framework component capabilities!
• PawsMxN ~ ping-pong coupling experiments

CCA
Common Component Architecture

53

MxN and Combustion (CFRFS)

• No coupling needs, yet useful for adaptive
chemistry and post-processing…
– Replace DADF with “ParticleCollection”

• Map adaptive mesh patches to “Particle” container

– Interactively offload data for simplification
• “Real” parallel-to-parallel MxN usage… ☺

– Connect several computational clusters
• Plus front-end visualization node(s)
• Glues together multiple SCMD frameworks

– Initial “CumulvsMxNp” prototype culminating …

CCA
Common Component Architecture

54

MxN and Climate (MCT / CCSM)

• Model Coupling Toolkit (MCT - ANL)
– Climate-specific coupling models and technology
– Amenable to generalized MxN specification
– Two-way integration underway

• Re-package MCT as components
• Build MxN component on top of MCT

• Ongoing reconciliation of terms and concepts
– Between MxN and MCT, and CCSM and ESMF…

• Componentization of CCSM models
– Atmosphere, ocean, sea-ice, land-surface, river-

runoff, plus flux couplers …

CCA
Common Component Architecture

55

MxN Future Work ~ Implicit Solutions

• Need simpler, high-level interfaces
– For the non-expert … even automated handling

• Target built-in framework services
– Capture method invocations via port indirection
– Implicitly apply MxN functions to reconcile parallel

data in method arguments & results
• Increases framework complexity

– Use pluggable service registration!
– Requires additional method specifications …

CCA
Common Component Architecture

56

Parallel Remote Method Invocation (PRMI)

• Next step beyond “simple” data exchange
– Method itself has parallel context
– Specification of semantics and policies is key!

• Preliminary PRMI progress:
– PAWS prototype and early policy identification

• Invocation scheduling, marshalling arguments & results
– 2nd SCIRun prototype explores method specification

• SIDL extensions for “independent” and “collective” methods
• With sub-grouping, generalizes PRMI invocation semantics

• Still much research ahead …
– Transport mechanisms (SOAP, etc.)
– Parallel data argument and results specifications

CCA
Common Component Architecture

57

Distributed MxN Scenarios

• Large body of distributed HPC applications
– E.g., sensor networks…

• SCMD MxN solutions incompatible…
– No co-location of components in distributed world
– Fundamental differences in connection semantics

• Early exploration (Indiana) ~ MxN via MPI-I/O
– Stream-based communication paradigm

• Analog to file-based exchanges in serial codes
• Parallelization of data transfers hidden internally

– Eases integration of existing applications
• Also useful for unit testing of application components

CCA
Common Component Architecture

58

Distributed MxN Future Work

• Construct full prototype
– Using ROMIO MPI-I/O (e.g., MPICH and LAM)
– Enables support for derived data types

• Assemble full MxN component solution
– Mediates data transfers among MPI programs

• Scalability tests
– Between 2 large clusters (200 CPUs each)

CCA
Common Component Architecture

59

Model Coupling Future Work

• MxN parallel data redistribution is just the
beginning of real model coupling …
– Fundamental data exchange technology

• Need interpolation and data conversion
– Spatial ~ different meshes & coordinate spaces
– Temporal ~ different time frames / rates
– Flux Conservation
– Units conversion

• Must explore composing “filters” with MxN
– Pipeline efficiency and “super-components”

CCA
Common Component Architecture

60

MxN Summary

• Stable specification and component solutions
– For visualization, emerging combustion and climate
– Next step ~ implicit framework services

• Parallel Remote Method Invocation (PRMI)
– Initial semantics being defined, much to do
– High-level handling of MxN transfers

• Distributed MxN experiments
– Prototypes using MPI-I/O

• Tip of the iceberg for production model coupling
– Need development of suite of interpolation “filters”

CCA
Common Component Architecture

User Outreach and
Applications Integration

Coordinator:
David E. Bernholdt (ORNL)

CCA
Common Component Architecture

62

Approach

• Education and General Outreach
– Tutorials
– Talks
– Papers
– Other outreach activities

• Applications
– “Internal” application focus efforts

• Quantum Chemistry
• Climate Modeling

– Other applications

CCA
Common Component Architecture

63

The CCA Tutorial
• CCA Forum Tutorial Working Group

– Rob Armstrong (SNL), David Bernholdt (ORNL, chair), Lori Freitag
Diachin (SNL), Wael Elwasif (ORNL), Dan Katz (JPL), Jim Kohl
(ORNL), Gary Kumfert (LLNL), Lois Curfman McInnes (ANL),
Boyana Norris (ANL), Craig Rasmussen (LANL), Jaideep Ray
(SNL), Torsten Wilde (ORNL)

• Eight modules:
– Introduction to Components
– CCA Concepts
– A Simple Component Example
– Language Interoperability using Babel
– Writing CCA Components
– Introduction to the Ccaffeine Framework
– More Complex Component-Based Applications
– CCA Status and Plans

• Simple numerical integration example (software)

CCA
Common Component Architecture

64

Tutorial Presentations

Pasadena, CACCA Forum MtgJan 2003

Baltimore, MDSC2002Nov 2002

Santa Fe, NMLACSI SymposiumOct 2002

Half Moon Bay, CACCA Forum MtgOct 2002

LBLACTS Collection
Workshop

Sep 2002

ANLCCA Forum MtgJun 2002

Townsend, TNCCA Forum MtgApr 2002

Santa Fe, NMCCA Forum MtgJan 2002

CCA
Common Component Architecture

65

Publications, Presentations,
and Other Activities

• More than 80 presentations
and papers
– Includes numerous

presentations at organized
meetings/workshop of
prospective users

– National and international
conferences in computer
science and other domains

– Journal publications
• Other outreach activities

– Special meetings with
(prospective) users

– Organized symposia at
major meetings

– SC2001, SC2002

CCA
Common Component Architecture

66

Outreach – Future Plans

• Continue tutorials based on demand

• Consider offering tutorials over Access Grid

• Emphasize publications and written
documentation

• Develop “best practices” guidelines

CCA
Common Component Architecture

67

Computational Facility for Reacting
Flow Science (CFRFS)

• SciDAC BES project, H. Najm PI
• Investigators: Sofia Lefantzi (SNL),

Jaideep Ray (SNL), Sameer Shende
(Oregon)

• Goal: A “plug-and-play” toolkit environment for flame
simulations

• Problem Domain: Structured adaptive mesh
refinement solutions to reaction-diffusion problems

• Interaction Model: Key investigator (Ray) with joint
CCA/CFRFS affiliation

CCA
Common Component Architecture

68

Scientific and Technical Summary
• H2-Air ignition on a structured

adaptive mesh, with an
operator-split formulation

• RKC for non-stiff terms, BDF
for stiff

• 9-species, 19-reactions, stiff
mechanism

• 1cm x 1cm domain; max
resolution = 12.5 microns

• Kernel for a 3D, adaptive mesh
low Mach number flame
simulation capability in SNL,
Livermore

• Components are usually in C++
or wrappers around old F77 code

• Developed numerous
components
– Integrator, spatial discretizations,

chemical rates evalutator,
transport property models, timers
etc.

– Structured adaptive mesh, load-
balancers, error-estimators (for
refining/coarsening)

– In-core, off-machine, data
transfers for post-processing

• TAU for timing (Oregon, PERC)
• CVODES integrator (LLNL,

TOPS)

CCA
Common Component Architecture

69

Impact of CCA
• Basis of “plug-and-play” toolkit environment

– Would otherwise have been a complex software problem

• Rapid, focused development
– Second-generation components for higher accuracy and

stabilized numerics developed in 4 months
– Swapped in without effecting remainder of application

• Reuse of external software: TAU, CVODES

Future Plans
• New convective physics capabilities
• New adaptive mesh numerical schemes

CCA
Common Component Architecture

70

Computational Chemistry
• Molecular Optimization
• Investigators: Steve Benson (ANL)

Curtis Janssen (SNL), Liz Jurris
(PNNL), Manoj Krishnan (PNNL),
Lois McInnes (ANL), Jarek
Nieplocha (PNNL), Boyana Norris
(ANL), Jason Sarich (ANL), Theresa
Windus (PNNL)

• Goal: Demonstrate interoperability
between packages, develop
experience with large existing code
bases, seed interest in Chemistry
domain

• Problem Domain: Optimization of
molecular structures using quantum
chemical methods

• Interaction Model: “Internal” project
of CCA and TOPS researchers

• Advanced Software for the
Calculation of Thermochemistry,
Kinetics, and Dynamics

• SciDAC BES project, Al Wagner PI

• Investigators: Ronald Duchovic
(Indiana-Purdue Fort Wayne),
Wael Elwasif (ORNL), Lois
McInnes (ANL), Craig Rasmussen
(LANL)

• Goal: Develop a standard interface
to provide numerical potential
energy surface information to
reaction dynamics codes

• Problem Domain: Reaction
dynamics

• Interaction Model: Consultation

CCA
Common Component Architecture

71

Scientific and Technical Summary
Molecular Optimization
• Decouple geometry

optimization from electronic
structure

• Demonstrate interoperability of
electronic structure
components

• Build towards more challenging
optimization problems, e.g.,
protein/ligand binding studies

• Software:
– Electronic structure: MPQC,

NWChem,
– Optimization:TAO
– Linear algebra: Global Arrays,

PETSc

Reaction Dynamics
• Software: POTLIB
• Developing a component

interface for POTLIB
– Original interface makes

extensive use of Fortran
common blocks

CCA
Common Component Architecture

72

CCA Impact
• Demonstrated unprecedented interoperability

in a domain not known for it
• Demonstrated value of collaboration through

components
• Gained experience with several very different

styles of “legacy” code

Future Plans
• Extend to more complex optimization problems
• Extend to deeper levels of interoperability
• Work towards merging interfaces

CCA
Common Component Architecture

73

CCSM
• SciDAC BER project,

John Drake and Robert
Malone PIs

• Goals: Investigate
model coupling and
parameterization-level
componentization within
models

ESMF
• NASA project, Tim

Killeen, John Marshall,
and Arlindo da Silva PIs

• Goal: Build domain-
specific framework for
the development of
climate models

• Investigators: John Drake (ORNL), Wael Elwasif (ORNL),
Michael Ham (ORNL), Jay Larson (ANL), Everest Ong
(ANL)

• Interaction Model: Key researchers with joint affiliation:
Larson (CCA, CCSM, ESMF), Ham (CCA, CCSM)

Climate Modeling

CCA
Common Component Architecture

74

Scientific and Technical Summary

• Model Coupling Toolkit
(MCT)
– Coupler for CCSM
– Basis for ESMF coupler
– Contributions to MxN
– River runoff model

• Community Atmosphere
Model (CAM)
– Componentization at

physics/dynamics
interface

• ESMF
– Prototype superstructure
– Investigating grid layer

interfaces

• Throughout: F90 critical
– Babel, Chasm

CCA
Common Component Architecture

75

CCA Impact
• Time-critical opportunity to influence

construction of ESMF
• Two-way exchange on model coupling
• Introducing components in conjunction with

CAM refactorization

Future Plans
• Continue componentization of MCT
• Continue componentization of CAM
• Continue interactions with ESMF
• Small adjustments to deliverables

CCA
Common Component Architecture

76

Other Applications

• CCA is gaining awareness and visibility

• We’ve interacted with many groups; adoption is up
to them

• We expect that many will migrate to CCA to use
forthcoming tools from Math ISICs

• “Serious” applications available now and in near
future will help convince others that CCA is usable

• Interactions expected to shift toward increasing
consultation

CCA
Common Component Architecture

Conclusion

CCA
Common Component Architecture

78

Current Impact of CCA in SciDAC

• Chemistry and combustion applications
– In active use by the investigators for their research

• Catalyst for interoperability
– Interfaces from APDEC, TOPS, TSTT imported to

applications (Combustion and other apps)
– Climate: MCT interfaces CCA’ified into CCSM
– Open Babel, Chasm, etc.: language

interoperability for developers and users
• Successful education and outreach

– Tutorials and manuals

CCA
Common Component Architecture

79

CCA Impact Outside of SciDAC
• Climate prototype (Courtesy Shujia Zhou, NASA Goddard)

ATM

OCN

CCA
Common Component Architecture

80

CCA in the SciDAC Future:
Research in Service of the HPC Community

• The Climate Year
– Emphasize climate applications
– Community Climate Simulation Model (CCSM) and the

greater climate community
• The Fortran Year

– Many very cool ideas were developed last year
– And are now being applied to climate and other applications

• Research in
– MxN: cooperating but separate parallel decompositions
– QoS: balancing resources for numerical components
– Conceptual design patterns: abstracted interoperabilty

• More and different outreach
– Greater emphasis on papers and meetings
– Ongoing tutorials

	The State of the CCA ISIC(aka CCTTSS)
	Outline
	Introduction
	What are Components, Frameworks?
	Ports: Connections Interface Exchange
	Framework Stays “Out of the Way” of Component Parallelism
	CCA Research Thrusts and Application Domains
	Reacting Flow Software “Facility”
	CCA Frameworks and Infrastructure
	Ccaffeine
	XCAT
	SCIRun/BioPSE/Uintah
	Why three CCA Frameworks?
	Course Correction: Framework Interoperability, not Integration
	SIDL/Babel
	Course Correction: Open Babel
	Course Correction: Fortran 90
	Chasm
	Component Packaging and Deployment
	Cross Fertilization
	Scientific Components
	Approach
	Motivation for Common Interfaces
	Current Interface Development Activities
	A Case Study: The TSTT/CCA Mesh Interface
	TSTT: Issues that have arisen …
	Scientific Components and Applications
	Component Inventory:Data Management, Meshing and Discretization
	A Component Example Close-up: GAComponent
	Component Inventory:Integration, Optimization, and Linear Algebra
	Component Inventory:Parallel Data Description, Redistribution, and Visualization
	Component Inventory:Services, Graphical Builders, and Performance
	GA and TaoSolver Components:Interoperability, Performance, and Applications
	Scalability of Scientific Data Components in CFRFS Combustion Applications
	Collaborations with the TSTT, APDEC, and TOPS SciDAC Centers
	Future Work Summary
	“MxN” Parallel Data Redistribution
	Cooperating Parallel Components…?!
	The “Basic” Problem:Parallel Data Exchange
	Current MxN Capabilities
	MxN Progress to Date…
	MxN Interface Specification
	MxN “Explicit” Component Solution
	MxN and Combustion (CFRFS)
	MxN and Climate (MCT / CCSM)
	MxN Future Work ~ Implicit Solutions
	Parallel Remote Method Invocation (PRMI)
	Distributed MxN Scenarios
	Distributed MxN Future Work
	Model Coupling Future Work
	MxN Summary
	User Outreach and Applications Integration
	Approach
	The CCA Tutorial
	Tutorial Presentations
	Publications, Presentations, and Other Activities
	Outreach – Future Plans
	Computational Facility for Reacting Flow Science (CFRFS)
	Scientific and Technical Summary
	Impact of CCA
	Computational Chemistry
	Scientific and Technical Summary
	CCA Impact
	Climate Modeling
	Scientific and Technical Summary
	CCA Impact
	Other Applications
	Conclusion
	Current Impact of CCA in SciDAC
	CCA Impact Outside of SciDAC
	CCA in the SciDAC Future: Research in Service of the HPC Community

