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Abstract

We report on experimental and theoretical findings of front destabilization that causes

spontaneous spiral–vortex nucleation and produces a state of spatio-temporal disorder. The

experiments were carried out on an oscillatory photosensitive Belousov–Zhabotinsky reaction

that is periodically forced in time. Numerical studies were carried out on a modified Complex

Ginzburg–Landau equation and on the FitzHugh–Nagumo model. Using velocity–curvature

relations for fronts we associate the onset of spatio-temporal disorder with the Non-

equilibrium Ising Bloch (NIB) bifurcation, and study the generic patterns that form on both

sides of the bifurcation as the distance from it is increased.

r 2005 Elsevier B.V. All rights reserved.

PACS: 82.40.Ck; 82.40.Bj; 05.45.Xt

Keywords: Pattern formation; Belousov–Zhabotinsky reaction; Ginzburg–Landau
see front matter r 2005 Elsevier B.V. All rights reserved.

.physa.2005.05.018

nding author.

dress: hagberg@lanl.gov (A. Hagberg).

www.elsevier.com/locate/physa


ARTICLE IN PRESS

A. Hagberg et al. / Physica A 356 (2005) 88–94 89
1. Introduction

The onset of spatio-temporal chaos in extended systems often involves the
spontaneous appearance of phase singularities in the form of either spiral vortices
or defects [1,2]. Various realizations of this phenomenon have been studied both
in models and in experiments [3–5]. In most studies the singularities were pre-
ceded by instabilities of periodic patterns. Instabilities of localized structures and
their impact on pattern formation have also been studied theoretically and
experimentally. Transverse instabilities of fronts, for example, have been related to
the formation of stationary dendrites [6] and labyrinths [7,8]. Very few studies,
however, addressed the possibility of a front instability leading to phase singularities
and spatio-temporal chaos.
In this paper we present theoretical and experimental evidence for a state

of spatio-temporal chaos in bistable systems that is maintained by repeated
nucleation of spiral–vortex pairs along front lines. The state, which we call
‘‘Bloch-front turbulence’’, occurs in the vicinity of the Nonequilibrium Ising
Bloch (NIB) front bifurcation. The NIB bifurcation is a pitchfork bifurcation
from a stationary ‘‘Ising’’ front to a pair of counter–propagating ‘‘Bloch’’ fronts
as a system control parameter is varied. It has been analyzed in the FitzHugh–Na-
gumo (FHN) [9] and Complex Ginzburg–Landau (CGL) equations [10], and
has been observed in liquid crystals [11,12], chemical reactions and catalytic
surface reactions [13]. In addition, we further study the patterns that form
on both sides of the NIB bifurcation as the distance from the bifurcation is
increased. The results reported here extend earlier theoretical and experimental
results [14].
2. Spiral–vortex nucleation

We first present experimental results demonstrating spontaneous vortex
nucleation along front lines and the subsequent development of Bloch-front
turbulence. The experiments were carried out on an oscillatory photosensitive
Belousov–Zhabotinsky (BZ) reaction that is periodically forced in time with
spatially uniform light pulses [15]. Details about the experimental setup can be
found in Refs. [15,16]. The forcing frequency is chosen to be approximately
twice the uniform oscillation frequency of the unforced reaction. Under this
condition the system is bistable with two coexisting stable states of uniform
oscillations at half the forcing frequency and with oscillation phases differing
by p. Fig. 1(left) shows the time evolution of an initial planar front between
the two uniform states and the spontaneous nucleation of spiral–vortex pairs
along it. As the nucleation process continues, a disordered state occupying the
whole physical domain develops. In the asymptotic disordered state the vortices
are sufficiently dense for the rate of vortex annihilation to become comparable to
that of vortex nucleation. As a result, the number of vortices fluctuates around a
mean value.
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Fig. 1. Spiral vortex nucleation in the BZ system (left) and in the CGL equations (right). Frames (a)–(c)

show the phase of the oscillations at near half the driving frequency at three successive times. Frames

(d)–(f) show the position of the vortices along the front at the corresponding times. (a,d) The initial nearly

planar front is unstable to transverse perturbations. (b,e) Vortices form in pairs along the front. (c,f)

Vortices eventually fill up the entire system. More details can be found in Ref. [14].
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Similar processes have been found in numerical solutions of CGL equations (with
a term accounting for the periodic forcing [14]) and of the FHN model near the NIB
bifurcations [17]. Fig. 1(right) shows, in the CGL equations, the destabilization of a
planar front followed by the spontaneous nucleation of vortex pairs and the
convergence to a disordered state of Bloch-front turbulence.
3. Pattern formation and the NIB bifurcation

By changing a control parameter to cross the NIB bifurcation, the following main
sequence of patterns is observed. Starting in the Bloch regime (small forcing
amplitudes in the experiment and in the CGL equations) stable spiral waves are
observed. As the NIB is crossed, the spirals become unstable and we find Bloch-front
turbulence. Moving away from the NIB bifurcation into the Ising regime (higher
forcing amplitudes) labyrinthine patterns develop. Farther into the Ising regime
large domain patterns are found. The complete sequence of patterns observed in the
experiment while changing parameters across the NIB bifurcation is shown in Fig. 2.
The corresponding sequence as obtained by numerical solutions of the FHN model
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Fig. 2. The transition from rotating spirals to spatio-temporal chaos, labyrinths, and uniform patterns in

the BZ system. The forcing frequency is held constant at 0.03Hz and the forcing intensity is increased

slowly from left to right: 32.8, 42.3, 44.8, 53.2W/m2. The frame size is 5:41mm� 5:41mm. Chemical
conditions: Reservoir A: 0.001M tris(2; 20-bipyridyl)dichlororuthenium(II) hexahydrate, 0.8M H2SO4,

0.184M KBrO3; Reservoir B: 0.32M malonic acid, 0.3M NaBr, 0.8M H2SO4, 0.184M KBrO3.

Fig. 3. Top: the relation between the normal front velocity, C, and front curvature, k, varying the control
parameter � in an FHN reaction–diffusion model (see Footnote 1). (a) Counter-propagating Bloch fronts,

� ¼ 0:01, (b) near the NIB bifurcation, � ¼ 0:035, (c) Ising front with transverse front instability, � ¼ 0:07,
(d) Ising front with no transverse front instability, � ¼ 1:0. Bottom: two-dimensional pattern types

corresponding to the parameters in the top C–k relations. (e) Spiral wave, (f) Bloch-front turbulence, (g)

labyrinthine pattern, (h) large domains of uniform states.
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is shown in Fig. 3. The control parameter in the FHN model is the ratio, �, of the
activator time scale to the inhibitor time scale [9].1 The same sequence can also be
reproduced by solving the CGL equations.
1The FHN model we use is ut ¼ u � u3 � v þ r2u, vt ¼ �ðu � 2v � 0:01Þ þ 2r2v. The solution domain is

a 256� 256 square.
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4. The pattern formation mechanisms

The appearance of spiral waves in the Bloch regime far from the NIB is well
understood: the spiral-wave core is a short segment along the front line with a
transition from one Bloch front to the other [18,19]. The appearance of labyrinthine
patterns in the Ising regime away from the NIB is also fairly well understood. The
early evolution of the pattern is driven by a transverse front instability [17]. At later
stages, repulsive front interactions become important and are responsible for the
final length scale that characterizes the pattern [8,20]. Additionally, in the Ising
regime the stabilization of fronts to transverse perturbations causes the existence of
large domain patterns. Domains of either uniform state typically either grow or
shrink to fill the entire system [21].
To understand the Bloch-front turbulence mechanism and why it is found at an

intermediate range in parameter space between spiral waves and labyrinths, we use
the relations between the normal velocities of fronts, C, and their curvatures, k. Fig.
3 shows four C–k relations corresponding to the four pattern types shown in Fig. 3:
spiral waves, Bloch-front turbulence, labyrinths and large domain patterns. The C–k
relations have been calculated using a singular perturbation analysis of the FHN
model for weakly curved fronts [17].
Far from the NIB bifurcation in the Bloch regime (Fig. 3(a)) there are three C–k

branches showing near linearly decreasing dependences of normal velocity on
curvature. The middle branch corresponds to the unstable Ising front and the other
two branches to the pair of Bloch fronts. The negative slopes imply stability of the
Bloch front to transverse perturbations. These conditions give rise to stable spiral
waves.
Far from the NIB bifurcation in the Ising regime (Fig. 3(c)) there is a single

branch, corresponding to the single Ising front. The positive slope over a wide
curvature range implies instability to transverse perturbations of both planar and
curved Ising fronts. This instability, together with repulsive front interactions (due to
inhibitor diffusion in the FHN model), leads to labyrinthine patterns.
In the vicinity of the NIB bifurcation, the C–k relation takes the form of the

universal unfolding of the pitchfork bifurcation as shown in Fig. 3(b). Two features
of this form are significant. The first is that the Bloch front branches terminate at a
small absolute curvature values, implying that small realizable curvature values that
develop in the course of the pattern evolution may induce a transition to the other
Bloch front branch. A transition of that kind, occurring along a finite front segment,
involves a reversal in the propagation direction of this segment which is
accompanied by the nucleation of a vortex pair. The second significant feature is
that the slope of the C–k relation at small curvature values is positive implying a
transverse front instability. This instability generates front segments with negative
curvatures that increase in time and provides the driving force for vortex pair
nucleation. This is exactly the process shown in Fig. 1.
Finally, much farther into the Ising regime (high � values in the FHN model) the

C–k relation can have a negative slope, as Fig. 3(d) shows, the Ising front becomes
stable to transverse perturbations and large domain patterns prevail.
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5. Conclusion

The results reported here suggest the existence of a generic sequence of states
across the NIB bifurcation in bistable systems: Bloch spiral waves, Bloch front
turbulence, Ising labyrinths and large domain Ising patterns (see Figs. 2 and 3). The
results are based on numerical studies of two different models and on experimental
studies of the forced BZ reaction.
Acknowledgements

This work was supported by the Department of Energy under contracts W-7405-
ENG-36, and the DOE Office of Science Advanced Computing Research program in
Applied Mathematical Sciences.
References

[1] M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 (3)

(1993) 851.

[2] I.S. Aranson, L. Kramer, The world of the complex Ginzburg–Landau equation, Rev. Mod. Phys. 74

(1) (2002) 99–143.

[3] P. Coullet, L. Gil, J. Lega, Defect-mediated turbulence, Phys. Rev. Lett. 62 (1989) 1619.

[4] Q. Ouyang, J.M. Flesselles, Transition from spirals to defect turbulence driven by a convective

instability, Nature 379 (6561) (1996) 143–146.

[5] P. Manneville, H. Chate, Phase turbulence in the 2-dimensional complex Ginzburg–Landau equation,

Physica D 96 (1996) 30–46.

[6] W.W. Mullins, R.F. Sekerka, Stability of a planar interface during solidification of a dilute binary

alloy, J. Appl. Phys. 35 (1964) 444–451.

[7] M. Seul, D. Andelman, Domain shapes and patterns: the phenomenology of modulated phases,

Science 267 (1995) 476–483.

[8] R.E. Goldstein, D.J. Muraki, D.M. Petrich, Interface proliferation and the growth of labyrinths in a

reaction–diffusion system, Phys. Rev. E 53 (4) (1996) 3933–3957.

[9] A. Hagberg, E. Meron, Pattern formation in non-gradient reaction–diffusion systems: the effects of

front bifurcations, Nonlinearity 7 (1994) 805–835.

[10] P. Coullet, J. Lega, B. Houchmanzadeh, J. Lajzerowicz, Breaking chirality in nonequilibrium systems,

Phys. Rev. Lett. 65 (1990) 1352.

[11] S. Nasuno, N. Yoshimo, S. Kai, Structural transition and motion of domain walls in liquid crystals

under a rotating magnetic field, Phys. Rev. E 51 (1995) 1598.

[12] T. Frisch, J.M. Gilli, Excitability and defect-mediated turbulence in nematic liquid crystal, J. Phys. II

France 5 (1995) 561–572.

[13] G. Haas, M. Bär, I.G. Kevrekidis, P.B. Rasmussen, H.-H. Rotermund, G. Ertl, Observation of front

bifurcations in controlled geometries: from one to two dimensions, Phys. Rev. Lett. 75 (1995) 3560.

[14] B. Marts, A. Hagberg, E. Meron, A.L. Lin, Bloch-front turbulence in a periodically forced

Belousov–Zhabotinsky reaction, Phys. Rev. Lett. 93 (2004) 108305.

[15] V. Petrov, Q. Ouyang, H.L. Swinney, Resonant pattern formation in a chemical system, Nature 388

(1997) 655–657.

[16] A.L. Lin, M. Bertram, K. Martinez, H.L. Swinney, A. Ardelea, G.F. Carey, Resonant phase patterns

in a reaction–diffusion system, Phys. Rev. Lett. 84 (2000) 4240–4243.

[17] A. Hagberg, E. Meron, Complex patterns in reaction–diffusion systems: a tale of two front

instabilities, Chaos 4 (3) (1994) 477–484.



ARTICLE IN PRESS

A. Hagberg et al. / Physica A 356 (2005) 88–9494
[18] P. Coullet, K. Emilsson, Strong resonances of spatially distributed oscillators: a laboratory to study

patterns and defects, Physica D 61 (1992) 119–131.

[19] A. Hagberg, E. Meron, Kinematic equations for front motion and spiral-wave nucleation, Physica A

249 (1998) 118.

[20] Y. Nishiura, M. Mimura, Layer oscillations in reaction–diffusion systems, SIAM J. Appl. Math. 49

(8) (1989) 481.

[21] B. Marts, K. Martinez, A.L. Lin, Front dynamics in an oscillatory bistable Belousov–Zhabotinsky

chemical reaction, Phys. Rev. E 70 (2004) 056223.


	Bloch-front turbulence: theory and experiments
	Introduction
	Spiral-vortex nucleation
	Pattern formation and the NIB bifurcation
	The pattern formation mechanisms
	Conclusion
	Acknowledgements
	References


