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Abstract

A general scheme for detecting and analyzing topological patterns in large complex networks
is presented. In this scheme the network in question is compared with its properly randomized
version that preserves some of its low-level topological properties. Statistically signi$cant de-
viation of any topological property of a network from this null model likely re1ects its design
principles and/or evolutionary history. We illustrate this basic scheme using the example of the
correlation pro$le of the Internet quantifying correlations between degrees of its neighboring
nodes. This pro$le distinguishes the Internet from previously studied molecular networks with a
similar scale-free degree distribution. We $nally demonstrate that the clustering in a network is
very sensitive to both the degree distribution and its correlation pro$le and compare the clustering
in the Internet to the appropriate null model.
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Networks have emerged as a unifying theme in complex systems research. It is in
fact no coincidence that networks and complexity are so heavily intertwined. Any future
de$nition of a complex system should re1ect the fact that such systems consist of many
mutually interacting components. These components are not identical as say electrons
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in condensed matter physics. Instead each of them has a unique identity separating it
from others. The very basic question one may ask about a complex system is which
other components a given component interacts with? Systemwide this information can
be visualized as a graph whose nodes correspond to individual components and edges
to their mutual interactions. Such a network can be thought of as a backbone of the
complex system along which propagate various signals and perturbations.
Living organisms provide us with a quintessential paradigm for a complex system.

Therefore, it should not be surprising that in biology networks appear on many diEerent
levels: from genetic regulation and signal transduction in individual cells, to neural
system of animals, and $nally to food webs in ecosystems. However, complex networks
are not limited to living systems: in fact they lie at the foundation of an increasing
number of arti$cial systems. The most prominent example of this is the Internet and
the World Wide Web being correspondingly the “hardware” and the “software” of the
network of communications between computers.
An interesting common feature of many complex networks is an extremely broad,

often scale-free, distribution of degrees (de$ned as the number of immediate neighbors)
of their nodes [1]. While the majority of nodes in such networks are each connected to
just a handful of neighbors, there exist a few hub nodes that have a disproportionately
large number of interaction partners. The distribution of degrees is an example of a
low-level topological property of a network. The degree of a node counts how many
neighbors it has, but, being a single node property, it contains no information about the
identity of those neighbors. It is clear that most of non-trivial properties of networks
lie in the coordinated way in which their nodes are connected to each other. However,
such multi-node patterns are rather diKcult to identify and quantify. By just looking at
many large complex networks one gets the impression that they are wired in a rather
haphazard way. One may wonder which topological properties of a given network are
indeed random, and which arose due to evolution and/or fundamental design principles
and limitations? Such non-random features can then be used to identify the network
and better understand the underlying complex system.
In this work we propose a universal recipe for how such information can be ex-

tracted. To this end we $rst construct a properly randomized null model of a given
network. As was pointed out in Ref. [2], broad distributions of degrees observed in
most complex networks indicate that in such networks the degree is an important in-
dividual characteristic of a node and as such it should be preserved in any meaningful
randomization process. In addition to degrees one may choose to preserve some other
low-level topological properties of the network. Any higher level topological prop-
erty, such as e.g. the pattern of correlations between degrees of neighboring nodes,
the number of loops of a certain type, the number and sizes of components, the di-
ameter of the network, spectral properties of its adjacency matrix, can then be mea-
sured in the real complex network and separately in an ensemble of its randomized
counterparts. Dealing with the whole ensemble allows one to put error bars on any
quantity measured in the randomized network. One then concentrates only on those
topological properties of the complex network that signi$cantly deviate from the null
model, and, therefore, are likely to re1ect its basic design principles and/or evolutionary
history.
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Fig. 1. One elementary step of the local rewiring algorithm. A pair of edges A–B and C–D is randomly
selected. They are then rewired in such a way that A becomes connected to D, and C to B, provided that
none of these edges already exist in the network, in which case the rewiring step is aborted, and a new pair
of edges is selected. The last restriction prevents the appearance of multiple edges connecting the same pair
of nodes.

The local rewiring algorithm that randomizes a network yet strictly conserves degrees
of its nodes [3] 1 consists of repeated application of the elementary rewiring step shown
and explained in detail in Fig. 1. It is easy to see that the number of neighbors of every
node in the network remains unchanged after an elementary step of this randomization
procedure. The directed network version of this algorithm separately conserves the
number of upstream and downstream neighbors (in- and out-degrees) of every node.
The matlab programs for both directed and undirected versions of this algorithm can
be downloaded at our webpage. 2

Another simple numerical algorithm generating such a random network “from
scratch” was proposed in Ref. [2]. 3 It starts with assigning to each node a number
ki of “edge stubs” equal to its desired degree. A random network is then constructed
by randomly picking two such edge stubs and joining them together to form a real
edge connecting these two nodes. One of the limitations of this “stub reconnection”
algorithm is that for broad distribution of degrees, which is usually the case in com-
plex networks [1], the algorithm generates multiple edges joining the same pair of
hub nodes. This problem cannot be avoided by simply not allowing multiple edges to
form during the reconnection process as in this case the whole algorithm would get
stuck in a con$guration in which the remaining edge stubs have no eligible partners. 4

Fortunately the local rewiring algorithm [3] (see footnote 1) instead of completely
deconstructing a network and then randomly putting it back together, only gradually

1 These algorithms $rst appeared in the context of random matrices in Gale [4]. More recently they were
used in the graph–theoretical context of Kannan et al. [4].

2 The matlab programs simulating several versions of the local rewiring algorithm can be downloaded for
non-commercial purposes at http://www.cmth.bnl.gov/∼maslov/matlab.htm

3 This algorithm also $rst appeared in the mathematical literature [5].
4 We have numerically studied this question for the scale-free network of the Internet, described in details

later on in the text. The edge reconnection algorithm not allowing for the formation of multiple links got
stuck every time we tried it. It, was found that in the resulting network the average number of unconnected
edge stubs is 23 times its standard deviation, which completely precludes even the occasional completion of
this algorithm.

http://www.cmth.bnl.gov/~maslov/matlab.htm
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changes its wiring pattern. Hence, any topological constraint such as e.g. that of no
multiple edges, or no disconnected components, can be maintained at each step of the
way.
Once an ensemble of randomized versions of a given complex network is generated,

the abundance of any topological pattern is compared between the real network and
characteristic members of this ensemble. This comparison can be quanti$ed using two
natural parameters: (1) the ratio R(j)=N (j)=Nr(j), where N (j) is the number of times
the pattern j is observed in the real network, and Nr(j) is the average number of its
occurrences in the ensemble of its random counterparts; (2) the Z-score of the deviation
de$ned as Z(j) = [N (j) − Nr(j)]=PNr(j), where PNr(j) is the standard deviation of
Nr(j) in the randomized ensemble. This general idea was recently applied to protein
networks in yeast [3] and E. coli [6].
We now illustrate our general methods using the example of the Internet, de$ned

on the level of autonomous systems (AS). Autonomous Systems are large groups
of workstations, servers, and routers usually belonging to one organization such as
e.g. a university, or a business enterprise. The data on direct connections between
Autonomous Systems is regularly updated and is available on the website of the
National Laboratory for Applied Network Research. 5 Such coarse-grained structure
of the Internet was the subject of several recent studies [7–10]. In the following analy-
sis we use the millennium snapshot of the Internet (data from January 2, 2000), when
N = 6474 Autonomous Systems were linked by E = 12572 bi-directional edges.
It was recently reported [7] that the Internet is characterized by a scale-free distribu-

tion of AS degrees p(K)˙1=K� = 1=K2:1±0:2. One can show that for such a scale-free
network the above mentioned constraint of no multiple connections between nodes is
extremely important. Indeed, degrees of the two highest connected hubs in a scale-free
network scale as kmax ∼ N 1=(�−1). In an uncorrelated random network with no con-
straints on edge multiplicity the expected number of edges connecting these two hubs
scales as k2max=(2E) ∼ N 2=(�−1)−1 (here we assumed that E ∼ N ). When �¡ 3 it in-
creases inde$nitely as N to ∞. For the Internet that corresponds to the two largest
hubs with degrees of respectively K0=1458 and K1=750 being connected by as many
as K0K1=(2E) = 1458 · 750=(2 · 12572) = 43:5 edges! Hence, in this case a random
network ensemble generated by our local rewiring algorithm is very diEerent from the
one generated by the stub reconnection algorithm and analytically studied in Ref. [2].
Fig. 2 shows the average degree 〈K1〉K0 of neighbors of nodes with the degree K0

in the real Internet (squares) as well as in a typical random network with no multiple
connections between nodes generated by our local rewiring algorithm (circles). From
this $gure it is clear that most of the 〈K1〉K0˙K

−0:5
0 dependence reported in Ref. [8]

is reproduced in our random ensemble and hence can be attributed to the eEective
repulsion between hubs due to the constraint of having no more than one edge directly
connecting them to each other. In the absence of correlations between degrees of
neighboring nodes by de$nition one has 〈K1〉K0 =const=〈K2〉=〈K〉 [2]. This expression,
shown as a horizontal line in Fig. 2, applies only to a randomized network in which
multiple edges between a pair of nodes are allowed. In a random scale-free network

5 Website maintained by the NLANR Measurement and Network Analysis Group at http://moat.nlanr.net/

http://moat.nlanr.net/
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Fig. 2. The average degree 〈K1〉K0 of neighbors of nodes with degree K0 in the Internet (squares) and its
typical randomized counterpart (circles). Error bars in multiple realizations of the randomized network are
smaller than symbol sizes. The horizontal line is the analytical result 〈K1〉K0 = const = 〈K2〉=〈K〉 � 165
valid for a random network in which multiple edges between pairs of nodes are allowed [2].

with no multiple edges the conditional probability distribution P(K1|K0) crosses over
from K1=K

�
1 for K1�K∗

1 =2E=K0 to 1=K�1 power law tail for K1�K∗
1 . Such a crossover

results in an asymptotic scaling 〈K1〉K0 ∼ K�−3
0 . We have con$rmed numerically that

P(K1|K0) in our randomized ensemble is very similar to that measured in the real
Internet [10].
From the above discussion one may get the impression that the topology of the

Internet is in perfect agreement with its randomized version. This is however not
true. Let N (K0; K1) to denote the total number of edges connecting nodes with de-
grees K0, and K1. 6 This is an example of a higher level topological property of a
complex network, which can be compared to its average value Nr(K0; K1) in the ap-
propriate null-model network. By comparing N (K0; K1) and Nr(K0; K1) one studies the
correlation pro7le of the complex network, quantifying the correlations in degrees of
neighboring nodes. In Fig. 3 we visualize the correlation pro$le of the Internet by
plotting the ratio R(K0; K1) = N (K0; K1)=Nr(K0; K1). Regions on the K0 − K1 plane,
where R(K0; K1) is above (below) 1 correspond to enhanced (suppressed) connections
between nodes with degrees K0 and K1 in the Internet compared to its randomized
counterpart. The statistical signi$cance of these deviations, measured by the Z-score
Z(K0; K1) = (N (K0; K1) − Nr(K0; K1))=PNr(K0; K1), is shown in Fig. 4. To improve
the statistics, in all correlation pro$les studied in this paper we logarithmically binned
the degrees K0 and K1 at two bins per decade. In Figs. 3 and 4 one can see several

6 This quantity was analytically studied in several model networks in Ref. [11].
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Fig. 3. Correlation pro$le of the Internet. The ratio R(K0; K1) = N (K0; K1)=Nr(K0; K1), where N (K0; K1) is
the total number of edges in the Internet connecting pairs of Autonomous Systems with degrees K0 and K1,
while Nr(K0; K1) is its average value in the ensemble of randomized versions of the Internet, generated by
the local rewiring algorithm described in the text.
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Fig. 4. Statistical signi$cance of correlations in the Internet. The Z-score of correlation patterns in the
Internet Z(K0; K1) = (N (K0; K1)− Nr(K0; K1))=PNr(K0; K1). Here PNr(K0; K1) is the standard deviation of
Nr(K0; K1) measured in an ensemble of 1000 randomized networks.

prominent features:

• Strong suppression of edges between nodes of low degrees 3¿K0; K1¿ 1.
• Suppression of edges between nodes of intermediate degrees 100¿K0; K1¿ 10,
• Strong enhancement of the number of edges connecting a node of a low degree
3¿K0¿ 1 to that of an intermediate degree 100¿K1¿ 10.
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On the other hand any pair among the 5 highest degree nodes with K0; K1¿ 300
was found to be connected by an edge, both in the real network, and in a typ-
ical random network. Hence R(K0; K1) is close to 1 in the upper right corner of
Fig. 3.
The strong suppression of connections between pairs of nodes with low degrees can

in part be attributed to the constraint that all AS on the Internet have to be connected
to each other by at least one path. For example, this constraint explicitly forbids links
between a pair of nodes with the degree of 1. However, when we used an ensemble
of random networks in which the formation of isolated clusters was prevented at ev-
ery rewiring step, we found very little change in the observed correlation pro$le. The
division of all nodes on the Internet into three distinct groups of low-, intermediate-,
and highly-connected ones visible in its correlation pro$le may be due to its hierarchi-
cal structure of, correspondingly, users, low-level (possibly regional) Internet service
providers (ISP), and high-level (global) ISP. Similar hierarchical picture was recently
suggested in Ref. [12] on the basis of the traceroute data.
It is worthwhile to note that the correlation pro$le of the Internet measured in

this work makes it qualitatively diEerent from yeast protein networks analyzed by
us earlier [3]. Those molecular networks are characterized by suppressed connections
between nodes of very high degree, and increased number of links between nodes
of intermediate degree. Thus correlation pro$le allows one to diEerentiate between
complex networks with very similar (scale-free) degree distributions.
The correlation pro$le is by no means the only topological pattern one can investigate

in a given complex network, with other examples being its spectral dimension [13],
the betweenness of its edges and nodes [14,8], feedback, feed-forward loops, and other
small network motifs [6]. In the rest of this paper we analyze the level of clustering
[15] of the Internet, quanti$ed by its number of loops of length 3 (triangles). The
real Internet contains 6584 such loops, while its random counterparts, generated by our
local rewiring algorithm, have 8636 ± 224 triangles (this and all future results were
measured in an ensemble of 100 randomized networks.) Thus the clustering of the
real Internet is some 9 standard deviations below its value in a randomized network!
This result is surprising because there are good reasons for the Internet to have above
average level of clustering. Indeed, one expects its nodes to preferentially link according
to their geographical location [8,9], general type of business or academic enterprises
they represent, etc. All these factors usually tend to increase clustering [15]. On the
other hand, the correlation pro$le of the Internet visualized in Fig. 3 naturally leads
to the reduction in clustering. Indeed, the suppression of connections from nodes with
intermediate degrees to other such nodes in favor of nodes with low degrees reduces
the number of triangles in the network.
In order to explore the interplay between the level of clustering in the network

and its correlation pro$le we studied two “extremal” random networks with the same
degrees of individual nodes as the real Internet. The $rst network contained no triangles,
while the second one had 59144 triangles. Both networks were generated using a
simple modi$cation of our basic local rewiring algorithm in which a rewiring step
was accepted only if it did not increase (in the $rst case) or decrease (in the second
case) the number of triangles in the network. This adds a zero-temperature Metropolis
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Fig. 5. The correlation pro$le R(K0; K1) of a network with the same set of degrees as the Internet but with
no triangles. Note the suppression of connections between diEerent hubs in favor of connections between
hubs and nodes of low degree.

dynamics [16] to the elementary “edge swapping” step of our algorithm, 7 in which the
energy function is the number of triangles taken with an appropriate sign. In the $rst
case after some transient time all triangles have disappeared from the network, at which
point we measured its correlation pro$le (Fig. 5). In the second case our algorithm
was designed to generate a network with the largest possible number of triangles.
Computer time limitations have forced us to stop the program when we reached 59144
triangles, which as will be shown later is rather close to the absolute maximum of 63844
triangles for a given set of node degrees. The correlation pro$le of this very clustered
network is shown in Fig. 6. From Fig. 5 one concludes that the correlation pro$le
in which connections between hubs are suppressed in favor of connections between
hubs and nodes of low degree favors a reduced number of triangles. If instead nodes
with similar degrees (including hubs) prefer to connect to each other (the light-colored
area on and around the diagonal in Fig. 6) the number of triangles increases. This
can be demonstrated analytically. Consider an edge connecting a pair of nodes with
degrees K0 and K1. The maximal number of triangles containing this edge is min(K0 −
1; K1 − 1). Indeed, in the best case scenario all K − 1 remaining neighbors of the
smaller degree node are also neighbors of the larger degree node. Therefore, given a
correlation pro$le speci$ed by N (K0; K1)—the number of edges connecting nodes with
degrees K0; K1—the absolute maximum number of triangles in the network is given by
Nmax
� =

∑
K0 ;K1

N (K0; K1)min(K0 − 1; K1 − 1)=6. Here the factor 1
6 corrects for the fact

that in our counting scheme each triangle would be counted 2 times along each of its

7 A diEerent Metropolis dynamics in which edges are rewired one at time was used to generate random
networks in Ref. [17].
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Fig. 6. The correlation pro$le R(K0; K1) of a network with the same set of degrees as the Internet but with
a very large number of triangles (59144). Note the tendency of nodes with similar degrees to connect to
each other.

three sides. Using identities min(K0 − 1; K1 − 1) = (K0 − 1 + K1 − 1)=2 − |K0 − K1|=2
and

∑
K0 ;K1

N (K0; K1)(K0 − 1) =
∑

K0 ;K1
N (K0; K1)(K1 − 1) =N 〈K(K − 1)〉 one $nally

gets:

Nmax
� =

N 〈K(K − 1)〉
6

− 1
12

∑

K0 ;K1

N (K0; K1)|K0 − K1| : (1)

The $rst part of this expression corresponds to a hypothetical situation of the maximal
cliquishness in which all neighbors of every node are connected to each other. It is
easy to see that except for some very special cases of the distribution of degrees
such maximal cliquishness can never be realized. Indeed, whenever a pair of nodes
of unequal degrees K0; K1 are connected to each other the second term in the Eq. (1)
decreases the maximal number of triangles. Given the set of node degrees Ki, one can
easily construct the network with the largest possible number of triangles. One starts by
connecting the largest hub node to other nodes in the order of decreasing degrees. In
the second round of this algorithm one selects the remaining neighbors of the second
largest hub in the order of decreasing degree. The process continues round by round
until neighbors of all nodes are speci$ed. When a node reaches its desired degree it will
be simply skipped during later rounds of this algorithm. One can show that the network
generated by this algorithm has the smallest value of

∑
K0 ;K1

N (K0; K1)|K0−K1| and the
largest number of triangles among all networks with a given set of node degrees. In case
of the Internet such network has 63,884 triangles just below the Nmax

� =64; 702 speci$ed
by its correlation pro$le. These numbers of triangles are an order of magnitude below
the naive estimate N 〈K(K − 1)〉=6 
 690; 000 traditionally used as a normalization
factor in the formula for the clustering coeKcient of a network [15]. Hence, based on
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the traditional de$nition even the “loopiest” network with the same node degrees as the
Internet has a clustering coeKcient of only 0.09! For the “native” correlation pro$le of
the Internet Eq. (1) predicts the maximal number of triangles close to 24,000, which
sets the observed level of clustering (6584 triangles) around 27% of its maximal value
for this correlation pro$le.
In order to check if degree correlations visible in the correlation pro$le of the In-

ternet (Fig. 3) fully account for the observed number of triangles we generated an
ensemble of random networks that preserves not only degrees but also the correlation
pro$le of the complex network. To this end we used a modi$cation of our main local
rewiring algorithm. There are two principal ways in which this can be done. In the $rst
scheme, reminiscent of generating a microcanonical ensemble in statistical physics, one
allows only for those local rewiring steps that strictly conserve the number of edges
N (K0; K1) between nodes with degrees K0; K1. This is achieved by constraining the
selection of pairs of edges for the rewiring step of Fig. 1 only to those connecting
nodes with degrees K0; K1, and K0; K ′

1. It is easy to see that such a local rewiring
step strictly conserves N (K0; K1). In practice we softened randomization constraints by
coarse-graining the logarithm of degree to half-decade bins. Using this “microcanonical
algorithm” we generated an ensemble of networks with 4132± 75 loops. The fact that
the number of loops in the real Internet (6584) is now signi$cantly larger than in these
random networks, con$rms the intuitive notion that the Internet is indeed characterized
by a signi$cant degree of clustering. We have also found that this 60% increase in the
level of clustering is equally spread over the whole spectrum of degrees.
As is always the case with microcanonical algorithms one should worry if the

above algorithm is ergodic. In other words there is no guarantee that in this algo-
rithm the system does not get trapped in a disconnected component of the phase
space. This is easily checked by annealing the network using a canonical Metropolis
[16] version of our algorithm with the energy function or Hamiltonian given by H =∑

K0 ;K1
[N (K0; K1) − Nr(K0; K1)]2=N (K0; K1), and sampling networks at a $nite tem-

perature T . Local moves lowering the Hamiltonian are always accepted, while those
increasing it by PH are only accepted with the probability exp(−�H=T ). As seen in
Fig. 7 the above algorithm nicely extrapolates between the microcanonical algorithm
for small T and the unrestricted local rewiring algorithm for large T . This con$rms
that our microcanonical algorithm is indeed ergodic.
Another conceivable use of the Metropolis algorithm described above is to generate

an arti$cial network with a given distribution of degrees p(K) and a given correlation
pro$le R(K0; K1). To achieve this one $rst generates a seed network with a given p(K),
e.g. by the stub reconnecting algorithm of Ref. [2] (see footnote 3). This network is $rst
annealed using the Metropolis algorithm with the energy functional punishing multiple
connections between nodes. The resulting network, containing no multiple connections
is subsequently annealed with another energy functional favoring the desired correlation
pro$le. This results in an ensemble of random networks with no multiple connections
between nodes and the desired correlation pro$le.
In summary we have proposed a general algorithm to detect characteristic topological

features in a given complex network. In particular, we introduced the concept of the
correlation pro7le, which allowed us to quantify diEerences between diEerent complex
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Fig. 7. The number of loops as a function of the Metropolis temperature observed in an ensemble of random
versions of the Internet. Random networks were generated by the Metropolis [19] version of the local
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number of triangles (6584) in the Internet.

networks even when their degree distributions are similar to each other. Applied to the
Internet, this pro$le identi$es hierarchical features of its structure, and helps to account
for the level of clustering in this network.

Work at Brookhaven National Laboratory was carried out under Contract No. DE-
AC02-98CH10886, Division of Material Science, U.S. Department of Energy.
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