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Abstract

We review a simple model of closed economy, where the economic agents make money
transactions and a saving criterion is present. We observe the Gibbs distribution for zero saving
propensity, and non-Gibbs distributions otherwise. While the exact solution in the case of zero
saving propensity is already known to be given by the Gibbs distribution, here we provide the
explicit analytical form of the equilibrium distribution for the general case of nonzero saving
propensity. We verify it through comparison with numerical data and show that it can be cast
in the form of a gamma-distribution.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is known that the higher end of the distribution of income f(m) follows the Pareto
law [1], f(m) ˙ m−1−�, where m is the income (money) and the exponent � has a
value between 1 and 2 [2–5]. An explanation of the Pareto law, in terms of the laws
regulating the system micro-dynamics, should take into account its basic constituents,
i.e., the trading agents, as well as the criteria used to carry out the economic trans-
actions. Several studies have been made to provide an explanation (see Ref. [6] for a
brief summary and more references). In this respect, it is of general interest to study

∗ Corresponding author. Fax: +358-9-451-4830.
E-mail addresses: marco@lce.hut.? (M. Patriarca), anirban@bnl.gov (A. Chakraborti),

kimmo.kaski@hut.? (K. Kaski).

0378-4371/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2004.04.024

mailto:marco@lce.hut.fi
mailto:anirban@bnl.gov
mailto:kimmo.kaski@hut.fi


M. Patriarca et al. / Physica A 340 (2004) 334–339 335

some simple systems of closed economy, which can be either solved exactly or simu-
lated numerically, in order to investigate the relation between the micro-dynamics and
the resulting macroscopic money distribution [7–12]. In this paper we consider the gen-
eralization of a simple model of money conserving economy, realized by introducing
a criterion of saving in the transaction law, through the saving propensity �. We study
numerically its asymptotic money distribution as a function of the model parameters.
We show that it is not a Gibbs distribution and, by direct comparison with numerical
data, that the corresponding analytical solution has the form of a �-distribution.

2. Model

In the simple model considered [8], N agents can exchange money in pairs be-
tween themselves. For the sake of simplicity we assume that all the agents are initially
assigned the same money amount m0, despite this condition is not restrictive for the
following results. Agents are then let to interact. At every “time step”, a pair (i; j)
is randomly chosen and the transaction takes place. During the transaction, the agent
money amounts mi and mj undergo a variation, mi → m′

i and mj → m′
j. Money is

assumed to be conserved during the transaction, so that

mi + mj = m′
i + m

′
j : (1)

In this basic model, m′
i and m′

j are obtained through a random reassignment of the
total initial money (mi + mj),

m′
i = �(mi + mj) ;

m′
j = (1 − �)(mi + mj) ; (2)

where � is a random number, extracted from a uniform distribution in the interval
(0; 1). Note that this model of dynamics, as well as its variations considered in the
following, ensures that agents have no debts after the transaction, i.e., they are always
left with a money amount m¿ 0. It can be shown that, merely as a consequence of
the conservation law (1), the system relaxes toward an equilibrium state characterized
by a Gibbs distribution [7–9],

f(m) = � exp (−�m) ; (3)

where � = 1=〈m〉 represents the inverse average money and 〈m〉 =
∑

i mi=N ≡ m0.
This means that, after relaxation, the majority of the agents has a very small amount
of money, while the number of richest agents—e.g. those with m larger than a given
value m′, as well as the fraction of the total money they own, exponentially decreases
with m′. The Gibbs distribution (3) has been shown to represent a robust equilibrium
state, reached independently of the initial conditions also in generalized models, such
as those involving multi-agent transactions.

However, if a saving criterion is introduced [7,9], i.e., agents save a fraction �—the
saving propensity—of the money they have before the transaction is made, the shape
of the equilibrium distribution changes dramatically. The conservation equation (1) still



336 M. Patriarca et al. / Physica A 340 (2004) 334–339

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.5 1 1.5 2 2.5

f (
m

)

m

λ = 0     
λ = 0.25
λ = 0.50
λ = 0.75
λ = 0.90

Fig. 1. Equilibrium money distributions for diJerent values of the saving propensity �, in the closed economy
model de?ned by Eqs. (5). The continuous curves are the ?tting functions, de?ned in Eq. (8). Distributions
are normalized to the channel width dx = 1=Nc = 0:05, where Nc = 20 is the number of channels in the
unit interval.

holds, but the money to be shared in a transaction between the ith and the jth agent
is now (1 − �)(mi + mj). Then Eqs. (2) are thus modi?ed

m′
i = �mi + �(1 − �)(mi + mj) ;
m′
j = �mj + (1 − �)(1 − �)(mi + mj) : (4)

These equations can also be rewritten in the following way:

m′
i =mi + Km ;

m′
j =mj − Km ;

Km= (1 − �)[�mj − (1 − �)mi] ; (5)

which clearly shows how money is conserved during the transaction.
We performed numerical simulations, for various values of �, of a system with

N = 500 agents. In each simulation a suLcient number of transactions, as far as 107,
depending on the value of �, was used in order to reach equilibrium. The ?nal equi-
librium distributions for a given �, obtained by averaging over 1000 diJerent runs, are
shown in Fig. 1.

3. Fitting

The exact solution for the case �=0 is known to be given by the Gibbs distribution,
Eq. (3). Here we give the corresponding exact solution for a generic value of �, with
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Fig. 2. As in Fig. 1, but on a double logarithmic scale.

0¡�¡ 1. This solution was found by ?tting the results of numerical simulations and
it turns out to ?t extremely well all data.

It is convenient to introduce the reduced variable

x =
m

〈m〉 ; (6)

the agent money in units of the average money 〈m〉, and the parameter

n(�) = 1 +
3�

1 − � : (7)

We found that the money distributions, for arbitrary values of �, are well ?tted by the
function

Pn(x) = anxn−1 exp(−nx) ; (8)

where x and n are de?ned in Eqs. (6) and (7), respectively. 1 From the normalization
condition, the prefactor is easily shown to be

an =
nn

�(n)
; (9)

where �(n) is the Gamma function.
The ?tting curves for the distribution (continuous lines) are compared with the

numerical data in Fig. 1. The ?tting describes the distribution also at large values
of x, as shown by the logarithmic plots in Fig. 2. The numerical values of the param-
eters an and n are compared with the respective ?tting functions (9) and (7) in Fig. 3.
The distribution function (8) still contains an exponential factor exp(−nx), similar to

1 An excellent ?tting is also obtained by replacing exp(−nx) with exp(−nxc), where c is an additional
parameter. Since the ?tting provides a value c very close to one and is good for all �’s, we assumed c ≡ 1.
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Fig. 3. The parameters an (left) and n (right) versus � obtained from numerical data (dots) and the corre-
sponding analytical formulas (continuous curves) given by Eqs. (9) and (7), respectively.

that of the Gibbs distribution, but the average value is now rescaled by n. However,
it is the power xn−1 which qualitatively changes the shape of the Gibbs distribution,
which turns into a curve with a maximum at x¿ 0, i.e., with a mode diJerent from
zero.

It is to be noticed that by introducing the rescaled variable

xn = nx ≡ m
〈m〉=n (10)

and the corresponding probability density Pn(xn) = dFn(x)=dxn ≡ Pn(x)=n, where Fn is
the cumulative function, and using the explicit expression of an, Eq. (9), distribution
(8) becomes

Pn(xn) =
xn−1
n exp(−xn)
�(n)

≡ �n(xn) (11)

which is just the �-distribution function �n(xn) for the variable xn.

4. Conclusions and discussion

We have studied a generalization of the simple closed economy model, in which a
random reassignment of the agent money takes place, by introducing a saving propen-
sity �¿ 0. We suggest a form for the corresponding exact analytical solution, which
we have successfully tested through a ?tting of the numerical data. The distribution
naturally lends itself to be interpreted as a �-distribution �n(xn) for the reduced variable
xn = m=(〈m〉=n). The parameter n(�) = 1 + 3�=(1 − �) is in principle continuous, but
it can vary between 1 and ∞ when � varies between 0 and 1. This result naturally
encourages us to provide a deeper physical interpretation and a rigorous derivation of
the solution, which are underway.
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