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Abstract
We develop a parsimonious model of the interbank payment system. The model incorporates an 
endogenous instruction arrival process, a scale-free topology of payments between banks, a fixed 
total liquidity which limits banks’ capacity to process arriving instructions, and a global market 
that distributes liquidity. We find that at low liquidity the system becomes congested and 
payment settlement loses correlation with payment instruction arrival, becoming coupled across 
the network.  The onset of congestion is evidently related to the relative values of three 
characteristic times: the time for banks’ net position to return to 0, the time for a bank to exhaust 
its liquidity endowment, and the liquidity market relaxation time.  In the congested regime 
settlement takes place in cascades having a characteristic length scale. A global liquidity market 
substantially attenuates congestion, requiring only a small fraction of the payment-induced 
liquidity flow to achieve strong beneficial effects.
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1 Introduction 
Modern economies depend on efficient and reliable financial markets. Critical to the smooth 
functioning of these markets are a set of trading, payment, clearing and settlement 
infrastructures. Financial infrastructures are formed by a large number of technological and 
institutional components that interact within complex networks.  

One core infrastructure is the interbank payment system which allows movement of funds 
between banks. Funds transfers may be related to transactions originating from money, foreign 
exchange or securities markets.  The Fedwire Funds Service operated by the U.S. Federal 
Reserve, for example, processes more than five hundred thousand payments daily with a total 
value exceeding $2 trillion [1]. The European TARGET system handles similar volumes in euros 
[2]. Funds transfers generally take place on the books of a central bank.  In such systems the 
transfers take place in real time and funds received can immediately be used to effect further 
payments. This reuse allows the system to settle payments using only a small fraction of the 
daily turnover. For example the daily flow of roughly $2 trillion in Fedwire is supported by a 
total daily account balance of approximately $15 billion [1] and an average daily overdraft of 
approximately $36 billion [3]. 

Participants have an economic incentive to minimize the funds committed to payment processing 
because liquidity used for settling payments imposes an opportunity cost on banks. Under-
funding can also be costly, especially for bank customers and other banks in the system. 
Shortfalls of funds can delay a bank’s payment processing, and payment systems can even enter 
gridlock states in which no bank can process a payment [4].  Delayed payments are unavailable 
to intended recipients: in this way congestion in the payment system can propagate into the 
economy by restricting money flow among banks and eventually among their customers. 

Large-scale simulations of payment systems have been used to evaluate the possible 
consequences of changes in payment system rules and policies under both normal and disrupted 
conditions. A number of such studies are available in Leinonen [5]. These simulations have used 
detailed descriptions of the business rules followed by the diverse participants, including banks 
and system operators, to anticipate the response of specific systems to potential stresses. 

In this paper we develop a parsimonious model of the interbank payment system to study 
congestion and the role of liquidity markets in alleviating congestion.  This model focuses on the 
essential dynamics of payment processing in order to understand how networks of interacting 
agents, each following simple rules, can give rise to system-level congestion.  The main features 
are an endogenous instruction arrival process, a scale-free topology of payments between banks 
as found in real interbank payment systems [6,7], a fixed total liquidity used by banks to process 
arriving instructions, the ability of banks to build and work off queues of instructions they cannot 
process, and a global market that distributes liquidity among the banks.  Because we focus on the 
influence of liquidity and liquidity distribution mechanisms on system performance, we assume 
that all banks follow a cooperative strategy in submitting payments. 



Acc
ep

te
d m

an
usc

rip
t 

4

Financial relationships among individual decision-makers are increasingly represented using 
network models.  One thread of research, for example [8-11], models price formation in a market 
made by agents responding to the behavior of their immediate neighbors in an influence network.  
Another thread [12-16] examines the flow of diverse goods and services between producers and 
consumers through a set of intermediaries, where the network links model pairwise 
specifications of cost and information among the individual decision-makers.  In these and 
similar studies, the operation of the payment systems that undergird individual financial 
transactions is presumed.  The purpose of the present study is instead to focus on payment 
system operations, using a stipulated forcing function to create the payment flows that express 
underlying economic relationships  

Network models of queuing agents have been studied in many contexts, including manufacturing 
processes and supply chains, computer networks, and transportation infrastructures 
[13,16,17,18]. In these models, interactions between agents generally represent transfer of 
workload from agent to agent. In contrast, interactions between banks in payment systems 
transfer capacity rather than workload: a bank that sends many payments and sends them 
promptly tends to relieve rather than create congestion at receiving banks. Congestion in a 
payment system is both a cause and a consequence of reduced transfer capacity.   

Our model has been developed in the spirit of abstract models used to study critical behavior.  
Bak et al. [19] discovered self organization in systems of locally interacting elements with non-
linear dynamics.  In their pioneering model random stresses impinge on a lattice of coupled 
elements, which discharge when their state variable exceeds a threshold.  Stress is dissipated at 
the lattice boundaries.  This system is driven to a state characterized by discharge cascades at all 
length scales.  Sachtjen et al. [20] studied the effect of several stylized topologies in systems 
consisting of elements with similar threshold discharge behavior, but that were stressed by 
random bilateral exchanges between pairs of elements connected by links..  This system 
undergoes a transition in a tolerance parameter, below which the average cascade size becomes 
unbounded.   It may be tuned to a critical state but, unlike Bak et al., is not driven to one.

We find that at sufficiently low liquidity our system becomes congested and payment settlement 
loses correlation with payment arrival. At low liquidity banks’ payment processing becomes 
coupled creating periods of congestion and episodic cascades of settlement. Settlement cascades 
have a characteristic size.  We find that a global liquidity market, a feature of many modern 
payment systems, can effectively compensate for the imbalances created by the payment 
instructions received by banks. Congestion can be substantially attenuated by the market, and 
only a small fraction of the payment-induced liquidity flow is required to achieve strong 
beneficial effects. 

2  Model Definition  

2.1 Primitive payment system 
We consider an economy populated with productive agents, banks, and a central bank
administering an interbank payment system. Figure 1 illustrates the model components, state 
variables, and processes.  Productive agents, representing the external economy, hold deposits at 
banks to settle obligations arising from trades with each other. Banks maintain balances at the 
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central bank to transfer the funds related to the payment instructions received from their agents 
and destined to agents banking at other banks1. For simplicity we assume that all payments are of 
equal size.  A bank's ability to execute payment instructions depends on the availability of funds 
on its account at the central bank. We assume that banks are reflexively cooperative: they settle 
payments whenever they have funds to do so. Otherwise arriving payment instructions are placed 
on a queue. Whenever funds are received by a bank, these funds are used to immediately settle 
previously queued instructions.

We model instruction arrival as a random process: instructions of unit size arrive at random real 
intervals according to a non-stationary Poisson process (Section 2.3 below and Appendix A).  
Let ( )iI t  denote the rate of payment instructions submitted to bank i by its productive agent for 
processing at time t. ( )iS t  denotes the rate of payments sent and ( )iR t the rate of payments 
received by bank i at time t. We define the state of a bank by the value of the deposits ( )iD t  held 
by its agents, the value of its balance at the central bank ( )iB t , and the value of payment 
instructions in its queue ( )iQ t .

0

( ) (0) ( ) ( )
t

i i i iD t D R s I s ds  (1) 

0

( ) (0) ( ) ( )
t

i i i iB t B R s S s ds  (2) 

0

( ) ( ) ( )
t

i i iQ t I s S s ds  (3) 

2.2 Diffusive Liquidity Market 
In an elaboration of the primitive model above, banks can lend excess funds and cover a shortfall 
in funds using a liquidity market. The liquidity market is modeled as a linear diffusive process. 
We define a liquidity potential

)()0()()( tQBtBtZ iiii  (4) 
for each bank. The liquidity potential is the the difference between a bank’s current net position 
of obligations ( ( ) ( )i iB t Q t ) and its initial funding.  We use this potential to describe the bank’s 
willingness to supply funds to the market. Banks with excess funds will supply them to the 
market at a rate proportional to their surplus, and banks in deficit will obtain funds in proportion 
to their deficit. We define a market conductance c to capture the effects of transaction costs, 
information costs, and any other factors constraining liquidity transfers among banks. The 
aggregate flows between banks and the market are always in balance as given by a simple 
conservation equation

( ) ( ) 0i mi A
Z t Z t c  (5) 

1  Transfers between agents within the same bank are not modeled. 
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where mZ  is the market potential, and  the set of banks active in the market. From (5) it 
follows that the market potential is  

1( ) ( )m i
i

Z t Z t
n

 (6) 

where n is the number of active banks. A bank participates in the market as a borrower if its 
potential is lower than the market potential. It participates as a lender if its potential is higher 
than the market potential, and if it has funds to lend. These conditions can be summarized as  

( ) (0) ( ) ( )i i i mi iff Z t B or Z t Z t  (7) 

Each bank’s flow of funds in to or out of the market varies linearly with its liquidity 
potential ( )iZ t . The total net flow of bank i to the market until time t is given by 

0

( ) ( ) ( ) ( )
t

i i m i

s

V t c Z s Z s M s ds  (8) 

where ( )iM t  is an indicator of the bank’s participation in the market at time t: ( ) 1iM t  if i A

at t, ( ) 0iM t  otherwise.  With the diffusive liquidity market, the balance of the bank is affected, 
in addition to Equation 2, also by its funding activities and is given by 

0

( ) (0) ( ) ( ) ( )
t

i i i i iB t B R s S s ds V t  (9) 

Equations 4 through 9 define a set of first-order equations for )(tZi , having a characteristic time 
of 1/m c .

2.3 Relationships between environment variables 
Payment instructions are modeled as random events of unit size. We assume that payment 
instructions to a bank are driven by the level of deposits )(tDi held by its productive agent, 
which may be converted into a payment instruction with a constant probability per unit time ep .
The expected rate of instruction arrival to a bank is defined as ( ) ( )i e iI t p D t . This frequency 
can be expressed in terms of its initial value (0)i e ip D  as 

( )( )
(0)

i
i i

i

D t
I t

D
 (10) 
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As defined by Equation 1, instructions received by a bank reduce deposits, while payments 
arriving at the bank increase deposits, thereby creating new obligations which may later be called 
upon with the common probability per unit time ep . Thus payment arrival rate increases as 
incoming payments add to deposits, and decreases as instructions from the productive agent 
deplete deposits.  Unlike the case of pure Brownian motion the dependence of instruction arrival 
rate on deposits in Equation 10 creates a finite expected time for )(tDi  to return to )0(iD .

Numerical simulations indicate that this return time r  is approximately equal to 
1

2 (0) /i iD  (see 
Appendix A). 

The initial distribution of deposits among the n banks in the network is assumed to follow a 
power law: ( (0) )ip D d d . The assumption is inspired by the power law distribution found 
for US firm sizes [21]. Thus also the initial instruction arrival rate has a power law distribution 
among the banks. 

We assume that each bank i interacts exclusively with ki other banks.  These interaction paths 
define links in the payment network.  The degree of each bank scales with its deposits 

(0)i ik D . More specifically we define a deposits-per-link parameter 0d  that ties the network 
topology to deposits 

0(0)i iD d k  (11) 

Using the algorithm described in Appendix B, we construct a network of payment exchange 
pathways among banks based on their degree ki.   This gives us a scale-free network topology as 
found in real interbank payment systems [6,7].    

An instruction arriving to bank i is assumed to be equally likely to be destined for any of the ki

neighboring banks. We stipulate that on average the flow of instructions for bank  i to pay some 
other bank must equal the flow of instructions for other banks to pay bank  i. For this to hold, the 
instruction arrival rate must scale with ik , which follows from the definition of  i  and Equation 
11.

Each bank sets its initial central bank balance (0)iB  to control its risk of exhausting funds due to 
an imbalance between payment instructions and receipts of funds. If all instructions were 
executed immediately, a bank’s balance would approximately follow a random walk2. The 
standard deviation of a bank’s balance will therefore grow over short time scales as 1/ 2

in  where 

in  is the number of payments sent or received by bank i.  This number is proportional to the 
instruction arrival rate, which in our setup is initially proportional to the bank’s starting deposits 

)0(iD . The initial balance required to provide a given probability of not running short of funds 
will therefore scale with 1/ 2(0)iD .  This formulation is reasonable in that banks with larger 

                                                
2  as long as changes in D(t) are small, and the instruction arrival rate from Equation (10) can be assumed constant 
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deposits maintain larger balances, while the sub-linear dependence reflects economies of scale.   
We set each bank’s initial balance3 as 

1/ 2

0

(0)(0) i
i

DB l d  (12) 

where l is a global liquidity factor. The initial balance allows a bank to continue to submit 
payments for a time although its net position is negative. 

The operational time “bought” with the initial liquidity can intuitively be defined as the time at 
which the probability of having a positive balance falls to specific value.  For convenience, and 
because the balance distribution is approximately normal, we use the time at which the standard 
deviation of the balance grows to equal the initial balance.  We can relate the liquidity factor l to
this time.  The initial rate of instruction arrival at a bank is 0(0)i e i e ip D p d k  so that the 
expected number of payment events, including sent and received payments, in a time l

is 02 2i l i l e in p d k . Because, from Equation 11, 
0

(0)i
i

D kd , equating the balance standard 

deviation 1/ 2
in  and the initial balance from Equation (12) yields 

2

02l
e

l

p d
 . 

3 Mean-field Approximations 
The performance of the primitive model can be approximated under certain limiting conditions. 
Understanding these bounding cases helps us interpret the results we obtain from the simulations. 

In a network of n banks suppose that banks in a subset  are liquid, i.e. have a balance that 
allows execution of an instruction. The remaining banks have a balance of zero.  Instructions 
received by banks having zero balance will accumulate in their queues. An instruction received 
by a bank in  will be executed, allowing the receiving bank to execute a queued payment - if it 
has one. This in turn allows the recipient of the last executed payment to process one of its 
queued payments, and so on. The chain continues until the recipient of a processed payment has 
no queued instructions. We assume that when a payment arrives, any queued instruction is 
processed immediately, so that the entire chain of queued payments is traversed before any new 
instruction can arrive. Subsequent instructions will rebuild the system’s queued instruction 
inventory until a liquid bank receives a new instruction. This instruction will again catalyze a 
chain of payments through the bank network. The length of such settlement cascades is the 
number of queued instructions whose execution is enabled by the execution of an instruction 
arriving at a liquid bank.

                                                
3 Equation (12) allows banks to have fractional balances. Without a market any fractional part of a bank’s balance is 
permanently unavailable for payment processing and is effectively lost from the system. This artifact would make 
total system liquidity a discontinuous function of l, as well as subject to sampling error via the network realization. 
When a market is not included we require integer initial balances and interpret any fractional part of Equation (12) 
as the probability of having an additional unit balance. 
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We hypothesize that the primitive system will be driven to a quasi-steady state in which, on 
average, the accumulation of queues is balanced by the release of queued instructions in 
settlement cascades.  Queues will build within the system until arriving payments create cascades 
of sufficient average length and frequency to discharge the instructions that become queued 
between the cascades. 

This hypothesis entails relationships among the average values of certain system state variables. 
An arriving instruction will be immediately executed if it is received by a bank in .  We denote 
the occurrence of this event as E .   Assuming deposits are close to their initial value, the 
expected arrival rate of instructions at bank i is, from Equation (10), approximately proportional 
to the degree of the bank: 

( )i i e o iI t p d k      (13) 

Because the instruction streams are independent across banks the probability that the instruction 
arrives at a bank with funds is therefore the fraction of edges in the entire network incident on 
banks in :

0

0

( )
e i i

i i

e i i
i i

p d k k
P E

p d k k
 (14) 

With a complementary probability, ( ) 1 ( )P E P E , the instruction is queued.

The number of queued payments EN  executed as a result of a new instruction depends on the 
payment instructions arriving to a bank with funds (event E occurs) and on the length of the 
cascade that the initiating payment releases.  If executed instructions induce a settlement cascade 
of length L , we have ( )EN P E L  assuming independence of E and L. The number of 

instructions added to queues QN  is one for each queuing event E , so that 

( ) 1 1 ( )QN P E P E . The equilibrium hypothesis states that the expected number of 
payments released from queues matches the expected number accumulated in queues.  

( ) 1 ( )E QN N P E L P E  (15) 

or

1 1
( )

L
P E

 (16) 

.
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The chain of release of queued payments begins with receipt of an instruction for a liquid bank to 
deliver a payment to a bank with queued instructions, and ends when the receiver of a payment 
has no queued payments. The probability of a particular chain of length h , conditional on the 
first bank having funds, is then: 

1 2 1( ) ( ) ( ) ... ( ) ( )h hP L h P E P E P E P E  (17) 

where 1( )hP E  is the probability that the bank receiving the last payment has no queued 
payments, and ( )iP E  is the probability that the bank at step i of the cascade has queued 
payments4.

The distribution of L  can be derived under a mean field approximation. Comparing this 
approximation with model results will help gauge the influence of local correlations and network 
structure, which are ignored in the mean field approach. Using the mean field assumption that 
the probabilities of queuing instructions are equal across banks (i.e. ( ) ( )iP E P E i ), and 
assuming that the execution of the chain of payments does not change this probability, the path 
length has a geometric distribution  

( ) ( ) ( ) ( )(1 ( )) , 0h hP L h P E P E P E P E h  (18) 

)(EP  depends on the arrangement of liquidity within the network. Two factors determine 
whether a specific bank has a non-zero balance and is therefore able to execute an instruction: 
the specific sequences of instructions that the bank and its neighbors have received, and whether 
its neighbors have made or queued their outstanding payments to the bank in question. We can 
use the analytical expression for the probability distribution of net position (see Appendix A) to 
describe the first factor, but we cannot estimate )(EP  without including the second factor, and 
an approximation is not available. When we subsequently compare simulation results with 
Equation 18 we therefore use the observed state of the network to estimate )(EP , using Equation 
14 , as the fraction of network links originating at banks with a positive balance. 

4 Simulation design and results  
We designed simulations to explore model behavior as a function of the liquidity factor ( l ) and 
liquidity market conductance ( c ). The values for the two parameters were chosen to span the 
transition between non-congested and congested behavior. A 0d  value of 10000 was used in the 
main simulations, but we explored the impact of alternative levels of deposits to the instruction 
arrival  in the sensitivity analyses in Section 4.3.  Simulation durations were chosen by 
experimentation to allow the system to develop a quasi-steady state, after which state statistics 
were collected.  The simulations use a network of 200 banks and 580 links representing bi-

                                                
4 Note that the observation of a cascade is conditional on the initial bank being in a non-delaying state, so that this 

probability does not appear in the expression for ( )P L h
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directional payment relationships among the banks. The average degree was 2.9 and the power 
law co-efficient of the degree distribution was approximately 2.5.  We set 0 1ep d , so that 

i ik .  This establishes a time scale for the simulation so that over a unit time interval each link 
in the network sends a single payment in both directions, on average.  The simulations were 
made using a Java implementation of the algorithm described in Appendix B. 

We first explored the onset of congestion in the primitive system as liquidity is reduced. Results 
from these analyses are discussed in Section 4.1. Simulations that include a liquidity market are 
presented in Section 4.2. In these sections we focus on global system properties such as 
throughput and cascade statistics. In Section 4.3 we describe sensitivity studies using alternative 
networks and deposit levels. 

4.1 Primitive Payment System 
The system begins with no queued payments and with liquidity distributed throughout the system 
based on Equation 12. Settled payments redistribute the initial liquidity, and queues build as 
some banks exhaust their funds. Examples of the growth of payment queues and the change in 
the fraction of instructions executed immediately are shown in Figure 2 for l = 1. As time passes, 
banks begin to queue more payments and also the length of settlement cascades increases. These 
cascades eventually counteract the accumulation of queued payments and the system settles into 
a quasi-steady state where the total number of queued payments fluctuates around a fixed level.  

When liquidity is increased to a sufficiently high level, instructions can be processed promptly, 
and system output (in terms of settled payments) is very close to system input (in terms of 
payment instructions) in each time interval: A scatter-plot showing the number of arriving 
instructions and the number of settled payments in 10-unit time intervals for four levels of 
liquidity is presented in Figure 3. At the highest liquidity factor of 250, observations cluster 
along the diagonal where settled payments equal received instructions: there is a strong 
correlation between instructions and payments. As l  decreases, banks experience temporary 
liquidity shortages and begin to queue their instructions until they receive funds from other 
banks.

This coupling of settlement among banks creates episodes of low payment volume (as queues 
build) and high payment volume (as queues are reduced by settlement cascades). Settlement 
becomes governed by the internal dynamics of coupled instruction queues rather than being 
driven directly by input instructions. With reduced liquidity, there is increasing variability in the 
number of payments settled in each interval, and payment settlement looses correlation with 
instruction arrival. Figure 4 shows the correlation coefficient for various liquidity factors.

As liquidity is reduced, the number and length of settlement cascades increases. The average 
length of settlement cascades with different levels of liquidity is shown in Figure 5. Below a 
liquidity factor of 100 the average cascade length is approximately a power-law function of the 
liquidity factor, with a coefficient of approximately -5/6. The observed average length in Figure 
5 conforms closely to the theoretical approximation which ignores network structure and the 
resulting local correlations in bank states (Equation 16).
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The complementary cumulative probability distribution of observed settlement cascade lengths is 
shown in Figure 6. When liquidity is abundant (l>50) only a few cascades are observed and 
these are not presented. In general, the majority of cascades are small and large cascades are very 
rare. The observed settlement cascade length distributions do not conform as closely to the mean 
field approximation (Equation 18) as does the average cascade length. The observed cascades 
follow a wider distribution with more small and large events than expected from the mean field 
analysis.   Unlike the approximation for average length, the mean-field approximation for the 
length distribution depends on the assumption that the states of neighboring banks are 
uncorrelated.

The probability that a payment released from a queue is received by a liquid bank seems to vary 
as the cascade progresses. We speculate that liquid banks cluster in the network thus making the 
probability that a payment released from a queue will be sent to a liquid bank higher than the 
mean when the released payment comes from a bank “near” the originating (liquid) bank. This 
effect can be seen in the large number of events of length 1 relative to the mean field 
approximation: an instruction sent to a liquid bank often causes one of its neighbors to release a 
queued payment and this payment is often directed back to the original (non-queuing) bank, 
particularly when this exchange takes place among low-degree banks. For the first bank in the 
chain, the probability of sending a payment to a non-queuing liquid bank is at least 1/k, which is 
generally much larger than P(E) for the network as a whole.  Conversely, if the chain of induced 
payments extends “far” from the originating bank the probability of sending to another liquid 
bank, and hence ending the chain, is lower than the fraction of liquid banks in the network. There 
are therefore more large cascades than the mean-field analysis predicts.  The network sensitivity 
studies discussed in Section 4.3 below support this explanation. 

Congestion in the primitive system with a given topology and instruction arrival process depends 
exclusively on the liquidity in the system. In our model congestion manifests as a high number of 
queued instructions, high queuing times, and a degradation of the rate at which productive agents 
can make payments to each other.  We next examine these performance metrics. 

The value of queued instructions in the quasi-steady state decreases roughly exponentially as 
liquidity is increased. The total value of queued instructions in relation to total deposits at 
different levels of liquidity is shown in Figure 7. At the lowest level of liquidity simulated, 
around 2.7% of deposits were held in queues.  Although the fraction of all deposits in all queues 
is less than 3%, queuing is widespread: most banks in the system are queuing payments as can be 
seen in Figure 1, where only 2% of instructions arrive at banks without queues. 

To analyze delays we calculate the time spent on the queue in relation to the time between 
instruction arrivals.  We calculated the average queuing time as the ratio of the queue size to the 
instruction arrival rate.  Because arrival rates are similar at all liquidity levels, queue size and 
delay time are nearly proportional.   At a normalized delay time of 1 the average time in queue 
equals the average time between instruction arrivals. We find that this delay statistic decreases 
roughly according to a power law when liquidity is reduced (Figure 8). The power law 
relationship exhibits a roll-off at liquidity levels above 50. A delay time of 1 is achieved only at 
rather high levels of liquidity, between 100 and 200. The delay statistic climbs by roughly two 
orders of magnitude as the liquidity factor decreases from 100 to 0.1. We see that the average 
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delay statistic for a liquidity factor of 250 is less than 1, which is consistent with the strong 
correlation between total instructions and payments in Figure 4. In contrast the small correlations 
associated with lower liquidity factors are consistent with the long average delay times we 
observe.

A characteristic of the model is that congestion in the payment system slows down the 
instruction arrival rate, as this depends on the level of deposits available to the productive agents 
(Equation 10). A payment instruction to a bank reduces the rate at which subsequent instructions 
arrive to the bank, while a received payment increases the rate. Payment queues, however, trap 
deposits so that the funds are unavailable to depositors, preventing new instructions from being 
issued against those funds. The instruction arrival rate relative to the rate that would occur in an 
uncongested system is also shown on Figure 7. The reduction in payment arrival is highest when 
liquidity is low, at around 97.3% of the uncongested arrival rate. We see that the fractional 
reduction in instruction arrival rate is approximately equal to the fraction of queued payments, as 
expected from Equation 10. 

4.2 Adding a Diffusive Liquidity Market 
The liquidity market re-distributes liquidity from banks with high balances to banks with low 
balances or queued payments. This redistribution significantly tames the primitive payment 
system. Figure 9 shows the value of queued payments in a system with l  = 1 as a function of 
time for several values of market conductance. The results for the primitive system from Figure 2 
are also shown for comparison (Note that the time axes differ in the two figures).  The market 
allows the system to reach a quasi steady-state much more rapidly than the primitive system. 
Also the value of queued payments is dramatically reduced, dropping by 49% with a 
conductance of 0.0001, and by 95% at with a market conductance of 0.01.  

The liquidity market also reduces the frequency and size of settlement cascades. The average 
cascade lengths for a range of liquidity factors for three market conductance levels are shown in 
Figure 10. The data points from the primitive system from Figure 5 are also included for 
comparison. The apparent parallel shift towards the origin as market conductance increases 
suggests that the scaling between the liquidity factor and average cascade length is not sensitive 
to market conductance.  

The distributions of observed cascade lengths are shown in Figure 11. The bursty character of 
payment releases in the primitive system is suppressed as c  increases, leading to a much more 
compact distribution of cascade lengths where long cascades are much less frequent. The 
distributions appear to be geometric. However, in contrast to the primitive system we do not 
have an approximate analytical result for comparison.  

The market reduces congestion at all values of l. The average value of payments queued relative 
to total deposits is shown in Figure 12A. The primitive system with a liquidity factor of 5 tends 
to trap nearly 1% of deposits in queues, while the same performance can be achieved with a 
market conductance of 0.0001 with ten times less liquidity. By reducing queuing, the liquidity 
market increases the availability of deposits to customers: low liquidity has a smaller impact on 
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the instruction arrival rate (Figure 12B).  The fractional decrease in instruction arrival rate is, 
allowing for sampling variability, equal to the fraction of deposits trapped in queues. 

Liquidity flow through the market dramatically reduces the payment delay time (Figure 13) as 
well. For example, the primitive system would have a delay time of 1 with a liquidity factor of 
approximately 150. A system with a conductance of 0.01 achieves the same performance at a 
liquidity factor of 8.

The magnitude of liquidity redistribution can be characterized at the system scale by comparing 
the rate of liquidity flow through the market to the liquidity flow driven by payments. Figure 14 
shows this ratio as a function of l for several values of market conductance c. The ratio varies 
between 9x10-4 and 2x10-2, depending on the level of liquidity and the market conductance. 
Increasing l  generally tends to increase market flow rates only slightly, while increasing market 
conductance leads to a nearly proportional increase in market flow rates. 

The relative insensitivity of the market flows to changes in the level of liquidity is due to the 
interaction of two effects: a higher level of liquidity increases the supply of funds available for 
exchange in the market, but tends to reduce the demand for liquidity flow across the system. At 
low conductance values, market flow rates appear to scale directly with conductance.  The 
market is less effective at low conductance values (see Figure 10) and so liquidity gradients are 
not greatly reduced by market flows.  Increasing conductance eventually begins to improve 
performance and reduce balance variations.  There are diminishing returns to increasing 
conductance beyond this point: increased market flow rate caused by a larger conductance is 
offset by a decrease in balance variations caused by the equalizing effect of market flows. 

4.3 Sensitivity Analyses 
We performed several sensitivity analyses to gauge the dependence of the results on the payment 
network used, and on the level of deposits. The sensitivity analyses focus on the primitive model 
because it includes only local interactions among banks and the outcome of these interactions 
may be sensitive to changes in network topology or in the instruction arrival process that stresses 
the system. The diffusive flux introduced by the global liquidity market dissipates the effects of 
local interactions: this model will therefore be less sensitive to changes in those interactions.  

We explored the effects of sampling error by considering two additional realizations of the 200-
node scale-free network, and the effect of network size by deriving selected results for a 1000-
node network. While the scale-free character of payment system networks is supported by data 
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from real systems [6] we include results for a small-world network [22] to explore the effect of 
network topology.5

The differences in cascade lengths between the different realizations of the scale-free networks 
are rather small. There appears to be more sensitivity to network structure as liquidity decreases, 
both as regards the different realizations of the scale-free network or the basic network geometry. 
The small-world network, however, has clearly smaller cascades than the scale-free networks at 
all liquidity levels. All realizations follow a power law relationship between liquidity and 
average cascade length for three orders of magnitude. The observed average cascade length as a 
function of liquidity factor l for the alternative networks is presented in Figure 15. The expected 
value from the mean-field analysis is included for comparison. 

The distributions of observed cascade lengths for the alternative networks in the primitive system 
are presented in Figure 16 for a liquidity factor of 1. Variability among different samples of the 
200-node network is evident but is much smaller than the variability due to parameter variations 
shown in Figures 6 and 11. The frequency of long cascades is somewhat higher in the network 
with 1000 nodes, however the distribution is quite similar to those from with the 200-node 
networks, indicating that our results are not an artifact of network size. The small-world network 
has more small and more extremely large cascades than the scale-free networks. Also the 
divergence from the mean-field result is more pronounced in the small-world network. This 
supports the speculation that liquidity clustering contributes to the systematic departure of the 
cascade distributions from the mean-field distribution, as the small world network has higher 
clustering than the scale-free networks considered.  The degree of liquidity clustering can be 
observed in Figure 17, which shows snapshots of the state of a scale-free and a small-world 
network, in which banks with liquidity are highlighted.  A liquidity factor of 10 was used so that 
several banks in each network hold liquidity at any given time.   

The relationship between liquidity factor and delay is evidently insensitive to network structure 
at low values of liquidity, with the maximum variation among the networks occurring at high 
liquidity factor values. The average instruction delay times for the various networks for a range 
of liquidity factors are shown in Figure 18. 

As a further sensitivity analysis we explored the impact of the level of deposits for a given 
interbank network size. As expected, a lower level of deposits reduces the average cascade 
length experienced by banks in the system. The average cascade length as a function of the 
liquidity factor is shown in Figure 19 for two values of 0d . The smaller 0d  is, the more strongly 
the banks’ net positions are anchored to their initial state, reducing the variability in liquidity 
across the network and therefore the length of cascades. Decreasing d0 decreases cascade length 

                                                
5  The small-world network is based on a ring topology in which each node is connected to its four nearest 

neighbors: 2 to the left and 2 to the right. Five percent of the network links are then randomly selected, and one of 

the endpoints is moved to a randomly-selected node in the network. This process produces a network with strong 

clustering but small diameter. The simulations were carried out with the same deposits-per-link 0d  as for the scale 

free network, and the deposits for each bank were scaled according to Equation 11. 
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across the range of l values in Figure 19, although less than proportionally to the decrease in d0.
The full distribution of cascade lengths for the case of l = 1 is presented in Figure 20. 

The effect of reducing d0 on the average value of queued instructions is shown in Figure 21. A 
decrease in 0d  degrades system performance as measured by the fraction of frozen deposits: 
although the number of queued payments is smaller with smaller 0d , those payments represent a 
larger fraction of deposits. At the lowest liquidity nearly 7% of deposits are trapped in payment 
queues.

Finally, we looked at the delay times for payments with the two deposits levels. The average 
payment delay times for differently liquidity levels and two levels of 0d  are shown in Figure 22. 
Reducing 0d yields smaller average delays at all liquidity levels. A smaller 0d  increases the 
sensitivity of the instruction arrival rate to deposits (Equation 11) and reduces the variability in 
the banks’ net position (Appendix A). In contrast to the throughput performance measure in 
Figure 21 the system performance measured by delays is better at smaller 0d  because there is 
more liquidity per unit deposit. 

5 Conclusions  
We’ve defined and analyzed a parsimonious model of a payment system where payment 
instructions submitted by agents induce a stress to the system. We have used the model to 
understand how congestion arising from this stress is influenced by two control parameters: the 
global liquidity level and the conductance of a global liquidity market.  

The random instruction stream stresses the system by requiring some banks to be in net deficit 
for some period of time.  Banks will not queue, and the system will not become congested, 
provided banks can respond to this stress by either drawing down reserves or obtaining adequate 
liquidity from the market.  Our results suggest that the system can remain uncongested if the 
time constant for applied stresses (i.e. the time for banks to return to a net position of 0) is small 
compared to the time to exhaust reserves, or large compared to the time to redistribute liquidity 
through the market.  Three parameters control these time constants:  d0 determines the time to 
return to a net position of zero ( 0r d  from simulations described in Appendix A); l

determines the time to deplete initial liquidity (
2

02l
e

l

p d
); c determines the redistribution time 

for liquidity through the market ( 1/m c ).  A deposit level of 10000 is associated with a return 
time of 100: with no market we see congestion for l values of 100 and below (Figure 10).  The 
largest conductance value of 10-2 has an associated equilibration time of 100.  We would 
therefore expect congestion to occur only for depletion times smaller than 100, or liquidity 
factors smaller than 14. With a deposit level of 1000, and an associated return time of 30, we see 
congestion appearing between l=50 and l=25 (Figure 19).

When the system becomes congested payment settlement loses correlation with payment arrival. 
Payment settlement takes place in cascades and is governed by the internal dynamics of the 
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coupled payment queues. The congested state is characterized by a build-up of queued payments 
at banks that are short of liquidity, with episodic cascades of payment processing as the liquidity 
transfer from a paying bank enables the receiving bank to submit a payment from its queue. At 
low liquidity, cascades can affect each bank several times, and payment delays can greatly 
exceed the time between instruction arrivals. 

The settlement cascades have a characteristic length scale.  Analytical approximations for the 
mean size are very close to the values seen in simulations; however the analytical result depends 
on the liquidity distribution in the network, which must be obtained from the simulation.  A 
mean-field approximation for the distribution of cascade sizes has too few events at both 
extremes of the distribution.  This discrepancy is consistent with liquidity clustering in the 
network.

While our model is similar to both the models of Bak et al. [19] and of Sachtjen et al. [20] these 
models either self-organize (in the case of Bak et al.) or can be tuned (in the case of Sachtjen et
al.) to produce scale-free event distributions, while cascades in our model have a characteristic 
length scale.  The internal dissipation included in our model accounts for this difference.  Queues 
correspond to stored energy, and each step in a cascade event dissipates a unit of stored energy.  
This internal dissipation induces a length scale on event sizes [23] in contrast to the Bak et al.
formulation, where energy is only dissipated through the system boundaries, and the Sachtjen et
al. model, which has no dissipation. 

We also find that congestion in the payment system can spill over to the external economy and 
slow down economic activity if the submission of instructions by customers is dependent on their 
availability of funds. The congestion can be relieved by either increasing the global liquidity 
level, or by increasing the conductance of the global liquidity market. We find that less than 2% 
of the payment-induced liquidity flow through the global market is sufficient to achieve strong 
beneficial effects. This fraction is lower than the estimated overnight lending value of 30% seen 
in Fedwire, however the latter is motivated by many factors other than intraday funding payment 
operations – such as daily transformation of payment-induced liabilities towards the central bank 
into longer term interbank liabilities.  Global liquidity sharing through a liquidity market 
dramatically reduces cascade lengths and payment delay times as conductance within the market 
increases. A liquidity market with a high conductance (i.e. low transaction costs) insures against 
congestion and allows global liquidity levels to be reduced by an order of magnitude for a given 
performance level. This frees up banks' funds for more profitable investment purposes.  

Additional insights can come from further analysis of the behavior of this model, from including 
additional processes in the model, and from refining the representation of processes already 
included.

The liquidity distribution within the network is of interest for several reasons.  First, it 
determines the fraction of liquid banks, for which we have no analytical approximation.  
Second, it is another possible point of comparison with data.  Third, it gives insight into 
the role of topology. 
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We have assumed that bank size correlates with network degree.  The case of well-
connected banks with small deposits is plausible and may lead to qualitatively different 
behavior.  We assume that the probability of converting a deposit into an instruction is a 
universal constant, and that the instruction streams are uncorrelated among depositors.  
The model of depositors could be elaborated to include correlations and reactions to the 
bank state.  Further on the model does not incorporate periodic transformation of 
payment induced liabilities to longer term interbank liabilities - as is done in real systems 
through end-of-day settlement of positions. To explore the influence of such 
management, the current diffusive model of the liquidity market might be replaced by a 
dynamic network reflecting specific bilateral obligations resulting from interbank loans.   

The current model can be used to explore the effect of certain disruptions, including 
suspension of payment processing at one or more banks, and degradation or removal of 
the liquidity market.  A lender of last resort can be represented as a node having a fixed 
liquidity potential, which would create a net source for liquidity during such disruptions. 

Banks in the model manage their liquidity in a reflexive way solely based on the 
availability of funds. Rather than exploring a set of alternative liquidity levels, the model 
can be elaborated to include adaptive behavior where banks set their individual levels of 
liquidity and price their interbank loans. Theoretical work [24] suggests that in a regime 
of high relative liquidity costs banks will tend to reduce their liquidity to inefficiently low 
levels.

This simple model of the necessary elements of a payment system has provided insights into the 
transition between an uncongested state characterized by independent processing at each bank 
and a congested state characterized by coupled processing across the network of banks. The 
model and results presented here provide a baseline from which we can explore the effects of 
other processes occurring in real payment systems, and against which we can assess the 
implications of disruptions either within the payment system, the liquidity market, or to 
depositors.
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Notation
Table 1 lists the variables used in the model definition and analysis.  Variable names obey the 
following conventions: Lower-case Roman (e.g. l ) and Greek (e.g. i ) names denote constants; 
Upper-case Roman names (e.g. )(tBi ) denote random variables; Upper-case Greek names (e.g. 

) denote sets. 
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Appendix A: Instruction Arrival Model 

Taking the limit of Equation 10 as (0)iD , i.e. specifying an infinite pool of obligations, 
corresponds to a homogeneous Poisson process in which the rate of instruction arrival is constant 
at i . The net flow of instructions to and from a bank is the sum of a series of random 
perturbations of unit size, which are equally likely to affect the net positively or negatively. The 
net flow therefore follows a random walk6. The probability distribution for the balance of a bank 
after m payment events (sent plus received) follows a normal distribution with 0  and 

2 m . A random walk process has properties that are unreasonable as a model of long-term 
conditions at banks. Because the variance will increase linearly with time, a bank will eventually 
be in an arbitrarily large positive or negative net position with probability approaching 1. The 
system has no stochastic equilibrium. Second, although the expected balance is 0, the expected 
return time to an initial balance of 0 is infinite. The distribution of return times follows a power 
law, and its expected value is unbounded [25]. Such behavior is unreasonable for real payment 
processes.

Assuming that instructions arise from a finite pool of obligations is a more plausible model of the 
real system. A long-run distribution of the balance exists and has a limiting variance. A finite

(0)iD  imposes a pull towards a net obligation change of 0: banks with )0()( ii DtD  receive 
instructions at a somewhat reduced rate (because many of their obligations have been converted 
into instructions) while banks with )0()( ii DtD  have undertaken additional obligations and so 
receive instructions at a higher rate. The compensating feedback between )(tDi  and instruction 
arrival rate constrains the excursions of net position away from 0. In contrast to the 
homogeneous random-walk model the finite-pool model can reach a stochastic equilibrium. The 
equilibrium probability distribution for a bank’s net position iU  can be derived by solving the 
detailed balance equations for the possible net positions: 

(0) (0)( (0))
!

a

i

k
D i

i a i
a

D
P U k D e

k
      (A.1) 

where the non-negative index ak  defines the possible net positions. Figure A.1 shows the 
distributions of net position observed at a time of 1000 for the original random walk scenario and 
for two values of (0)iD .7  The analytical result for the equilibrium distribution is also shown for 
the latter two cases. Comparison with the analytical distribution suggests that equilibrium has 
been reached by a time of 1000. The distribution clusters around a net position of 0 due to the 
feedback process described above. 

                                                
6 A random walk is usually defined to be the sum of n random perturbations. Here we have the realization of 

independent displacements that occur at a constant frequency. Net position is not strictly a random walk in time 

because the time between events is random. The distinction makes no difference in our application.
7 For a system with two banks, both having an initial frequency i of 1. 



Acc
ep

te
d m

an
usc

rip
t 

21

Dragulescu and Yakovenko [26] describe a similar model, in which randomly-paired agents 
transfer a unit of money from one to the other, subject to negative balance constraints.  In the 
simplest case where negative balances are disallowed, they find that money distributions follow 
the (exponential) Boltzmann-Gibbs distribution where the temperature corresponds to the 
average money per agent.  In their model the probability of sending a unit of money is equal for 
all agents with non-zero balances; here the probability is proportional to the bank’s deposits, 
reflecting the assumption that each deposit is controlled by a customer with a specified 
probability of issuing an instruction.  This difference leads to the deposit distribution being 
concentrated around (0)iD  rather than being exponentially distributed with an expected value of 

(0)iD .

With a finite (0)iD  the expected return time to a net position of 0 is also finite. Simulations of 
return time for various values of (0)iD  exhibit a roll-off in the vicinity of (0)iD , in contrast to 
the pure power-law behavior of the original random walk model (Figure A.2). Numerical 
simulations suggest that the return time r is proportional to 1/ 2 (0)iD  (Figure A.3). 

Making the instruction frequency sensitive to a bank’s obligations introduces an automatic 
adaptation which balances the flow of funds over a time scale that can be adjusted parametrically 
using (0)iD . This feature also gives us a mechanism to specify model configurations having 
heterogeneous banks and instruction submittal tendencies (i.e. ep ) without requiring us to 
enforce net balance constraints on the set of model parameters. 
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Appendix B: Implementation 

We’ve simulated the evolution of the system state for each combination of parameters using a 
Java implementation of the following algorithm: 

1. Realize a network containing the selected number of banks using the following growth 
algorithm modified from Barabasi and Albert [27]: 

a. For each bank… 
i. Create a node representing the bank 

ii. Sample a number of initial connections from the new node to existing 
nodes

iii. For each connection, select a destination node from the set of existing 
nodes with a selection probability proportional to the current node degree. 

b. Initialize the state variables for all banks, which generally depend on the banks 
degree ik

2. Iterate… 
a. Evaluate the instruction arrival rate at each bank using its current deposits 
b. Sample the arrival time of the next instruction for each bank based on its rate 
c. For market models … 

i. Find the instantaneous market flow rates at the current time 
ii. Set the limiting time equal to the minimum time of the next instruction 

arrival
iii. Iterate… 

1. Use a semi-implicit difference approximation to solve Equation (9) 
at the limiting time 

2. Determine whether any bank’s market participation would change 
before the limiting time based on Equation (7), or whether any 
bank’s balance would increase to permit release of a queued 
instruction.

3. If so 
a. estimate the minimum threshold crossing time 
b.  reduce the limiting time accordingly 
c. continue iteration from (iii) 

iv. Update bank balances due to market flows 
v. If the balance changes enable release of a queued instruction, process the 

instruction and any other instructions enabled as a consequence, and 
proceed from (a) 

vi. If the balance change produces a transition in market participation, 
proceed from (i) 

d. Send the instruction with the minimum arrival time to the appropriate bank 
e. If a payment is submitted and the receiving bank is queuing payments, submit a 

queued payment, repeating as long as payments continue to be submitted  

In general the state of the queue is defined by a list of instructions to pay specific banks rather 
than simply the number of instructions in the queue. The computational efficiency is greatly 
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increased by tracking only the number of queued instructions: the destination for the instruction 
is sampled from among the possible neighboring banks only when the payment is submitted. 
Deferring sampling of the payment recipient is valid as long as the probability of a particular 
bank being the selected does not depend on the state of the sending or receiving bank. The 
current model satisfies this condition. 
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Figure 1 - Payment system components and state variables considered in the model, and their response to a 

payment instruction event. 

Figure 2 - Average total number of queued instructions (blue symbols, left axis) and fraction of instructions 

that can be immediately executed (pink symbols, right axis) in successive time intervals of size 10 for a 

liquidity factor of 1 using the primitive model.  Data for the primitive system were collected after a time of 

30000 to minimize the influence of start-up transients. 

Figure 3 – Total number of instructions received and total number of payments settled in 2000 time intervals 

of size 10 for four values of the liquidity factor.  The inset shows the center region using the same scale for 

instructions and payments.  Payments track instructions at high liquidity; reducing liquidity causes periods 

of congestive delay and settlement cascades so that settlements are controlled by the dynamics of the coupled 

instruction queues and lose correlation with instructions.  The average number of instructions also decreases 

at low liquidity as more deposits become trapped in payment queues: the center of the distribution of 

instructions shifts to the left as l decreases. 

Figure 4 - Correlation coefficient between total payments sent and total instructions received in 2000 time 

intervals of size 10 for a range of liquidity factors.  As liquidity decreases payments fail to track instructions 

as payment processing becomes governed by the coupling among banks. 

Figure 5 – Average length of settlement cascades observed in a time interval of size 20000 for several values of 

the liquidity factor.  Line indicates the analytical approximation for the expected value of cascade size from 

Equation 16.  The analytical approximation was only evaluated at the liquidity factor values used in the 

simulations: the line is a visual aid.    

Figure 6 - Frequency distribution of observed cascade lengths in a time period of size 20000 for four values of 

the liquidity factor:  0.1 (grey symbols),  1 (blue symbols), 10 (red symbols) and 50 (green symbols) .  The 

geometric probability distributions from the mean-field approximation (Equation 18) are shown in light grey 

lines for each case. 

Figure 7 - Fraction of deposits in payment queues vs. liquidity factor (blue symbols. left scale) and instruction 

arrival rate as a fraction of the rate in an uncongested system (yellow symbols, right scale).  The relative 

instruction arrival rate at a liquidity factor of 250 is plotted as 1 but is 1.00006 due to sampling variability. 

Figure 8 – Average delay time between instruction arrival and settlement vs. liquidity factor.  The average 

delay time is calculated as the ratio of the number of queued payments to the rate of instruction arrival.  A 
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delay time of 1 means that the average time between an instruction’s arrival and the ensuing payment is the 

same as the average time between instruction arrivals. 

Figure 9 - Number of queued payments as a function of time for three values of market conductance c with a 

liquidity factor of 1.  Results for the case with no market (dark blue symbols) are included for comparison.  

Higher conductance leads to smaller queues and more rapid stabilization 

Figure 10 – Average cascade length as a function of liquidity factor for three values of market conductance.  

Results for the no-market case are included for comparison.   The market model was not evaluated for 

liquidity factors of 2 and 0.1.  Lines are a visual aid. 

Figure 11 - Frequency distributions of observed cascade length with a liquidity factor of 1 for three values of 

market conductance.  Results for the no-market case (dark blue symbols) are included for comparison.  

Observations were collected in a time period of 20000 for the no market case and in a period of 10000 for the 

simulations including the market.  Increasing c  significantly reduces the size of settlement cascades.   
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Figure 12 - Fraction of deposits in payment queues vs. liquidity factor (A) and instruction arrival rate as a 

fraction of the rate in an uncongested system (B) for three values of market conductance.  Results for the no-

market case are included for comparison.  Lines are included as a visual aid.  In each case the fractional 

reduction in instruction arrival is, allowing for sampling error, equal to the fraction of deposits held in 

queues.

Figure 13 – Average delay time between instruction arrival and settlement vs liquidity factor for three values 

of market conductance.  Increasing market conductance lowers delay time with the most marked reduction 

seen for c larger than 10-4.

Figure 14 - Liquidity flow rate through the market relative to instruction arrival rate vs. liquidity factor for 

four values of market conductance.  Larger liquidity levels increase the liquidity available for exchange but 

lead to less queuing and lower gradients across the network.   Increasing conductance increases flow rate at 

all liquidity levels.  

Figure 15 - Average size of settlement cascades observed in a time interval of length 20000 for several values 

of the liquidity factor.  Networks are distinguished by symbol.  Lines indicate the analytical approximation 

for the expected value of cascade size from Equation 16.  The analytical approximation was only evaluated at 

the liquidity factor values used in the simulations: the lines are a visual aid.   A range of liquidity factors was 

used in the three realizations of the 200-node network and the small world network; the 1000-node network 

was only simulated for l=1.

Figure 16 - Frequency distribution of observed cascade sizes for a liquidity factor of 1 for three realizations of 

the 200-node scale-free network (blue symbols), one realization of a 1000-node scale-free network (orange 

symbols), and one realization of a 200-node small-world network (pink symbols).  The geometric distribution 

expected from the mean-field analysis for the small-world network is shown as a light grey line. 

Figure 17 – Snapshot of liquidity distribution in a scale-free network (A) and a small-world network (B) 

having a liquidity factor of 10.  Banks with liquidity are shown as large black nodes.  Liquidity appears to 

cluster in both network types.   The small-world network has many banks far from a bank with liquidity, 

which tends to foster longer cascades. 

Figure 18 - Average delay time between instruction arrival and payment vs. liquidity factor for the alternative 

networks considered.  Only small delay times, associated with large liquidity factors, appear to be sensitive to 

network structure. 
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Figure 19 - Average size of settlement cascades observed in a time intervals of length 20000  vs. liquidity 

factor for two deposit level values.  Decreasing deposits decreases cascade size.    

Figure 20 – Frequency distribution of observed settlement cascades for a liquidity factor of 1 and two values 

of deposit level.  Analytical approximations for each distribution based on Equation 18 are shown in light 

grey lines. 

Figure 21 - Fraction of deposits in payment queues vs. liquidity factor for two deposit level values.  Reducing 

deposits tends to increase the fraction of deposits queued.  Although the absolute queue size is smaller with 

fewer deposits, the size relative to deposits is larger. 

Figure 22 - Average delay time between instruction arrival and payment vs. liquidity factor for two deposit 

level values.  At all liquidity levels delays are smaller with the lower deposit level. 
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Figure A.1 - Observed frequency distributions of 1000 observations of net position   at time 1000 for the 

random walk (grey symbols), and the finite deposit model with Di(0)  = 1000 (blue symbols) and  Di(0) = 100 

(orange symbols).  Analytical curves for the steady-state distribution (Equation (A.1)) are included for the 

finite deposit model. 

Figure A.2 - Frequency distributions of 1000 observations of return time r  for four values of the deposit size 

Di(0).  Including a finite deposit size introduces a roll-off in the return time distribution in the vicinity of Di(0)

Figure A.3 - Averages of 1000 observations of return time r  using various values of the deposit size Di(0).

Ten averages from independent simulations are shown for each value of Di(0).  The return time appears to 

scale with Di
1/2(0)
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Table 1 – Model Variable Definitions 
Variable Dimension Description 

)(tBi money Payment account balance of Bank i
c  1/time System market conductance parameter 

0d money System deposit size parameter 

)(tDi money Deposits held by Bank i on behalf of its customers at time 
t

E • Arrival of an instruction at a bank that is able to execute 
the payment 

( )iI t money/time Rate of instruction arrival at Bank i

ik • Degree of Bank i in the payment network 
l money System liquidity factor parameter 
L • Size of a settlement cascade measured by the length of 

chain of released instructions 
)(tM i • Indicator of market participation by bank i at time t

nΑ • Number of banks in the market 
n • Number of banks in the network 

EN • Number of queued payments executed 

QN • Number of instructions queued 

iU money Net position of Bank i

ep 1/time Probability per unit time that a payment instruction will 
be issued against a given deposit 

)(tQi money Payment instructions queued by Bank i at time t.

( )iR t money/time Rate of receiving payments by Bank i at time t

( )iS t money/time Rate of sending payments sent by Bank i at time t

)(tVi money Total net lending by Bank i up to time t

)(tZi money Liquidity potential of Bank i at time t

( )mZ t money Liquidity potential of the market at time t
   

Α • Subset of banks participating in the liquidity market 
γ • Power-law exponent of initial deposit distribution 

iλ money/time Initial frequency of instruction arrival at Bank i
Λ • Subset of banks which can execute their next instruction 

lτ time Time constant for depleting initial liquidity 

mτ time Time constant for balancing liquidity through the market 

rτ time Expected return time of a bank’s net position 

Table(s)
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