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The valley splitting of the first few Landau levels is calculated as a function of the magnetic field for
electrons confined in a strained silicon quantum well grown on a tilted SiGe substrate, using a parametrized
tight-binding method. More specifically, the valley splitting arising from the effect of misorientation between
the crystal axis and the confinement direction of the quantum well is investigated. In the absence of misori-
entation �zero substrate tilt angle�, the valley splitting slightly decreases with increasing magnetic field. In
contrast, the valley splitting for a finite substrate tilt angle exhibits a strong and nonmonotonic dependence on
the magnetic-field strength. The valley splitting of the first Landau level shows an exponential increase fol-
lowed by a slow saturation as the magnetic-field strength increases. The valley splitting of the second and third
Landau levels shows an oscillatory behavior. The nonmonotonic dependence is explained by the phase varia-
tion of the Landau-level wave function along the washboardlike interface between the tilted quantum well and
the buffer material. The phase variation is a direct consequence of the misorientation. This result suggests that
when the misorientation effect is dominant, the magnitude of the valley splitting can be easily tuned by
controlling the Landau-level filling factor through the magnetic field and the doping concentration.
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Recent proposals to use the spin degree of freedom of
electrons confined in silicon-based quantum dots as quantum
bits1 have revived the interest in understanding changes in
the valley degeneracy in Si for confined structures in the
presence of a magnetic field.2–7 The conduction band of bulk
Si has sixfold-degenerate valleys. For two-dimensional elec-
tron systems confined in a �001� Si quantum well �QW�, this
sixfold degeneracy is lifted such that the two valleys along
the confinement direction have a lower energy than the other
four valleys due to the anisotropy of the effective-mass ten-
sor and the tensile strain in the plane of the Si QW grown on
a relaxed SiGe substrate. The remaining twofold degeneracy
is further lifted due to the interaction between the two val-
leys that is induced by the confinement potential in the
Si/SiGe QW. Although the splitting between the two valleys,
its variation with magnetic field, and the effect of tilted sub-
strates have been known for several decades, several aspects
of its physical origin remain controversial. A thorough un-
derstanding of the valley splitting is critical for the fabrica-
tion of silicon-based quantum computers since the two
nearly degenerate valleys are a potential source of spin
decoherence.8

Experimental investigations using a variety of measure-
ment techniques have shown that the valley splitting for a
two-dimensional electron gas confined in either Si metal-
oxide-semiconductor field-effect transistors or modulation-
doped Si/SiGe heterostructures strongly depends on the
magnetic-field strength and on the Landau-level filling
factor.3,5,9–12 This strong dependence has been attributed to
various mechanisms including �i� the misorientation of the
growth direction,13 �ii� the electron exchange interaction,14

�iii� electric breakthrough mechanisms,15 and �iv� surface
scattering.16 The valley splitting in the presence of a mag-
netic field has been widely studied using effective-mass ap-
proximations, yet no satisfactory agreement has been
achieved with experimental data. For example, the linear
magnetic-field dependence of the valley splitting for the first
Landau level has not yet been obtained in simulations. Cal-

culations using the effective-mass approximation rely on
first-order perturbation and an ad hoc interface potential to
include the valley splitting. Since experimental and numeri-
cal data are not in agreement, calculations that do not require
perturbation theory or empirical parameters to describe the
valley splitting are desirable. Valley splitting for silicon QWs
has been calculated previously using a parametrized tight-
binding method2 and the effects of a misoriented substrates
has been reported using the same approach7 in the absence of
magnetic field. However, to our knowledge no study of the
magnetic-field dependence using an atomic-level approach
has been attempted so far.

The purpose of the present paper is to report valley-
splitting calculations in the presence of a magnetic field for a
strained Si QW grown on a tilted substrate using a param-
etrized tight-binding model, where the valley splitting is ob-
tained by directly diagonalizing the Hamiltonian without re-
sorting to any perturbation method. In particular, the valley
splitting in the single-particle picture arising from the mis-
orientation between the crystal axis and the confinement axis
is examined. These calculations broadly confirm the effec-
tive-mass calculations for the first Landau level and provide
an intuitive understanding of the nonmonotonic magnetic-
field dependence for the second and third Landau levels.

For this study, the tight-binding parameters for silicon are
taken from Ref. 17. The strain effect on the Hamiltonian is
incorporated through off-diagonal elements.17 The tight-
binding model accurately describes the conduction-band
edge location and its effective masses as well as the overall
band structure.17 The magnetic-field effect is described by
applying a gauge-invariant Peierls substitution to the off-
diagonal elements.18 The Peierls substitution incorporates the
vector potential into the tight-binding Hamiltonian without
introducing additional fitting parameters. The confinement
potential provided by the buffer material is approximated
through passivating dangling bonds at the interface.19 This
approximation does not alter the qualitative behavior of the
valley splitting while it reduces the valley-splitting magni-
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tude due to the weakening of the wave-function amplitude at
the interface.

The atomic structure of the strained silicon QW grown on
a tilted substrate consists of monolayer or bilayer steps along
a preferential direction with irregular step periods.20 As an
initial study, we model the atomic structure with regular
monolayer steps aligned along the crystal axis x �100� �see
Fig. 1�. The separation between the steps �Ls� is related to the
tilt angle of the substrate, �, by tan �=h /Ls where h is the
monolayer step height. The strain in the QW due to the lat-
tice mismatch between the Si and Si1−xGex materials is mod-
eled with a uniform biaxial strain with strain tensor values
�xx=�yy =0.0125 and �zz=−0.0103, which correspond to a Ge
concentration x=0.3. The dimensions of the modeled struc-
ture are specified in Fig. 1.

For a magnetic field B applied along the confinement di-
rection z�, we choose a vector potential A= �0,Bx� ,0�. This
asymmetric gauge breaks the periodicity of the Hamiltonian
along x�, but maintains the periodicity along the crystal axis
y �010�. In order to ensure that the finite length of the mod-
eled system does not affect the confinement of the Landau
level, the length along x� �Lx�� is chosen to be at least nine
times as big as the effective confinement length of the Lan-
dau level.

Figure 2 shows the first three Landau-level energies cal-
culated as a function of the applied magnetic field strength.
The wave function along x� plotted in the inset shows that
the size of the modeled system is sufficiently large to accom-
modate the confinement of the Landau level and at the same
time to avoid any spurious effect due to the arbitrary finite-
size confinement. The slope of the magnetic-field depen-
dence suggests that the effective mass of the conduction-
band electron along x� is about 0.23m0, where m0 is the
free-electron mass. This value agrees with that obtained from
rotating the effective-mass tensor by the tilt angle � �3.5° in
the modeled system�. The tight-binding model yields effec-
tive masses mxx=0.24m0 and mzz=0.74m0 for the strained
silicon. By rotating the effective-mass tensor, the effective
mass along x� becomes 0.23m0 given by mx�x�

−1 =mxx
−1 cos2 �

+mzz
−1 sin2 �, in agreement with the Landau-level variation.
Figure 3�a� shows the valley splitting for the first three

Landau levels as a function of the magnetic field strength.
The valley splitting of the first level shows an exponential
increase followed by saturation as the magnetic field in-
creases, while that of the second and third levels shows an
oscillatory behavior. In order to examine whether the misori-

entation between the crystal axis �z� and the confinement
direction �z�� is responsible for this strong magnetic-field
dependence, the valley splitting in the absence of misorien-
tation is also calculated. Figure 3�b� shows that the strong
magnetic-field dependence vanishes when the QW is grown
on a substrate with zero tilt angle. The valley splitting
slightly decreases from 7.15 to 6.95 meV as the magnetic
field increases from 0 to 30 T. This result shows that the
strong dependence of the valley splitting on the magnetic
field and the Landau-level index is the direct consequence of
the misorientation between the crystal axis z and the confine-
ment direction z�.

The comparison between Figs. 3�a� and 3�b� illustrates
another misorientation effect, which is a reduction in the
magnitude of the valley splitting. In the presence of misori-
entation, the valley splitting reaches at most 5% of the valley
splitting with zero tilt angle. In addition, a previous tight-
binding study including a band structure calculation shows
that the valley splitting completely vanishes at zero magnetic
field for a finite tilt angle.7

The strong magnetic-field dependence of the valley split-
ting can be interpreted explicitly in terms of simple argu-
ments using the effective-mass approximation. A similar in-
terpretation has been reported for the valley splitting of the
first Landau level in Ref. 4. Wave functions for the two low-
est Z valley states confined in a QW of width W, with an
infinite potential barrier, and with a magnetic field B applied
along the growth direction z� can be approximated by the
following expression:

�n
±�x�,z�� = cos��z�/W�Hn�x�/�B�e−x�2/2�B

2
e�ik0 sin �x�±ik0 cos �z�,

�1�

where Hn�x� is a Hermite polynomial and �B is the Larmor
radius given by �eB /�. Note that the normalization constant
for the wave function is dropped for simplicity. The phase
factors in the x� and z� directions are k0 sin �x� and
k0 cos �z�, respectively, because the conduction band minima
in the rotated coordinate frame �x�y�z�� are at k
= �k0 sin �êx�±k0 cos �êz�, where k0�0.15 �2� /a� is the
position of the conduction band minimum in the folded Bril-
louin zone for bulk silicon.

The two degenerate valley wave functions �n
±�x� ,z�� are

coupled due to a translational-symmetry-breaking potential
at the interfaces located at z�=W /2, z�=−W /2. We approxi-
mate the symmetry-breaking potential as V�z��=v1g�z�
−W /2�+v2g�z�+W /2�, where g�z�� is a highly localized
function centered at zero with its localization range being
about one atomic monolayer. The exact form of g�z�� is not
critical for this argument. The constants v1 and v2 are deter-
mined by the atomic and bonding environment at the inter-
face. The coupling strength between �n

±�x� ,z�� through the
symmetry-breaking potential determines the valley splitting:

�En = 2���n
+	V�z��	�n

−
�

= 2�� dz�V�z��cos2��z�/W�e−i2k0 cos �z�

	� dx�Hn
2�eB

�
x��e−�eB/��x�2

ei2k0 sin �x��

FIG. 1. �Color online� Geometry of a QW grown on a tilted
substrate. The crystal symmetry directions are along x �100� and z
�001�. The QW confinement direction is along z�, and atomic steps
are formed along x�. In the modeled system, the step height is one
atomic layer �a /4� and the QW width Lz is 5a, where a is the lattice
constant of silicon. The step separation Ls is either 2a or 4a, corre-
sponding to a tilt angle of 7.1° and 3.5°, respectively.
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= 2
�� dx�Hn
2�eB

�
x��e−�eB/��x�2

ei2k0 sin �x�� ,

�2�

where the constant 
 results from the integration over z�.
The resulting expression contains the phase term

2k0 sin �x� in the integrand, which leads to the rich magne-
tic-field dependence of the valley splitting. When the mag-
netic field is zero, the wave function extends over an infinite
range along x�, and the phase variation therefore leads to a
complete cancellation of the valley coupling in agreement
with previous band structure calculations.7 As the magnetic
field increases, the extent of the wave function along x� de-
creases and the cancellation effect of the phase variation is
incomplete. In particular, the relative peak locations of the
second and third Landau-level wave functions affect the
phase interference between the peaks, resulting in an oscil-
latory behavior of the valley splitting.

The same equation for the valley splitting also explains
the disappearance of the strong dependence at zero tilt angle.
Without the phase variation, the integration over x� leads to a
constant independent of the magnetic field and Landau-level
index. This prediction is consistent with the weak depen-
dence obtained by the direct tight-binding calculation shown
in Fig. 3�b�. It should be noted that although Eq. �2� implies
an abrupt change in the magnetic-field dependence of the
valley splitting at zero tilt angle, the discontinuity is true
only in the limit of a system extending to infinity �i.e., the
integration range of x� is infinite�. When a realistic finite-size
system is considered, the cancellation of the phase variation
at zero magnetic field is incomplete even at nonzero tilt
angle, leading to a nonzero valley splitting. In order to make
the cancellation complete, the system size should be many
times larger than the periodicity of the phase variation p
=� / �k0 sin ��. This means that, in a realistic finite-size sys-
tem, as the tilt angle approaches zero, the magnitude of the
valley splitting at zero magnetic field gradually changes from

FIG. 2. �Color online� First three Landau-
level energies as a function of magnetic field
strength for a 5a-wide strained silicon QW with a
tilt angle of 3.5° when the magnetic field is ap-
plied along the confinement direction z�. The in-
set shows the wave function squared integrated
over y and z�, illustrating its confinement along
x�. The finite length of the modeled system
�80 nm for B=10 T� is sufficiently long to ex-
clude artificial finite-size simulation effect.

FIG. 3. �Color online� Valley splitting of the
first three Landau levels as a function of magnetic
field strength for a silicon QW �a� with a tilt
angle of 3.5° and �b� with a zero tilt angle. The
valley splitting as a function of the ratio of the
Larmor radius to the step separation for a silicon
QW with a tilt angle of �c� 3.5° and �d� 7.1°. The
QW is 20 atomic layers wide. The magnetic field
is applied along the confinement direction, which
is z �001� for a no-tilt QW and z� for a tilted QW.

MAGNETIC-FIELD DEPENDENCE OF VALLEY… PHYSICAL REVIEW B 74, 245302 �2006�

245302-3



zero to a finite value and the magnetic-field dependence
gradually changes from strong to weak.

Equation �2� also provides insight into the interplay be-
tween the two characteristic lengths that determine the mag-
nitude of the valley splitting. The Larmor radius �B charac-
terizes the extent and the peak separation in the Landau level
wave function along x�, and the step separation �Ls

�1/ tan �� represents the period of the phase variation along
x�. When the valley splitting equation is expressed in terms
of the ratio between these two length scales, it provides a
universal dependence curve with regard to the tilt angle
variation because the interplay between the two length scales
remains the same. In Figs. 3�c� and 3�d�, the valley splitting
dependence on the magnetic field is plotted with respect to
the ratio of the Larmor radius to the step separation for tilt
angles of 3.5° and 7.1°, respectively. The plots illustrate that,
irrespective of the tilt angle, the valley splitting for the sec-
ond and third Landau levels vanishes at �B /Ls�2.5 and 4.8,
respectively, where the wave function peaks are located such
that the phase interference is destructive.

The strong dependence of the valley splitting on the Lan-
dau level index and the magnetic field offers an opportunity
to engineer the magnitude of the valley splitting for device
applications. A large valley splitting can be achieved by tun-
ing the Landau-level filling factor through changes in the
magnetic field or doping concentration so that the Landau-
level at the Fermi level has a high Landau index and the
multiple peaks of the wave function are located relatively to
each other such that the phase interference between the peaks
becomes constructive. In addition to the magnetic-field de-
pendence, the magnitude of the valley splitting also depends
on the quantum well width �W� as shown in the integration
over z� in Eq. �2�. The width determines the constant factor
�
�, which is proportional to sin�k0W� /W3.2 It is important to
note that the well width does not change the qualitative be-
havior of the magnetic dependence of the valley splitting.

We now discuss our findings in comparison with relevant
experiments. With regard to the characteristics of the
magnetic-field dependence, our calculation result is in quali-
tative agreement with experimental results although the exact
dependence is different.3,11 The experiments give a linear
dependence of the valley splitting for the first Landau level.
This discrepancy between theory and experiment suggests
that the valley splitting arising from the misorientation effect
in the single-particle picture does not account for the whole
magnitude of the valley splitting. Other mechanisms such as

many-body interactions may be responsible for the enhanced
valley splitting at low magnetic fields as suggested in prior
calculations.14,21 The experimental result for the magnetic
field dependence of higher Landau levels is not available in
the literature.

As for the valley-splitting dependence on the Landau-
level index, the calculation is consistent with recent magne-
totransport measurements.5 The experiment demonstrates
that the valley splitting before and after the Landau-level
crossing differs by a factor of 3. The measured valley split-
ting on each side of the crossing arises from a different Lan-
dau level. Our calculations show that due to the different
magnetic-field dependence, the valley splitting of two differ-
ent Landau levels can be significantly different in some
ranges of the magnetic field.

Recently, a remarkable behavior of the valley splitting
was observed for electrons confined in SiO2/Si/SiO2 QWs
on silicon-on-insulator structures.6 The valley splitting does
not change with increasing magnetic field, and is strongly
asymmetric with respect to the electrical gate bias, indicating
that topological differences �atomic terracing disorder� be-
tween the two SiO2/Si interfaces �thermal-oxide/Si and
buried-oxide/Si� lead to an asymmetric valley splitting. Ac-
cording to the results presented here, these new observations
can be understood in terms of a competition between disor-
der and misorientation effects. The highly disordered inter-
face between the buried oxide and Si overshadows the mis-
orientation effect, and thus enhances the valley splitting and
removes its magnetic-field dependence.

In summary, the valley splitting of the first few Landau
levels for a strained silicon QW grown on an unstrained
tilted SiGe substrate is calculated using a tight-binding
model. Specifically, the valley splitting resulting from the
misorientation effect in the single-particle picture is investi-
gated. A strong magnetic-field dependence of the valley split-
ting and Landau-level index is observed and is attributed to
the phase variation of the wave function along the wash-
boardlike interface between the QW and the buffer. The
phase variation arises from the misorientation between the
crystal axis and the growth direction of the silicon QW
grown at a tilted angle. The strong dependence can be ex-
ploited to engineer the magnitude of the valley splitting.
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