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Abstract. The key to real-time intelligent control lies in the knowledge models that the system contains. We argue that there needs
to be a more rigorous approach to engineering the knowledge within intelligent controllers. Three main classes of knowledge are
identified: parametric, geometric/iconic, and symbolic. Each of these classes provides unique perspectives and advantages for
the planning of behaviors by the intelligent system. Examples of each from demonstration systems are presented.

1. Introduction

The concept of intelligence in control applies to a va-
riety of approaches to extending classical control theory
that include learning, non-linear control, model-based
control, and, in general, control of complex systems
that will “do the right thing” when confronted with un-
expected or unplanned situations [3]. It can be said that
all “intelligent” systems have some knowledge of the
system to be controlled or that they use some model of
the system in calculating control outputs. In fact, the
American Heritage Dictionary defines intelligence as
“the capacity to acquire and apply knowledge.”

Creating, capturing, and using the knowledge – i.e.,
the model – of the system to be controlled is one branch
of what is known as knowledge engineering. The real-
time aspects of control make this problem domain dif-
ferent than other knowledge engineeringproblems such
as large-scale ontologies. For example, there is a need
for designing non-symbolic aspects of the system’s
knowledge, such as map-based world models. In this
paper, we argue that intelligent control requires several
different classes of knowledge and representation.

In Section 2, we provide a categorization in which to
classify different types of knowledge, and describe how
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knowledge representations in each class have been pre-
viously applied towards intelligent control. In Section
3, we describe efforts that attempt to use only single
classes of knowledge, as described in Section 2, and the
shortcomings that were encountered by these efforts. In
Section 4, we explore integration consideration when
trying to use inherently different classes of knowledge
towards a unified world view. In Section 5, we discuss
the implication of using a reference model architecture
in guiding the decisions regarding what type of knowl-
edge is needed in the software and how it should be
represented. We conclude in Section 6.

2. Classes of knowledge

A general framework for a model-based control sys-
tem is shown schematically in Fig. 1. This frame-
work shows a hierarchical control structure with a
world model hierarchy explicitly interspersed between
the sensor processing hierarchy and the behavior gen-
eration or task decomposition hierarchy, allowing for
model-based perception and model-based control [2,
3]. Example labels for three of the levels (subsys-
tem, primitive, and servo), as defined in [3] are shown.
This paper presents an overview of the data needed for
the world model hierarchy. We argue that there are
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Fig. 1. General framework for an intelligent control system.

three distinctly different classes of knowledge in such
a control hierarchy: sensory signals, state variables,
and system parameters at the lower levels; spatial mod-
els (maps, images and objects) that represent geomet-
ric and dynamic knowledge at the middle levels; and
symbolic data that represent mathematical, logical, lin-
guistic, and procedural knowledge at the highest levels.
Relationships between and among these three types of
representations can be expressed as pointers. We will
consider each of these below. Note that each level may
contain some or all of the classes of knowledge, but
in general, there won’t be use of symbolic knowledge
at the lowest (servo) level, and the highest levels will
mostly use symbolic knowledge. Traditionally, iconic,
parametric, and numeric information are not addressed
by knowledge engineering. We believe that it is neces-
sary to consider these types of representations as well
in designing the knowledge models for intelligent sys-
tems.

We can further distinguish knowledge that is learned
or acquired, which we will callin situ knowledge, from
knowledge that is pre-programmed or referenced from
an outside database, which we will calla priori knowl-
edge. This provides a framework for considering learn-
ing and adaptive control.

There is yet a third means of differentiation of types
of knowledge, which is to distinguish knowledge of
things (nouns), and knowledge of actions, tasks or be-
haviors (verbs). Modifiers include attributes of things
(adjectives) and attributes of tasks (adverbs). This be-
comes very useful at higher levels in considering the
interaction of autonomous machines with complex en-
vironments, where appropriate behaviors depend upon

the nature of the objects encountered in the environ-
ment. Another application where this distinction arises
is generative process planning for assembly or machin-
ing or inspection [8,17,20]. A distinction between ob-
ject models (things) and behavior models (actions) also
helps the system designer in matching the sensor pro-
cessing and world modeling specifications to the con-
trol task specifications.

2.1. Parametric level knowledge

The lowest levels of any control system, whether for
an autonomous robot, a machine tool, or a refinery, are
at the servo level, where knowledge of the value of
system parameters is needed to provide position and/or
velocity and/or torque control of each degree of free-
dom by appropriate voltages sent to a motor or a hy-
draulic servo valve. The control loops at this level
can generally be analyzed with classical techniques and
the “knowledge” embedded in the world model is the
specification of the system functional blocks, the set
of gains and filters that define the servo controls for
a specific actuator, and the current value of relevant
state variables. These are generally called the system
parameters, so we refer to knowledge at this level as
parametric knowledge.

Figure 2 shows a traditional PD servo control for a
motor of a robot arm. All six or seven motors that drive
the arm will have basically the same servo control, but
each will have different parameters because there are
different size motors driving different loads at different
points in the arm. Any errors that deal with a single de-
gree of freedom, such as ball screw lead errors, contact
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Fig. 2. PD servo control.

instabilities, stiction, and friction are best compensated
for at this level.

Learning or adaptive control systems [5,36] may al-
low changes in the system parameters and even au-
tonomous identification of the system parameters, but
the topology of the control loops is basically invariant
and set by the control designer. We would not expect a
robot to invent itself a torque loop in the field, although
it could well change the gain or phase of a position or
velocity loop as it learns to optimize a task.

2.2. Spatial level knowledge

Above the servo level are a series of control loops
that coordinate the individual servos and that require
what can be generally called “geometric knowledge”,
“iconic knowledge”, “metrical maps”, or “patterns”.
This knowledge is spatial in nature and can be defined
as 2D or 3D array data in which the dimensions of the
array correspond to dimensions in physical space. The
value of each element of the array may be boolean data
or real number data representing a physical property
such as light intensity, color, altitude, range, or den-
sity. Each element may also contain spatial or temporal
gradients of intensity, color, range, or rate of motion.
Each element may also contain a pointer to a geometric
entity (such as an edge, vertex, surface, or object) to
which the pixel belongs.

Examples of iconic knowledge include digital terrain
maps, sensor images, models of the kinematics of the
machines being controlled, and knowledge of the spa-
tial geometry of parts or other objects that are sensed
and with which the machine interacts in some way.
This is where objects and their relationship in space
and time are modeled in such a way as to represent and
preserve those spatial and temporal relationships, as in
a map, image, or trajectory.

For industrial robots, machine tools, and coordinate
measuring machines, the first level above the servo
level deals with the kinematics of the machine, relat-
ing the geometry of the different axes to allow coor-
dinated control. Linear, circular and other interpola-
tion and motion in world or tool coordinates is en-
abled by such coordination. The “knowledge” here

Fig. 3. Part pose computation.

may be the kinematic equations or Jacobian coefficients
that define the geometric relationships of the axes, or
the mathematical routines for interpolation or coordi-
nate transformations. It is at this level that system-
atic multi-dimensional geometric errors such as non-
orthogonality of axes of a machine tool and Abbe offset
errors are considered [3].

Figure 3 shows an investigation of fixtureless inspec-
tion, in which a part is placed on the table of an inspec-
tion machine without a fixture and the pose of the part
is determined by matching an image of the part (dark
edges) with a predicted image derived by rotating and
translating a CAD model of the part (light edges) [16,
26].

For mobile autonomous robots, there are two main
categories of spatial knowledge representation that are
useful. These are sometimes referred to as metrical
maps in the literature [21]. One captures what the
sensors see (the view “out the windshield”). This
may be two-dimensional images, as is the case for
CCD cameras, or three-dimensional images, in the
case of range sensors such as LADARs. Some mo-
bile robots successfully accomplish their goals by plan-
ning based on a world model derived purely from the
sensor image view. This is particularly true for road-
following systems, such as those by Dickmanns [11]
and Jochem [19].

Another spatial representation is akin to the “bird’s-
eye-view”. Digital maps are a natural way of repre-



140 E.R. Messina et al. / Knowledge engineering for real time intelligent control

Fig. 4. Occupancy grid map for mobile robot navigating in a hallway
and approaching an obstacle.

senting the environment for path planning and obstacle
avoidance, and provide a very powerful mechanism for
sensor fusion since the data from multiple sensors can
be represented in a common format [14]. Digital ter-
rain maps are essentially two-dimensional grid struc-
tures that are referenced to some coordinate frame tied
to the ground or earth. A map may have multiple layers
that represent different “themes” or attributes at each
grid element. For instance, there may be an elevation
layer, a road layer, a hydrology layer, and an obstacle
layer. The software can query if there is a road at grid
location [x, y] and similarly query for other attributes
at the same [x, y] coordinates.

The mobile robot literature references occupancy
grids as a specific approach to building quantized local
maps with some measure of certainty applied to con-
tents of each grid element [6,9,27,30]. This is partic-
ularly useful with sensor modalities that are noisy or
sensitive over wide angles such as sonar. Some sys-
tems [21] augment versions of these maps with topo-
logical information. This enables them to reduce the
amount of data stored and relate individual local maps
together into a more global one.

Figure 4 shows a typical local map from a mobile
robot navigating through an indoor environment. The
robot’s position at the center is indicated by marking
the occupied cells with “R”. The numbers in certain
cells indicate the degree of confidence that there is an
obstacle occupying that cell. Figure 5 shows a higher
level map for path planning for outdoor navigation.
This map contains several feature layers, including el-
evation, vegetation, roads, buildings and obstacles.

Fig. 5. Multi-featured digital terrain map.

DATA; 
#10 = 
BLOCK_BASE_SHAPE(#20,#30,#70,#80); 
#20 = NUMERIC_PARAMETER(‘block Z 
dimension’,50.,’mm’); 
#30 = ORIENTATION(#40,#50,#60); 
#40 = DIRECTION_ELEMENT((0.,0.,1.)); 
#50 = DIRECTION_ELEMENT((1.,0.,0.)); 
#60 = LOCATION_ELEMENT((62.5,37.5,0.)); 
#70 = NUMERIC_PARAMETER(‘block Y 
dimension’,75.,’mm’); 
#80 = NUMERIC_PARAMETER(‘block X 
dimension’,125.,’mm’); 
#90 = SHAPE((),#10,()); 
#100 = PART(‘out’,’rev1’,’’,’simple 
part’,’ insecure’,(),#90,(),(),(),$,(), 
(#110),(),()); 
#110 = MATERIAL(‘aluminum’,’soft 
aluminum’,$,(),()); 

Fig. 6. STEP representation of a block.

2.3. Symbolic knowledge

At the highest levels of control, knowledge will be
symbolic, whether dealing with actions or objects. It
is at this level that a large body of relevant work ex-
ists in knowledge engineering for domains other than
real-time control, such as formal logic systems or rule
based expert systems. Whether the knowledge is repre-
sented in terms of mathematical logic, rules, frames, or
semantic nets, there is a formal linguistic structure for
defining and manipulating and using the knowledge. A
good presentation of different concepts of knowledge
representation is found in Davis [10].

An example of a formal description of a solid model
of a part is shown in Fig. 6. A block is being described
using International Standards Organization Standard
for the Exchange of Product Model Data (STEP) Part
21 [18]. Note that this linguistic representation can be
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Fig. 7. Pocket Feature.

linked by pointers to a geometric representation where,
for example, a block might be represented by equations
of six planes with bounding curves and a coordinate
transformation matrix to position the block within a
given coordinate system.

Linguistic representations provide ways of express-
ing knowledge and relationships, and of manipulating
knowledge, including the ability to address objects by
property. Tying symbolic knowledge back into the
geometric levels provides symbol grounding, thereby
solving a serious problem inherent to purely symbolic
knowledge representations. It also provides the valu-
able ability to identify objects from partial observations
and then extrapolate facts or future behaviors from the
symbolic knowledge. In the manufacturing domain,us-
ing a feature-based representation (which is symbolic)
is reasonable at the generative planning level (Fig. 7a).
Graphical primitives (Fig. 7b) that relate to the geom-
etry can be tied to features to let users easily pick a
feature (such as a pocket) by selecting on a portion of
it on the screen. The geometric representation of each
edge and surface that comprise a feature (Fig. 7c) can
be tied to the feature definition in order to facilitate
calculations for generating the tool paths.

In addition to capturing properties of objects, sym-
bolic representations also provide a mechanism to cap-
ture rules that can govern the behavior of a system.
Figure 8 shows a graphical depiction of a finite state
machine that provides a high-level description of the
rules that an autonomous vehicle must follow when
navigating through traffic. This type of symbolic rep-
resentation focuses on the states and transitions that
are important to this type of behavior, and captures the
rules that would cause the vehicle to transition from

one state to another. For example, the vehicle would
move from state “traversing” to state “exiting traffic”
only when the condition “at destination” is met.

Another type of symbolic representation for repre-
senting rules is ontological. Ontologies are definitions
and organizations of classes of facts and formal rules
for accessing and manipulating (and possibly extend-
ing) those facts. There are two main approaches to cre-
ating ontologies, one emphasizing the organizational
framework, with data entered into that framework, and
the other emphasizing large scale data creation with
relationships defined as needed to relate and use that
data. Cyc [23] is an example of the latter, an effort
to create a system capable of common sense, natural
language understanding, and machine learning.

Ontologies provide mechanisms for reasoning over
information. This includes being able to infer infor-
mation that may not be explicitly represented, as well
as the ability to pose questions to the knowledge base
and receive answers in return. One way of enabling
this functionality is to represent the symbolic informa-
tion in the world model in a logic-based, computer-
interpretable format, such as in the Knowledge Inter-
face Format (KIF) representation [15].

Through the use of an inference engine or theorem
prover, information represented in this format could
be queried, and logically-proven answers could be re-
turned. As an example, a manufacturer may want to
know whether a given set of fixture positions is suit-
able to fully inspect a part. Assuming that the neces-
sary inspection points, access volumes, and machine
capabilities are represented in KIF, the manufacturer
could enter in the fixture positions and the system could
logically-prove whether those positions are sufficient
to fully inspect the part. Future work will be exploring
this area in more detail via the implementation of logic-
based ontologies to represent the symbolic information
in the control hierarchy.

Linguistics is useful for human-machine commu-
nication and for sharing and exchanging information
amongst robots. Many of the results of such formal
methodologies can be useful to control applications.
Formal methods can be used to prove correctness and
completeness of the knowledge representation. Higher-
level behaviors and environmental situations are more
readily and efficiently expressed using linguistic (ver-
sus geometric) representations. For instance, at the
higher levels of control, describing the environment
near an autonomous driving vehicle by only naming
objects is more compact than an enumeration of a se-
ries of surfaces and their mathematical descriptions.
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Fig. 8. Finite state machine representation of a driving activity.

Of course, the geometric descriptions are necessary in
order to avoid collisions, but that would be handled by
a lower control level.

A number of methodologies and tools exist for an-
alyzing and modeling knowledge at a symbolic level.
CommonKADS [1] is one such tool which supports
structured knowledge engineering, by enabling one to
spot opportunities and bottlenecks in how organiza-
tions develop, distribute and apply their knowledge re-
sources, and so gives tools for corporate knowledge
management.

3. Different approaches to using knowledge for
control

3.1. Control using only high-level symbolic
knowledge

Much early robot work was carried out in the context
of AI research using symbolic representations [22,29,
31]. This had the unfortunate result of uncoupling
robotics from the geometry and dynamics of the real
world, and focusing on purely symbolic approaches to
perception, planning, and reasoning [13].

After struggling for the better part of two decades,
the AI community turned away from robotics to ex-
pert systems, knowledge representations, and problem
solving in the symbolic domain. Little of this early
work ever found practical application, although recent
work which couples higher level planners or agents to
real systems has found new advocates, particularly for
space applications [34,35].

3.2. Control using only low-level knowledge

The behavioralist school of robotics, as started by
Rodney Brooks at MIT, rejected the idea of purely
symbolic control as sterile and irrelevant to robots that
could effectively interact with the real world. Brooks
proposed using insects as a model, defining the con-
trols as a series of reactive behaviors that directly re-
lated sensor inputs to behaviors through finite state ma-
chines. More complex behaviors were able to inhibit
or subsume simpler lower level behaviors, hence this
was called a subsumption architecture [7].

Some significant accomplishments were achieved,
including the learning experiment that Brooks carried
out to demonstrate that a hexapod with a network of
controllers could learn to walk with the appropriate tri-
pod gait [25]. However, Brooks and others explicitly
rejected the concept of a world model, arguing that the
world was its own model, and as a result behavioralist
or reactive systems have not been applied to any prob-
lems of great complexity. Hybrid systems, such as the
deliberative-reactive systems proposed by Albus [3],
Arkin [4] or Thorpe [33] have attacked more complex
problems.

3.3. Control with multiple levels of knowledge

Intelligent systems with multiple levels and types of
representations are in the minority.

Kuipers and others have elaborated the Semantic
Spatial Hierarchy (SSH), which is inspired by human
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cognitive modeling. The SSH [21] contains both qual-
itative and quantitative representations in a hierarchy.
Sensor and control level information is based on var-
ious types of control laws leading to locally distinc-
tive states. Local geometric maps with their individual
frames of reference are constructed at the control level.
Above this is a causal level, which derives discrete
models of action from the control level. A topological
level contains an ontology of places, paths, and regions,
which connects the various local metrical maps into a
patchwork, which can be merged into a single global
frame of reference.

The most significant and complex autonomous mo-
bile robot built to date is the Army’s Experimental Un-
manned Vehicle (XUV) being developed for scout mis-
sions (reconnaissance, surveillance, and target acquisi-
tion (RSTA) missions). The architecture for this vehi-
cle is called 4D/RCS, merging the work of Dickmanns
in Germany on road following [11] and the work of
Albus at NIST [2]. Both use data from multiple sen-
sors to build a world model and then use that model for
planning what the vehicle should do.

The Army XUV has successfully navigated many
kilometers of off road terrain, including fields, woods,
streams and hilly terrain, given sparse way points on a
low resolution map by an Army scout. The XUV used
its on-board sensors to create high definition, multi-
resolution maps of its environment and then navigated
successfully through very difficult terrain.

This is basically a demonstration of the use of multi-
resolutional maps as a means of knowledge representa-
tion for sensor fusion and path planning in autonomous
mobile robots. Over the next several years, symbolic
knowledge will be added to enable tactical behaviors
and human-machine interaction. This will create a ma-
chine that will indeed be considered intelligent. A brief
discussion of some of the design aspects of knowledge
content and representation in building such as system
are presented in the following section.

4. Integration considerations

Representing multiple classes of knowledge within
an intelligent control system introduces the challenge
of integrating fundamentally different representations
into a single, unified knowledge base. This knowledge
base must behave as a single, cohesive entity, and as
such, there must be seamless information exchange and
interoperability between all knowledge sources. In the
case of autonomous mobility, as alluded to in Section 2,

parametric knowledge may be stored as a set of num-
bers in a computer program representing the values of
the state variables, the iconic knowledge may be a set
of digital terrain maps represented as two-dimensional
arrays, and the symbolic knowledge may be a set of
tokens with pertinent attributes stored in a database.

4.1. Integration within a single representation

There are integration challenges within a single rep-
resentation, as well as among disparate representa-
tions. Building off of the autonomous mobility exam-
ple above, within solely the symbolic level, one must
integrate a priori information about the types of enti-
ties that one expects to see in the environment with in-
stances of the entities that are identified with on-board
sensors as they are encountered. When both of these
pieces of information are represented in database for-
mat, association of database keys is often sufficient
enough to provide the necessary integration.

Within solely the iconic level, one must integrate
processed sensed data about the environment with a
priori terrain maps. This is a difficult challenge due
to the noise associated with sensed data as well as the
varying level of resolution between a priori maps and
the sensed data. In addition, one must integrate two or
more sensed images, which may be taken by two dif-
ferent sensors, or by the same sensor at different times.
Often described as “data registration”, researchers are
actively addressing this challenge [12,24].

4.2. Integration among disparate representations

Similar challenges exist when integrating knowledge
captured in different representations. Although the rep-
resentations differ, there will undoubtedlybe direct cor-
relations between the data in each representation. In
the case of object recognition [32], information that can
be inferred by analyzing the data stored in the iconic
grid structure must be compared to the class attributes
stored in the symbolic knowledge base to determine
if there is a correspondence. For example, if a clus-
ter of occupied cells in a spatial representation can be
grouped into a single object, one can create an object
frame and link all the pixels in the spatial representa-
tion to the object frame. This object frame contains a
list of object attributes that are measured properties of
the cluster of pixels in the spatial representation. De-
pending on the information that is stored in the spatial
representation, one may be able to tell the object’s di-
mensions, average color, velocity, location, etc. Based
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Fig. 9. Integrating a symbolic representation with a spatial representation.

on this information, one can compare the attributes of
an observed object to attributes of a class prototype of
objects that are expected to be seen in the environment.
If a correspondence is found (within a desired thresh-
old), links are established between the object frame and
the class prototype in the database. This is the process
of classification. Links established through the classi-
fication process are bi-directional pointers. Thus, class
names and class attributes can be linked back to the
object frame, and from there back to the pixels in the
spatial representation.

Figure 9 shows an example of integrating a spa-
tial representation with a symbolic representation. In
Fig. 9a, the number in the cells represent the probabil-
ity that the cell is occupied, with 10 being the great-
est. Other information is stored in each cell that is not
shown in Fig. 9a, such as the color and the height of
the object that is occupying that cell. In Fig. 9b, the
information in the spatial representation is processed
and stored as a list of attributes in an object frame.
This involves clustering cells that appear to be part of
the same object, and determining overall characteris-
tics of that object. The cluster of cells have an overall
X-dimension of between 9.65–10.16 meters, an overall
Y-dimension of 3.56–3.94 meters, an average height
of 2.79–3.05 meters, and an average color of green.
The perceived attributes are then compared to a priori
attributes stored in a list of class prototypes as shown
in Fig. 9c to determine if there is correspondence. In
this case, there appears to be a clear match between the
observed attributes measured from the sensed data and

the attributes in the class prototype of a M1A1 tank.
Therefore, links are created between the class prototype
and the cells in the spatial representation.

Although the above scenario is an oversimplified
example, it shows the steps that need to be accom-
plished to establish a link between stored class proto-
types and objects observed in the world. These links
would ground the symbolic representations in the world
model to the objects in the world.

The above approach can be extended to deal with
moving objects. To deal with moving objects, one must
continually track the motion of the object, and update
the pointers from spatial representation to object frame
and class prototypes as time progresses. This process
can be facilitated by including velocity in the list of
object attributes.

5. Considerations in design of knowledge and its
representation

A reference model architecture is essential for guid-
ing the design and engineering of complex real-time
control systems.

The 4D/RCS architecture is a hierarchical control
structure, composed of RCS Nodes, with different
range and resolution in time and space at each level.
The functionalityof each level in the 4D/RCS hierarchy
is defined by the functionality, characteristic timing,
bandwidth, and algorithms chosen by Behavior Gen-
eration processes for decomposing tasks and goals at
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each level. Hierarchical layering enables optimal use
of memory and computational resources in the repre-
sentation of time and space. At each level, state vari-
ables, images, and maps are maintained to the resolu-
tion in space and time that is appropriate to that level.
At each successively lower level in the hierarchy, as
detail is geometrically increased, the range of compu-
tation is geometrically decreased. Also, as temporal
resolution is increased, the span of interest decreases.
This produces a ratio that remains relatively constant
throughout the hierarchy.

Each RCS Node contains the same functional ele-
ments, yet is tailored for that level of the hierarchy
and the node’s particular responsibilities. An RCS
Node contains processes that perform Sensory Process-
ing (SP), Behavior Generation (BG), World Modeling
(WM), and Value Judgment (VJ). At every level of the
control hierarchy there are deliberative planning pro-
cesses that receive goals and priorities from superiors
and decompose them into subgoals for subordinates at
levels below. At every level, reactive loops respond to
feedback to modify planned actions so that goals are
accomplished despite unexpected events. In the sen-
sory processing side of the hierarchy, information de-
rived from observations by subordinate levels is filtered
and processed upward to more abstract levels, using a
priori knowledge of objects and situations to interpret
the incoming data in detecting events, recognizing ob-
jects, and developing situation awareness. The sensory
processing results are used to update the world model
at each level; planning is thus carried out against the
best possible representation of the external world.

At every level, sensory processing and behavior gen-
eration processes have access to a model of the world
that is resident in a knowledge database. This world
model enables the intelligent system to analyze the past,
plan for the future, and perceive sensory information in
the context of expectations. Cost functions enable value
judgments and determine priorities that support intelli-
gent decision making, planning, and situation analysis.
The cost functions can be dynamic and are determined
by current commands, priorities, user preferences, past
experiences, and other sources.

Therefore, the design of the knowledge requirements
at each level is driven by the responsibilities of that
level: What commands will an RCS Node be able to
execute? What is its required control loop response
time? What spatial scope does it need to understand?
What types of entities does it have to deal with?

At the servo level, an RCS Node receives commands
to adjust set points for vehicle steering, velocity, and

acceleration, or for pointing sensors. It must convert
these commands to motion or torque commands for
each actuator and issue them at high frequencies (e.g.,
every 5 ms). The planning horizon is about 50 ms.
The knowledge used at the servo level is primarily
single-valued state variables: actuator positions, veloc-
ities, and forces, pressure sensor readings, position of
switches, and gear shift settings.

At the Primitive level, each RCS Node receives com-
mands with goal points about 500 ms in the future.
The primitive level computes dynamic trajectories ex-
pressed in terms of vehicle heading, speed, and accel-
eration and sends commands to the servo level about
every 50 ms.

At the Subsystem level, an application-specific RCS
node for autonomous mobility generates a schedule of
waypoints that are sent to the subordinate Primitive
controller. Commands that the Autonomous Mobility
RCS Node accepts include directives to follow a sched-
ule of waypoints to avoid obstacles, maintain position
relative to nearby vehicles, and achieve desired vehicle
heading and speed along the desired path. Knowledge
used at this level supports planning movement through
3D terrain, hence digital terrain maps (which are forms
of iconic knowledge), with multiple registered attribute
layers are appropriate. Planning for mobility at this
level is concerned with obstacles (both positive and
negative, i.e., holes), elevation, potential roads, if it is
to follow roads, and observability, if it is to perform
stealthy movements. A cost-based search through a
graph whose nodes are derived from elements of the
regular terrain grid is used to find the lowest-cost path
that achieves the specified objectives. The map-based
format also provides a convenient “receptacle” for reg-
istering and fusing information from multiple sensors
with each other and with a priori information, such as
from digital terrain maps. The subsystem level of the
hierarchy outputs a new plan about every 500 ms, and
the planning horizon at this level is about 5 s into the
future. The spatial scope is roughly 50 m, with a res-
olution of about 40 cm. The extents of the space con-
sidered are based on the planning horizon and vehicle
velocity. The grid resolution is based on engineering
considerations, like computational resources available
and what resolution the onboard sensors can provide.

At the Vehicle level, all subsystems on an individual
vehicle are coordinated. These may include mobility,
communication, weapons, and reconnaissance subsys-
tems. Maps extend to 500 meters, with resolution of
about 4 meters. Plans extend to a time horizon of about
one minute into the future, and may be recomputed
every 5 seconds.
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Higher still in the hierarchy is the Section Level.
This is the controller for a group of 2 or more of indi-
vidual vehicles. The Section RCS Node is responsible
for assigning duties to the individual vehicles and coor-
dinating their actions. Orders coming into the Section
Level are tactical maneuvers, including mission goals,
timing and coordination requirements. The planning
horizon is 10 minutes into the future, and new plans are
sent to subordinates about every minute. Knowledge
at the Section Level includes digital terrain maps, typi-
cally covering about 2–5 km, at low resolution (30 m),
with multiple attribute layers, such as roads (of various
types), vegetation, fences, buildings, as well as enemy
locations and militarily significant attributes. Enemy
locations may be noted within the grid-based map, but
more extensive symbolic information about the situa-
tion is associated with the grid locations. The sym-
bolic information could include details about the en-
emy force such as number of soldiers, weapons, and
estimated travel direction. This type of information is
largely symbolic in nature and may be amenable to rule
or case-based reasoning tools (such as [28]). At the
Section Level, a Value Judgment function may convert
the knowledge that “a band of 23 soldiers and 1 tank
is moving toward locationx, y with 60% probability
at velocity of 10 km/day” into a set of costs that can
be tied to the map grid and utilized by the graph-based
search to generate the vehicle plans.

At every level (except the servo level), map-based
(graph search) planning and symbolic reasoning tools
may be used. At the higher levels, symbolic knowl-
edge will become more important, but at all levels,
map-based knowledge will be useful for planning and
decision making.

At most of the levels, there is some combination of
a priori knowledge and in situ knowledge. At lower
levels concerned with mobility, the maps are primarily
sensor-generated, however, there may be pre-computed
kinematically correct steering curves that are overlaid
on the planning graph. At higher levels, more a pri-
ori knowledge is used, e.g., digital terrain maps and
descriptions of enemy vehicles and capabilities.

6. Conclusion

No one type of knowledge representation is adequate
for all purposes. Davis [10] argues that representa-
tion and reasoning at the symbolic level are inextri-
cably intertwined, and that different reasoning mecha-
nisms, such as rules and frames, have different natural

representations that must be integrated in a represen-
tation architecture to achieve the advantages of multi-
ple approaches to reasoning. We go further and argue
that there is a requirement for integrating iconic and
parametric knowledge with multiple types of symbolic
knowledge and that, as Davis argues, there is a basic
need for a representational architecture to provide a
basis for intelligent control, which we have presented
above.

The introduction of iconic data, integrated with sym-
bolic data and parametric data in a multi-resolution hi-
erarchical world model, enables the real time control
of complex systems interacting with the real world, in-
cluding the ability to deal with dynamic relationships
of objects in space and time. This provides the ability
for a moving vehicle to sense and correctly respond to
unexpected obstacles and events, which is the essence
of intelligent control of mobility systems. The Army
XUV program provides a leading edge demonstration
of the value of this approach.
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