
Characterizing the entangling capacity

of n-qubit computations

Stephen S. Bullocka and Gavin K. Brennenb

aNational Institute of Standards and Technology, Gaithersburg, Maryland 20899-8910 USA

bNational Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420 USA

ABSTRACT

The state space Hn of n quantum bits of data is exponentially large, having dimension 2n. The (pure) local
states which correspond to each individual quantum bit being in an isolated one-qubit state, i.e. those which
are tensor products, form a much smaller orbit of ⊗n

1U(2) · |00 · · · 0〉 of linear dimension within the state space.
Hence most states are non-local, or entangled. The concurrence function on quantum data states is one measure
of entanglement, intuitively capturing an exponentially small fraction of the phenomenon. This paper reports
numerical tests of how concurrence changes as one applies a quantum computation u to a pure n quantum-bit data
state |ψ〉. We make strong use of a mathematical tool for factoring u = k1 a k2 into subcomputations, namely
the CCD matrix decomposition. The concurrence dynamics of a computation |ψ〉 7→ u|ψ〉 are in a certain sense
localized to the a factor, and so our actual numerics concentrate on |ψ〉 7→ a|ψ〉. This is a great simplification,
since an arbitrary unitary evolution may vary over 4n − 1 real degrees of freedom, while the a ∈ A of the
appropriate form for the CCD matrix decomposition may vary over 2n − 1 or 2n/2 − 1 as n = 2p, 2p− 1.
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1. INTRODUCTION

A great deal of interest has recently arisen in quantum computing, with two primary motivations. The most
timely motivation is recent predictions1 that current CMOS technologies will be insufficient to extend Moore’s
law into the 2020’s. The second, optimistic motivation is Feynman’s assertion2 that a device in which a bit
were replaced by a hypothetical two-state quantum system, the quantum-bit or qubit, could replace or perhaps
outperform computers manipulating bits. Indeed, much theoretical work in the 1990’s strengthened this assertion.
One may show that a quantum computer with a quantum oracle outperforms a Turing machine equipped with
a classical oracle in a few pages, and many examples of quantum algorithms which outperform their best known
classical counterparts now exist. The most famous is Shor’s algorithm, a quantum factoring algorithm capable
of breaking the current widely-used RSA encryption protocol. Their are many others,14 including the quantum
Fourier transform and Hallgren’s recently discovered (2002) algorithm3, 4 for solving Pell’s equation.

The most popular model for quantum computation is the quantum logic circuit. The precise statements of
the above results are often theorems asserting the existence of a quantum logic circuit (various libraries; two-
qubit gates) performing a given computation which is smaller than any known or possible classical (AND-OR-NOT)
logic circuit. The computation realized in the quantum setting is some evolution of the n-qubit state space,
usually taken to be a closed-system (unitary) evolution. Recalling this briefly, the one-qubit state space is the
complex vector space H1 = C{|0〉}⊕C{|1〉} carrying the usual Hermitian inner product. The axioms of quantum
mechanics then demand that the n-qubit state space should be Hn = H1 ⊗ · · · ⊗ H1 = ⊗n

1H1, with the induced
Hermitian inner product. Taking abbreviations such as |1〉 ⊗ |0〉 ⊗ |1〉 = |101〉, we produce a basis of Hn over C

as follows. Let ~b ∈ (F2)
n denote an n-bit string for F2 = {0, 1} the field of two elements. Dropping set braces:

Hn = C|0 · · · 00〉 ⊕ C|0 · · · 01〉 ⊕ · · · ⊕ C|1 · · · 11〉 =
⊕

~b∈(F2)n

C|~b〉 (1)
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We further abbreviate a bit string inside a ket by the integer it denotes in binary, e.g. |5〉 for |101〉. Thus,

for N = 2n a typical |ψ〉 ∈ Hn may be written as |ψ〉 =
∑N−1

j=0 αj |j〉, with the normalization condition being
∑N−1

j=0 |αj |2 = 1. A local state |ψ〉 ∈ Hn is any state which may be decomposed into one qubit local data as
a tensor (Kronecker) product: |ψ〉 = ⊗n

j=1|ψj〉. A (pure) state |ψ〉 ∈ Hn is entangled iff |ψ〉 is not local. Note
that (i) the local states do not form a subvectorspace of Hn, and (ii) nonetheless most states in some sense are
not local. Indeed, one may check that all local states may be written as ⊗n

j=1uj |0 · · · 00〉 for some u1, u2, · · · , un

each 2 × 2 unitary. We normalize phases to collect a eiϕ, when each uj ∈ SU(2), j = 1, 2, · · ·n. Moreover, each
v ∈ SU(2) factors as

v = eiϕ

(

e−iφ1/2 0
0 eiφ1/2

)(

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

)(

e−iφ2/2 0
0 eiφ2/2

)

(2)

This Euler angle decomposition shows most states are not local. For the expression ⊗n
j=1uj |0 · · · 00〉 has no more

than 4n real degrees of freedom. Many have suggested6 that entanglement, i.e. nonlocality of quantum data,
allows for a parallelism and ultimately outperformance of quantum logics vis a vis classical logics.

Hence, the study of how quantum computations or more generally unitary evolutions create and modify
entanglement is timely and interesting. We attack part of this problem. Namely, we report numerical results
on concurrence dynamics. Concurrence is an entanglement montone,7 very loosely a function f : Hn → [0,∞)
which vanishes on local states and fails to vanish on certain (but not all) entangled states. We seek to study how
a unitary evolution u creates concurrence, i.e. maps the 0 level set of the monotone out into Hn. The primary
theoretical tool, greatly simplifying the numerics, is a recently introduced8, 9 matrix decomposition tailored to
this task, the concurrence canonical decomposition. The CCD generalizes the Euler angle decomposition above to
n-qubit computations. Indeed, the above decomposition of Equation 2 is the one-qubit case.8

We next briefly recall the concurrence monotone and CCD; details may be found in the citations above and
their references. First, we define the n-fold tensor power of the phased-Pauli matrix −iσy = −|0〉〈1| + |1〉〈0|:

(−iσy)⊗n =
N−1
∑

j=0

(−1)#j |N − j − 1〉〈j| (3)

where for j = b1b2 · · · bn in binary we have #j = b1 ⊕ b2 ⊕ · · · ⊕ bn their XOR sum (i.e. sum in the field of two

elements F2.) Then the concurrence Cn(|ψ〉) of a data-state |ψ〉 =
∑N−1

j=0 αj |j〉 ∈ Hn is given by

Cn(|ψ〉) = |〈ψ|(−iσy)⊗n|ψ〉| =

∣

∣

∣

∣

N−1
∑

j=0

(−1)#jαjαN−j−1

∣

∣

∣

∣

(4)

Computing directly, C2p(|00 · · · 0〉) = 0. Then note that for any v ∈ SU(2), we have vT (−iσy)v = det(v)(−iσy) =

(−iσy). Hence we also have Cn(⊗n
j=1vj |00 · · · 0〉) = ⊗n

j=1〈0|vT
j (−iσy)vj |0〉 = ⊗n

j=1〈0|(−iσy)⊗n|0〉 = 0, which is
consistent with Cn(|ψ〉) being an entanglement measure. We also note that since Cn(|ψ〉) ≡ 0 for n odd, an
algebraic fact due to [(−iσy)⊗n]T = −(−iσy)⊗n.

We provide some more examples of the behavior of Cn(−), for n = 2p. First, take |GHZn〉 = 1√
2
(|00 · · · 0〉 +

|11 · · · 1〉), which is highly entangled. Then Cn(|GHZn)〉 = 1. The same is true for |GHZn/2〉 ⊗ |GHZn/2〉. On

the other hand, for the entangled state |W 〉 = 1
2 (|0001〉+ |0010〉+ |0100〉+ |1000〉), we have C4(|W 〉) = 0. Thus

Cn(−) only detects a small fraction of the total entanglement, as one might expect for any single function given
the exponentially large codimension of local states.

The CCD then extends the Euler angle decomposition of Equation 2 to n-qubits. To begin, we label K ⊂
SU(2n) to be that subset of matrices defined by

K = { v ∈ SU(2n) ; vT (−iσy)⊗nv = (−iσy)⊗n } (5)



This matrix equation demands in particular that Cn(k|ψ〉) = Cn(|ψ〉) for any k ∈ K, |ψ〉 ∈ Hn. For n = 2p, we
take A to be the group of unitary matrices which are diagonal in the following entangled basis of Hn:

B = { |j〉 + (−1)#j |N − j − 1〉 } t { i|j〉 + (−1)#j+1i|N − j − 1〉 } (6)

We further label a concurrence capacity of a unitary evolution v to be the amount of concurrence it may create
from a concurrence 0 state:

κ2p(v) = max{ Cn(v|ψ〉) ; Cn(|ψ〉) = 0, 〈ψ|ψ〉 = 1 } (7)

Earlier theory papers8, 9 then establish the following:

• Any v ∈ SU(2n) may be written as a matrix product v = k1 a k2 for k1, k2 ∈ K, a ∈ A.

• Label the concurrence spectrum λc(v) = spec(a2), a subset of the complex circle { z ∈ C ; |z| = 1 }. Then
put the convex hull of this set to be that polygon which has these points as vertices. Then the maximum
possible value of κ2p(v) for any v is one, and this is attained if and only if said polygon contains 0 ∈ C.

• Intuitively, one then suspects most computations build maximal concurrence for n >> 1, in the sense that
usually κ2p(v) = κ2p(k1ak2) = κ2p(a) = 1. For choosing many points on the circle makes it quite likely the
polygon they span holds 0 ∈ C.

The paper is organized as follows. In §2, we study the concurrence dynamics of Grover’s search algorithm
numerically and analytically. This algorithm is well-known to provide a speedup in database search, when
comparing a classical algorithm exploiting a classical oracle competing with a quantum algorithm using a quantum
oracle. Our concurrence results track those obtained for another measure of entanglement, the Q-measure10 of
Meyer-Wallach. In §3, we describe the concurrence spectra of other well-known quantum algorithms. In §4,
we study the main deficiency in the definition of a concurrence capacity. Specifically, we construct an explicit
concurrence 0 state which maximizes the concurrence capacity of a Grover iteration in 4-qubits yet is highly
nonlocal. An Appendix describes the procedure for constructing such states in detail.

2. COMPUTATION: CONCURRENCE DYNAMICS OF GROVER SEARCH

Grover’s search is an example of a quantum algorithm which in conjunction with a quantum oracle allows for
speedup. Suppose first one has a database of N = 2n classical elements and a classical oracle Ox which returns
−1 on a target element x ∈ {0, 1, · · · , N − 1} and 1 else. One expects in the worst case that N − 1 calls to this
oracle are required to classically identify x. On the other hand, suppose instead we have an oracle O|x〉 which

acts on Hn by O|x〉
∑N−1

j=0 αj |j〉 =
∑x−1

j=0 αj |j〉−αx|x〉+
∑N−1

k=x+1 αk|k〉. Grover’s algorithm makes use of O(
√
N)

oracle calls to create an output state |ψout〉 =
∑N−1

j=0 αj |j〉 with a large amplitude in αx, allowing one to identify
x with high probability.

Grover’s search algorithm6 is iterative. Let H = 1√
2

∑1
j,k=0(−1)jk|j〉〈k|, so that |ψ0〉 = H⊗n|00 · · · 0〉 =

1√
N

∑N−1
j=0 |j〉 is a state in full superposition. For IN the N ×N identity matrix, label the Grover operator as

G = H⊗n(IN − 2|00 · · · 0〉〈00 · · · 0|)H⊗nO|x〉 = (IN − 2|ψ0〉〈ψ0|)O|x〉 (8)

with the last equation a change of basis. Then Grover’s algorithm iterates through states |ψk〉 = Gk|ψ0〉. A
central point of the construction is that these iterates always remain within the plane (in fact real span) of the
kets |x〉 and |ψ0〉, on which O|x〉 and IN − 2|ψ0〉〈ψ0| act individually as reflections. Thus G acts as a rotation in
this plane about some angle, in fact

θ = 2 cos−1

√

N − 1

N
(9)

The output state |ψout〉 is the iterate |ψ`〉 for ` some best possible integer approximation to cos−1 N−1/2

θ ; trigono-

metric approximations show this ` ≤ π
4

√
N . Hence, the asymptotic number of oracle calls is O(

√
N), improving

upon Ω(N) classical oracle calls.



Computation of concurrences C2p(|ψk〉) for Grover states |ψk〉
We first consider how much entanglement (or at least entanglement in the sense of concurrence) is exploited by
Grover’s algorithm. To this end, we compute the concurrence of the Grover iterates. Since the iterates have a
fairly simple form, remaining in the R-span of two vectors, an analytic computation is most convenient.

To begin, suppose in binary j = b1b2 · · · bn, and write #j = b1 ⊕ b2 ⊕ · · · ⊕ bn the XOR sum, i.e. sum in the
field of two elements. Given that n = 2p, we note that

∑N−2
j=1 (−1)#j = −2. For the Grey code6 shows that there

is an reordering of 0, 1, 2, · · · , N − 1 so that the binary expansions of any two successive integers in this order
differ at one bit. Hence,

∑N−1
j=0 (−1)#j = 0, while #0 = 0 and #(N − 1) = 0 given n = 2p.

For simplicity, suppose henceforth that x = N − 1. Then a standard analysis6 shows that

|ψk〉 = cos

(

2k + 1

2
θ

)

|α〉 + sin

(

2k + 1

2
θ

)

|β〉, |α〉 =
1√

N − 1

N−2
∑

j=0

|j〉, |β〉 = |x〉 = |N − 1〉 (10)

Now label the quadratic form Cn(|φ〉, |ψ〉) = 〈φ|(−iσy)⊗n|ψ〉, which is C-linear in each variable. Then for all
|ψ〉 ∈ H2p, C2p(|ψ〉) = |Cn(|ψ〉, |ψ〉)|. Thus, we expand bilinearly and apply a trig identity to the cross-term for

Cn(|ψk〉, |ψk〉) = cos2
(

2k + 1

2
θ

)

Cn(|α〉, |α〉) + sin[(2k + 1)θ]Cn(|α〉, |β〉) + sin2

(

2k + 1

2
θ

)

Cn(|β〉, |β〉) (11)

The last summand is zero, since Cn(|β〉) = 0 given |β〉 is local. The second summand may also be computed
readily, recalling Equation 3. Then (−iσy)⊗n|N − 1〉 = |0〉, so that only the 〈0| term of 〈ψ0| is relevant and
Cn(|α〉, |β〉) = 1√

N−1
. Finally, a full expansion shows that

Cn(|α〉, |α〉) =
1

N − 1

N−2
∑

j=1

(−1)#j =
−2

N − 1
(12)

Thus we see that the concurrence of the Grover iterates is given by

C2p( |ψk〉 ) =

∣

∣

∣

∣

sin[(2k + 1)θ]
1√
N − 1

− cos2
(

2k + 1

2
θ

)

2

N − 1

∣

∣

∣

∣

(13)

See Figure 1 for the first hundred iterates in ten qubits. Note that the concurrence does not become large as the
algorithm cycles; the maximum possible concurrence for normalized states is one.

The concurrence of the Grover state |ψk〉 is simply related to another multipartite entanglement measure on
pure states, the Q-measure of the state10 which quantifies how entangled on average each qubit is with the rest
of the system. It can be expressed as12

Q( |ψ〉 ) = 2

(

1 − 1

n

n
∑

j=1

Tr[ρ2
j ]

)

, ρ = |ψ〉〈ψ|, ρj = Trk 6=j(ρ) (14)

Here, ρj is the reduced state of the jth qubit, generally a convex sum of pure states or mixed state.6 Meyer
calculates the explicit form of the Q-measure for the Grover state at any iteration. Using this result10 and
rewriting the angle θ = 2 sin−1(1/

√
N) = 2 csc−1(

√
N), we find that the two quantities are related by:

Q( |ψk〉 ) =

(

N

2
− 1

)[

C2p(|ψk〉)
]2

(15)

Recall from the literature that the square of the n-concurrence is itself an entanglement monotone, the n-
tangle.11 The fact that these two measures of entanglement of the Grover state are proportional is likely due
to symmetries respected by Grover’s algorithm. It is in some sense unsurprising that the concurrence would
generically be smaller than Q, in that concurrence checks exclusively for a superposition within |ψ〉 of some state
with its time-reversal9 while Q as noted seeks out many pairwise entanglements.

Remark A standard variant of Grover’s algorithm replaces the oracle O|x〉 with a multi-target oracle OS ,

S ⊂ {|j〉 ; 0 ≤ j ≤ N − 1}. For this variant, the concurrence |ψk〉 depends on the number and type of target
states in the solution set S. Indeed, |β〉 = 1√

|S|

∑

j∈S |j〉, which may have non-zero n-concurrence.



Figure 1. Entanglement properties of Grover’s algorithm on n = 10 qubits. (a) The concurrence of the Grover state |ψk〉
as a function of iteration number k. Note that very little concurrence is created by the algorithm; the maximal allowed
Cn(|ψ〉) for 〈ψ|ψ〉 = 1 is one. The highest concurrence shown is slightly larger than Cn( 1√

2
|α〉+ 1√

2
|β〉) = 1√

N−1
− 1

N−1
≈

0.3030. (b) The unimodular concurrence spectrum of a single Grover operator G = H⊗n(IN − 2|0〉〈0|)H⊗nO. Although
the spectrum is sparse, 0 is a element of the convex hull of these eigenvalues. Hence, there is some, perhaps nonlocal state
|φ〉 with Cn(|φ〉) = 0 yet G|φ〉 = 1.

Concurrence capacity of a Grover iterate

The above discussion shows that Grover’s algorithm, even when considered over all iterates, never utilizes any
maximally concurrent states, i.e. never C2p(|ψk〉) = 1. This conclusion that the search algorithm only makes
use of some of the entanglement resources available is consistent with earlier studies of Q-dynamics,10 where
the maximum Q is still roughly 0.5 < 1.

We next consider the concurrence dynamics of the Grover computation itself,

G = H⊗n(IN − 2|00 · · · 0〉〈00 · · · 0|)H⊗nO|x〉 = (IN − 2|ψ0〉〈ψ0|)O|x〉

One might wonder if the reason the |ψk〉 do not become highly concurrent is that G may not build large
concurrences. In fact, this is not the case. Earlier work8, 9 has shown the following:

Fix v ∈ SU(N), with any CCD by v = k1 a k2. If 0 is contained within the polygon spanned by
λc(v) = spec(a2) then there exists some normalized |φ〉 ∈ Hn with Cn(|φ〉) = 0 yet Cn(v|φ〉) = 1.

Using numerical methods, we compute these eigenvalues as the number of qubits is n = 2, 4, 6, 8, 10. (See Figure
1, right for case n = 10.) In each case, the concurrence spectrum holds 1 with high multiplicity yet also contains
four sporadic eigenvalues: −1 with multiplicity two, and for some small, decreasing δ = δ(n) both eiπ±δ, each
with multiplicity one. Thus the numerics show that 0 lies within the convex hull of spec(a2) in each case. Hence,
there exists some |φ〉, perhaps nonlocal yet with Cn(|φ〉) = 0, so that Cn( G|φ〉 ) = 1.

We finally remark that the concentration of the concurrence spectrum of G = k1ak2 heuristically decreases
the number of degrees of freedom when computing such |φ〉. See Appendix A. The first step is to choose a
weighting of the eigenvalues which places 0 explicitly within the convex hull of λc(G) = spec(a2). For n = 10,
this forces nonzero weights on the leftmost four eigenvalues, while on a widely distributed concurrence spectrum
there would be myriad possibilities of which eigenvalues to weight. In §4, we explicitly construct such states |φ〉.



Figure 2. Concurrence spectra of two ten-qubit unitaries: (a) the Fourier transform and (b) the quantum baker’s map.
In case (a) 0 is contained in the convex hull meaning that a single Fourier transform can map a zero concurrence state
to a maximally concurrence one. In contrast, a single iteration of the baker’s map cannot do so because its spectrum is
limited to a single halfplane within C.

3. NUMERICAL OBSERVATIONS: CONCURRENCE SPECTRA
OF OTHER COMPUTATIONS

Generically, most v ∈ SU(N) will have evenly spread concurrence spectra and hence concurrence capacity of
one.8, 9 However, most quantum computations are far from generic unitary evolutions of Hn. Indeed, admitting
a small quantum circuit is an exceptional property. Intuitively, since there are 4n − 1 real degrees of freedom
in the group of all unitary evolutions SU(2n), most evolutions require exponentially large circuits. Thus, it
is interesting to consider the concurrence spectra of well-known algorithms and seek structure, similar to the
structure already found in the Grover computation.

We first consider the Fourier transform Fn = 1√
N

∑N−1
j,k=0 ω

jk|k〉〈j|, ω = e2πi/N . Using algebra,9 we note that

for any decomposition Fn = k1ak2, the spectrum of a2 does not depend on the choice of decomposition. Indeed,
the concurrence spectrum of any v, say λc(v), may also be computed as spec( [(−iσy)⊗n]†v(−iσy)⊗nvT ). Hence,
a computation shows that the concurrence spectrum of the Fourier transform is given as the spectrum of the
following operator:

[(−iσy)⊗n]†Fn(−iσy)⊗nFT
n =

1

N

N−1
∑

j,q=0

(−1)#j

( N−1
∑

`=0

(−1)#N−`−1[ωj+q]`
)

|j〉〈q| (16)

Here, #p for an integer p is the number of 1’s within its binary expansion. Numerical tests show that the
expression within the parentheses sometimes vanishes, although it is not clear how analytically compute the
eigenvalues of this operator. The two-qubit Fourier transform does not have capacity one, while the concurrence
spectrum becomes progressively more spread for n = 4, 6. The quantum Fourier transform also has a well-spread
concurrence spectrum for n = 8, 10. We also note that even in 10-qubits, the concurrence spectrum of Fn is not
evenly dispersed about {|z| = 1} but rather contains noticeable gaps; see Figure 2.

Another example of an iterated quantum algorithm besides Grover’s algorithm is the quantum baker’s map.
This map describes the symbolic dynamics of a quantum system whose behavior is chaotic in the sense of showing
hypersensitivity to perturbations. The Balazs-Voros quantum baker’s map acting on n qubits is defined by

Bn = Fn(I2 ⊗F†
n−1) (17)



The entangling power of this map was studied extensively by Scott and Caves.13 They show that multiple
iterations of the map tend to map (pure) product states to highly entangled states. In particular, suppose for a
given k we compute the value of the n-tangle Cn(Bk

n|ψ〉)2 and average over all |ψ〉 = ⊗n
j=1|ψj〉. Then as k 7→ ∞,

this average seems to converge to a value slightly larger than the average n-tangle over all (generically nonlocal)
pure states of n qubits.

We now use our techniques to investigate the entanglement created by a single iteration of the quantum
baker’s map Bn. The results provide a contrast to earlier work, as they indicate that a single application of Bn

is not generically entangling. In Figure 2, we plot the concurrence spectrum of a single iteration of Bn on n = 10
qubits contrasted to that of the quantum Fourier transform. Notice that zero is not contained in the convex hull
of λc(Bn) = spec( [(−iσy)⊗n]†Bn(−iσy)⊗nBT ). Therefore, a single iteration of Bn will not create a concurrence
one state from a concurrence zero state. Numerical evidence also suggests that the concurrence spectrum of
Bn is doubly-degenerate for any n, and that λc(Bn) is restricted to the lower half circle in the complex plane.
Specifically, if we restrict (−i log) : {|z| = 1} → [−π, π], then numerically one observes −i log[λc(Bn)] ⊂ [−π, 0).
Moreover, the angle of separation between the largest such argument and 0 appears to decrease as π/2n−1. As
with the Fourier transform, it would be interesting to carry-out the eigenvalue analysis analytically.

n, # qubits max{ −i log(λ) ; λ ∈ λc(Bn) } π/2n−1

4 −0.392 699 081 0.392 699 081
6 −0.098 174 770 0.098 174 770
8 −0.024 543 693 0.024 543 693
10 −0.006 135 923 0.006 135 923

4. STATES REALIZING THE
CONCURRENCE CAPACITY OF THE GROVER MAP

Recall Equation 7, the definition of the concurrence capacity of a unitary evolution v ∈ SU(N), in case n = 2p:

κ2p(v) = max{ C2p(v|ψ〉) ; C2p(|ψ〉) = 0, 〈ψ|ψ〉 = 1 }

This definition has been the focus of much theoretical work, as the CCD makes it convenient to consider states |ψ〉
with C2p( |ψ〉 ) = 0. Indeed, such states are classified8; each such normalized state satisfies |ψ〉 = k · |000 · · · 0〉
for some k ∈ K. However, the definition is limited, in that C2p( |ψ〉 ) = 0 is a much weaker condition than
|ψ〉 = ⊗n

j=1|ψj〉 for p > 1. We recall the basic four-qubit example that C2p(|W 〉) = 0, although |W 〉 =
1
2 ( |0001〉 + |0010〉 + |0100〉 + |1000〉 ) is (quite) entangled. Hence, it is of interest to consider the definition of
κ2p(−) more carefully, by considering entanglement of the null-concurrent |ψ〉 returned by the theory.

Computing such |ψ〉 is the topic of Appendix A. We note that the construction requires auxilliary machinery
for computing a fixed choice of CCD for the given unitary v, as well as the requisite similarity matrices E0. There
are many degrees of freedom which may be exploited in constructing such states as well, particularly (i) the choice

of CCD and (ii) the choice of weights within 0 =
∑N−1

j=0 tjλj for λc(v) = {λj}N−1
j=0 , 0 ≤ tj ≤ 1,

∑N−1
j=0 tj = 1.

We here report three such output states for the Grover’s map G which is iterated in the course of applying
Grover’s algorithm. We take n = 4 qubits and choose the target state |x〉 = |15〉. Thus, to apply the appendix one
requires a CCD of G = H⊗4(I16 − 2|00 · · · 0〉〈00 · · · 0|)H⊗4O|15〉, which is determinant one. The most convenient

choice in our MatLab implementation orders the diagonal matrix E0a
2E†

0 so that the first four eigenvalues are

λ0 = −1, λ1 = −1, λ2 = − 1
2 −

√
3

2 i, and λ3 = − 1
2 +

√
3

2 i respectively, with λ4 = λ6 = · · · = λ15 = 1. We next
report three explicitly constructed |ψ〉 which are null-concurrent with C4(G|ψ〉) = 1. For each, we also provide
the Q-measure in order to quantify how entangled |ψ〉 may be despite C2p(|ψ〉) = 0.



|ψ〉 choice of weights Q( |ψ〉 )

0.500000000000000|0〉 − 0.03624195588241|1〉 1
2λ0 + 1

2λ4 = 0 0.982723
+0.10560461176979|2〉 − 0.41308351052014|3〉
−0.06936265588739|4〉 + 0.06596124263797|5〉
−0.24027928828975|6〉 + 0.24027928828975|9〉
−0.06596124263797|10〉 − 0.06936265588739|11〉
+0.41308351052014|12〉 + 0.10560461176979|13〉
−0.03624195588241|14〉 + 0.50000000000000|15〉
−0.28867513459481|0〉 − 0.02959143306412|1〉 1

3λ2 + 1
3λ3 + 1

3λ4 = 0 0.789296
+0.08622580444024|2〉 − 0.62595640857213|3〉
−0.05663437137612|4〉 − 0.23481800550717|5〉
−0.48486235195114|6〉 − 0.09248791723849|9〉
−0.34253226368246|10〉 − 0.05663437137612|11〉
+0.04860613938250|12〉 + 0.08622580444024|13〉
−0.02959143306412|14〉 + 0.28867513459481|15〉
−0.28867513459481|0〉 + 0.13307838607972|1〉 1

3λ2 + 1
3λ3 + 1

3λ5 = 0 0.805425
−0.04327252689545|2〉 − 0.10174037401628|3〉
−0.08980585918427|4〉 − 0.20327318462360|5〉
−0.59977175644388|6〉 + 0.02242148725426|9〉
−0.37407708456602|10〉 − 0.08980585918427|11〉
−0.47560989517334|12〉 − 0.04327252689545|13〉
+0.13307838607972|14〉 + 0.28867513459481|15〉

Notice the entanglement of the concurrence zero states with respect to the Q measure is large. Although
these states have no overlap with their time-reversed state, the average entanglement of each qubit with the other
qubits is relatively large. It would be interesting to know which weights on the concurrence spectrum correspond
to the state of this type with minimum Q. Note that there are N −1 real degrees of freedom in choosing weights.

5. CONCLUSIONS

We have presented a technique to quantify how entangling a given unitary operator is with respect to one measure
of entanglement: the n-concurrence. Our approach to studying entangling dynamics is novel in that we show how
to explicitly compute the states with zero initial concurrence that are mapped to maximally concurrent states
by the unitary computation. In this sense, we study the entangling power of the evolution on the entire state
space. This is distinct from other approaches which focus on how the entanglement of the data state evolves
under a quantum computation beginning with a pure product state.

Earlier theoretical work on the entanglement dynamics of the entire state space focuses on a concurrence
capacity (or entanglement capacity in two-qubits,) i.e. the quantity of new concurrence which may be created
by a given evolution v starting with any concurrence zero state. This may be studied efficiently using a matrix
decomposition, the CCD by v = k1ak2. For in fact the capacity depends only on the central factor a, indeed only
on the concurrence spectrum λc(v) = spec(a2). However, numerical investigations using Meyer’s Q measure show
that sample concurrence zero states which a computation maps to maximally concurrent states may yet be highly
entangled. Nonetheless, quantum computations such as Grover’s algorithm or the Fourier transform still possess
structured concurrence spectra. This perhaps indicates more structure in their concurrence dynamics than is
predicted by the capacity alone. In particular, these constructions might be useful for identifying underlying
symmetries in entanglement dynamics of evolutions and computations.

APPENDIX A. COMPUTING STATES REALIZING CONCURRENCE CAPACITIES

The theoretical analysis allows for descriptions of concurrence capacity of v = k1ak2 ∈ SU(2n) in terms of
spec(a2). The most intuitive result is this capacity must be one, i.e. there must exist some normalized |ψ〉 with
C2p(|ψ〉) = 0 and C2p(v|ψ〉) = 1, if and only if 0 lies within the polygon spanned by spec(a2). However, as states
with C2p(|ψ〉) = 0 may be highly entangled according to other quantifications of entanglement, one would like



in the abstract to classify such |ψ〉 and study how close they may be to local. As a first step, we consider how
to construct any |ψ〉 satisfying this property.

Suppose first we have weights which place 0 within the convex hull of the concurrence spectrum {λj}N−1
j=0 .

Many of these weights tj may be zero; note however that indexing is important.

N−1
∑

j=0

tjλj = 0 where
N−1
∑

j=0

tj = 1, 0 ≤ tj ≤ 1 (18)

The tj and λj may be used directly to produce a sample |ψ〉, as follows. First, we recall the similarity matrix8

E0 which rotates an even-qubit CCD onto the decomposition SU(N) = SO(N) D SO(N), for the group of
diagonal determinant-one unitaries. The columns of E0 are all either of the form |j〉 + (−1)#j |N − j − 1〉 or

i|j〉 − (−1)#ji|N − j − 1〉. The similarity relation for which E0 is constructed is that E0KE
†
0 = SO(N), i.e. the

determinant one (real) orthogonal matrices. Thus, for v = k1ak2, we have in particular that o2 = E†
0k2E0 is

some real matrix, o2o
T
2 = IN , det(o2) = 1. Since SO(N) is a group, oT

2 is again orthogonal and o2o
T
2 = IN . We

show momentarily that a possible choice of |ψ〉 is then

|ψ〉 = k†2E0

( N−1
∑

j=0

√

tjλj
−1/2

)

|j〉 = E0o
T
2

( N−1
∑

j=0

√

tjλj
−1/2

)

|j〉 (19)

The further significance of a fixed choice of E0 is that E0dE
†
0 =

∑N−1
j=0 λ

1/2
j |j〉〈j|. Thus, although the eigenstates

of a are given by the form above and resemble GHZ states, the particular choice of j and possible complex
multiple corresponds to a single eigenvalue of a. In the above equation,

√

λj should be chosen to coincide with
this diagonalization of a.

We now justify this assertion briefly. Put |η〉 = E†
0|ψ〉 = oT

2

∑`
j=0(tj/λ)1/2|j〉. We recall8 that generically

C2p(E0|φ〉, E0|ψ〉) = 〈φ|ψ〉. We also label d =
∑`

j=0 λj |j〉〈j|. We next note the following:

〈η|η〉 =

( N−1
∑

j=0

(tj/λj)
1/2〈j|

)

o2o
T
2

( N−1
∑

k=0

(t`/λ`)
1/2|`〉

)

=

N−1
∑

j=0

tjλj = 0 (20)

using the conjugate of Equation 18. Thus C2p(|ψ〉, |ψ〉) = C2p(E0|η〉, E0|η〉) = 〈η|η〉 = 0, i.e. C2p(|ψ〉) = 0. On

the other hand, by symmetry C2p(v|ψ〉, v|ψ〉) = C2p(k1ak2|ψ〉, k1ak2|ψ〉) = C2p(ak2|ψ〉, ak2|ψ〉). Now a = E0dE
†
0

while k2|ψ〉 = E0

(

∑N−1
j=0

√
tjλj

−1/2

)

|j〉. Thus

ak2|ψ〉 = E0d

( N−1
∑

j=0

√

tjλj
−1/2

)

|j〉 (21)

This yields the following computation, verifying that C2p(v|ψ〉) = 1:

C2p

(

E0d
∑N−1

j=0 (tj/λj)
1/2|j〉, E0d

∑N−1
j=0 (tj/λj)

1/2|j〉
)

=

∑N−1
j=0 (tj/λj)

1/2〈j| (
∑N−1

k=0 λk|k〉〈k|)
∑N−1

`=0 (t`/λ`)
1/2|`〉 =

∑N−1
j=0 tj

= 1

(22)
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