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1 Introduction

The structure of an ordered protein is essential for the understanding of its
function. Even though the number of experimental available proteins is ex-
ponentially increasing over the last years, there is a large number of proteins
with unknown fold and without an obvious homology with any protein which
has been resolved. Refolding experiments show that the protein sequence de-
fines a unique native fold which is, in most cases, the free energy minimum.
In theory, this free energy minimum can be computed from quantum me-
chanics and thus predict the structure from the sequence. In practice, ab
initio and molecular dynamics (MD) methods are too slow or too inaccurate.
Thus, the best de novo prediction methods use mainly statistical information
from known structures [Rohl et al., 2004b].

The CASP competition shows the progress of the different prediction
methods in the last decade. The most accurate prediction method so far is
the template, or homology modeling approach, which predicts the structure
by a comparison to a similar sequence. For two thirds of sequences, a similar
sequence can be found and thus the structure can be predicted by homology
modeling with good precision for those with less than 300 residues. Even
though it is likely that most of the remaining third also has known folds,
homology modeling does not work for sequence difference larger than 20
percent and thus de novo methods are needed for those [Zhou et al., 2007]. A
group of methods, called “threading”, were developed which used structural
information from many less closely related structures. However, they are
less accurate than modern fragment methods and are thus only used as a
component in some software [Moult, 2005].

The idea of the fragment assembly strategy is that a local sequence has
a high probability for one or few specific local structures and that the whole
structure depends on the interplay of the most likely local structures and
non-local interactions between them. Rosetta [Baker and Sali, 2001, Rohl
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et al., 2004b], identified by CASP as the most accurate de novo prediction
programs [Jauch et al., 2007], uses this strategy. It computes the most likely
local structures from a databank of known structures, combines them, ap-
proximates the non-local interactions with a scoring function and minimizes
it with a Monte Carlo simulated annealing search. As a result, Rosetta is
able to predict low- to moderate-accuracy models with a 3-6ACa root mean
square deviation (RMSD). This prediction has been shown to be useful to
gain biological insight. The models often have a correct global topology and
correctly identified secondary structure. As well, the functional residues of-
ten cluster to an active site [Rohl et al., 2004b]. Rosetta was also able to
predict the first close to atomic-level structure only from the sequence, which
can be seen in fig. 1. The method is fast enough to be used in large scale
prediction of hundreds of protein families [Bonneau et al., 2002]. However,
the method does not give information about misfolding or folding pathways
as molecular dynamics related approaches like Folding@Home [Pande, 2006].

2 Methods

Rosetta, a knowledge based prediction method, uses the Bayes statical the-
orem to compute the structure from the knowledge of the structure of short
fragments. The Bayes theory states

P(sequence|structure)

P(structure|sequence) = P(structure) P )
sequence

The right-hand side properties can be computed from known structures. To
predict the full structure from the so computed probabilities, several steps
are required. A fragment library has to be built, the fragment structure
has to be assigned and a scoring function has to be minimized. The require

methods will now be described [Rohl et al., 2004b].

2.1 Fragment Library

The software uses 3 and 9 residue long fragments. For all overlapping frag-
ments in the target sequence, the 200 most likely angles for 3 and 9 long frag-
ments are computed from X-ray resolved structures. The matching fragments
are found in the protein data bank (PDB) by a PSIBLAST search. They are
ranked by minimized steric overlap, favorable torsion angles and secondary
structure compatible with a secondary structure prediction by Psipred, SAM-

T99 and JUFO.



2.2 Scoring Function

Two different scoring functions are available. One is more coarse-grained
and thus faster to compute, but it is not as accurate as the other. The
second function is all-atomic and thus more accurate, but not as fast to
compute. The coarse-grained function only depends on the torsion angles
of the backbone with the side chains described by a centroid located at the
center of mass. The all-atomic description also depends on the rotamer of
the side-chain. Both functions consist of many individual terms of which
the full description is too long for this paper. They are summarized in the
Table I and II from [Rohl et al., 2004b]. The references cited in the table,
explaining and deriving these terms, are 7: [Bowers et al., 2000], 12: [Rohl
et al., 2004a], 14: [Jr and Cohen, 1997], 15: [Kuhlman and Baker, 2000], 16:
[Simons et al., 1997], 17: [Simons et al., 1999], 18: [Lazaridis and Karplus,
1999], 19: [Kortemme et al., 2003], 20: [Wedemeyer and Baker, 2003]. All
terms in Table 1 use probabilities computed from the fragment library, except
vdw and rg, which are geometrical formulas. All terms including vdw and
rg can be easily computed only from the torsion angles. For the all-atomic
function the LJ and solv terms are geometric and the ref term depends on
a value per amino acid. The remaining terms are again computed from the
probabilities for the fragments. The most important difference to commonly
used all-atomic MD force fields is that hydrogen bonds are also computed
from the geometric dependent probabilities, instead of using electrostatic
calculations with partial charges. The optimal side-chain rotamers for the
all-atomic function are computed as an independent, separate step during
the dihedral angles minimization. Thus, the following description of the
backbone optimization is also valid for the all-atomic function.

2.3 Fragment Insertion by Monte Carlo

The torsion angles from the fragments in the library are assigned to the se-
quence by a Monte Carlo procedure. The Monte Carlo procedure is a method
to minimize any function, which can be evaluated for every possible state. It
only requires a starting state and a set of possible moves. It chooses randomly
a possible move and accepts it with the Metropolis-Hasting acceptance prob-
ability P = exp(%). Thus, every move with decreasing energy is accepted
and also some with increasing energy are accepted, which is necessary to es-
cape local minima. The temperature 7" is changed during the minimization
(called simulated annealing). The starting state is arbitrarily selected as the
fully extended configuration and the scoring function can be easily computed
for any possible combination of dihedral angles.



2.4 Fragment Assignment and Local Moves

The most basic move is the fragment assignment. A fragment along the
sequence is randomly selected and its dihedral angles are overwritten with
those in the library. The model in the library is chosen with a probability
according to the rank of the possible fragment models.

A fragment assignment is a global move. The whole protein structure
is effected by the net rotation and translation of the backbone to each side
caused by the fragment assignment. This net effect is in general non zero.
The advantage of a global move is that it can change the overall structure
faster than local moves. However, the acceptance probability is small because
global rearrangement destroys the already formed local contacts and thus can
increase the energy significantly.

Three different local moves are used and, on average, have much higher
acceptance probability also after the protein is already partly minimized.
The first is a small or shear motion of random dihedral angles with negligible
global effect. The second is a fragment insertion which is explicitly selected
to have only a local effect because it has a neglectable net rotation and trans-
lation (gunn method) or a negligible MSD change for the rest of the protein
(called frag). The third move is a fragment insertion with a compensating
change of neighboring dihedral angles (called crank and wobble). In Fig 2
from [Rohl et al., 2004b] one can see the crank move and in Fig 3, from the
same reference, one can see the average acceptance rate and effectiveness of
the different moves.

3 Discussion

The effectiveness of the protein structure prediction in general and the free
modeling prediction in particular can be best judged by the CASP results.
Groups participating in CASP submit their prediction for soon to be released
proteins and assessors analyze those by numerical methods like GDT_TS
[Bystroff and Baker, 1998] and visual inspection. The articles from the as-
sessor groups are thus the best source for a comparison of the methods and
progress in the field. One can clearly see a progress since the start of CASP. In
CASP1 most of the new fold predictions were almost random [Moult, 2005].
A comparison of two consecutive CASP is difficult because the progress made
in two years time is not so large and the small number of targets may result
in varring difficulty of the targets.

The most recent CASP is CASP7. The assessment for the free modeling
targets (the “new fold” category was renamed) showed that Rosetta was the



most accurate [Jauch et al., 2007], which can be partly credited to an ex-
tensive all-atom refinement made possible by the large computing power of a
distributed computing network based on BIONC [Das et al., 2007]. Rosetta
was also successfully used for the homology modeling target as a refinement
step. Tasser [Zhou et al., 2007], a newer software also using the fragment
approach, is very interesting because it was able to predict the targets with
similar accuracy while needing far less computing time. The free model-
ing method has predicted some structures with very high accuracy, some-
times even exceeding the accuracy of template/homology based approaches.
However, on average, the template based approach is still more accurate,
especially if all evolutionary information is considered. Even though the
fragment approach shows progress and is the best known free modeling pre-
diction method, the best strategies for all the individual steps of the method
(scoring function, fragment selection, fragment assembly and minimization)
are yet unknown. As well, the method is computationally expensive and, as
yet, no free modeling method predicts the correct fold for the majority of the
targets.

The most important future research will be regarding better refinement
and I am particularly interested in comparisons to MD simulation. Further
improvement in the all-atomic refinement both for template and de novo
based approaches would allow the use of those structures as starting struc-
tures for MD simulations and would enable docking and enzymatic calcula-
tions. This would make it an important tool, together with the still expen-
sive experimental methods, with which to solve structures. Better refinement
will require more accurate scoring functions and more efficient minimization
methods. Additionally, the de novo approach will need improvement in the
percentage of correct folds and has to be extended to longer sequences to
make it a generally useful tool. The latter is limited at the moment because
the possibilities to assemble a structure out of fixed size fragments increases
exponentially with the sequence length [Zhang and Skolnick, 2004]

MD Umbrella sampling between the different predicted models could com-
pute the free energy differences of these models. This would allow the com-
parison of MD and Rosetta energy function and analysis of in which cases
they are similar and in which cases they are different. This could give a bet-
ter understanding of the error of both energy functions and could possibly
reveal whether kinetically not accessible lower minima than the native state
exist. Better understanding of the error in the MD energy function would
allow refinement of already close models using MD simulations. It is believed
that this is currently not possible mainly because of the error in the MD force
field [Baker and Sali, 2001]. In case the energies do not differ too much in
the future, the different predicted models could be used as sampling start
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Figure 2: Well predicted struc-
tures in CASP7 [Jauch et al.,
2007]. TS020 is the Baker group

Figure 1: Close to atomic-level and TS004 is donme with RO-
structure prediction from CASPG6 BETTA

[Bradley et al., 2005]

points in theories using metastable states [Noé et al., 2007].

4 Comment

My main source of information was the very good review of Rosetta [Rohl
et al., 2004b]. All but the references describing the scoring function terms in
Tables I and II were directly used for the paper at the cited places. I never
worked or read details about de-novo prediction before. The only useful prior
knowledge was in MD and Monte Carlo. The paper is written by myself and
I did not use anything but the cited references.
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TABLE I

CoMPONENTS OF RoSETTA ENERGY FUNCTION®

Description
(putative
Name physical origin) Functional form Parameters (values)
b : T e 5
env Residue i = residue index
environment Z —In[P(aa;|nb;)] aa = amino acid type
(solvation) ' nb = number of neighboring residues® (0, 1, 2... 30, >30)
pair’® Residue pair i, j = residue indices
interactions Z Z P(aa;, ag)|sydy) aa = amino acid type
(electrostatics, TS P(aa;|syd;;) P(aa|sidy) d = centroid—centroid distance (10-12,7.5-10,5-7.5, <5 A)
disulfides) s = sequence separation (>8 residues)
i iri = d di indices; dimer is two consecutive
e SchemeA:SSu S5 +SS, e T E
i = i d last C atom of dimer
bonding) SchemeB : SS9+ SSw + SSur V = vector between first Nhatom alil ast C atom i
where m = unit vector between V,,, and V,, midpoints
X = unit vector along carbon-oxygen bond of first dimer
SSs0="_ > —In[P(Syms Onldmns SPyuns Smun)) TS
m n>m
y = unit vector along oxygen—carbon bond of second dimer
SSip = Z Z = In [P(tbmn|dmn, Smn)] residue
m n>m = ) ey
d 6, 6 = polar angles between V,, and V,, (36 bins)
. zm:g,;m (B (gl ] hb = dimer twist, 3 0.5(|ri - & + [ - 3x]) (< 0.3,
k=mn
1.33,1.33-1.6,1.6-1.8,1.8-2.0
SSdg=ZZ—M[P(dmndmn\pm~pn)] 0.33-0.66,0.66-1.0, 1.0 )
m n>m d = distance between V,, and V, mldpomts (<65 A)
o = angle between V,, and M (18° bins)
sp = sequence separation between dimer-containing
strands (< 2, 2-10, > 10 residues)
s = sequence separation between dimers (>5 or >10)
p = mean angle between vectors 171, £ and 1, y (180° bins)
heet®  Strand = ber of sheet
s ;arrrlangement — In [P(MsheetsMonestrands | Pstrands) ] Ea st
intocheets Nijone strands = Number of unpaired strands
Ngtrangs = total number of strands
HS Helix-strand A m = strand dimer index; dimer is two consecutive strand
A 222~ [P Vnal5Prun)] ety
n = helix dimer index; dimer is central two residues of four
consecutive helical residues
V = vector between first N atom and last C atom of dimer
6, 6 = polar angles between V,, and V,, (36" bins)
sp = sequence separation between dimer-containing helix
and strand (bumed < 2, 2-10, >10 residues)
d = distance between V,, and V, midpoints (< 12 A)
g Radius of i, j = residue indices
gyration (vdw v/ (d,zj) d = distance between residue centroids
attraction;
solvation)
cbeta Cg density i = residue index
(solvation; Z Z In P ComPaCl( bish) sh = shell radius (6, 12 A)
correction 7 P mdom( b,_,;,) nb = number of neighboring residues within shell”
for excluded Pecompact = probability in compact structures assembled
volume effect from fragments
introduced by Prandom = probability in structures assembled randomly
simulation) from fragments
vdw® Steric repulsion i, j = residue (or centroid) indices

ZZ(

ioj>i

d = interatomic distance
r = summed van der Waals radii”

@ All terms originally described in Refs. 16 and 17.

®Binned function values are linearly interpolated, yielding analytic derivatives.

(continued)



TABLE I (continued)

¢Neighbors within a 10-A radius. Residue position defined by C3 coordinates (Ce for glycine).

9 Interactions between dimers within the same strand are neglected. Favorable interactions are limited to preserve pairwise strand interactions,
that is, dimer m can interact favorably with dimers from at most one strand on each side, with the most favorable dimer interaction (SS; 4 +
SSy + SS,) determining the identity of the interacting strand. SS, is exempt from the requirement of pairwise strand interactions. SSy;, is
evaluated only for m, n pairs for which SS, ¢ is favorable. SS, is evaluated only for m, n pairs for which SS; 4 and SS},5 are favorable. A bonus
is awarded for each favorable dimer interaction for which |m — n| >11 and strand separation is more than eight residues.

¢ A sheet is composed of all strands with dimer pairs <5.5 A apart, allowing each strand having at most one neighboring strand on each side.
Discrimination between alternate strand pairings is determined according the most favorable dimer interaction. Probability distributions
fitted to c(Mstrands) — 0-Msheets — 2-7Mione strands Where ¢(Rsiranas) = (0.07, 0.41, 0.43, 0.60, 0.61, 0.85, 0.86, 1.12).

/Residue position defined by C3 coordinates (Ca for glycine).

& Not evaluated for atom (centroid) pairs whose interatomic distance depends on the torsion angles of a single residue.

" Radii determined from (1) 25th closest distance seen for atom pair in pdbselect25 structures, (2) the fifth closest distance observed in X-ray
structures with better than 1.3-A resolution and <40% sequence identity, or (3) X-ray structures of <2- A resolution, excluding i, i + 1
contacts (centroid radii only).

TABLE II
CoMPONENTS OF ROSETTA ALL-AToM ENERGY FUNCTION®
Description
Name (physical origin) Functional form Parameters Ref.
rama Ramachandran torsion i = residue index : o bl 92
preferences Z 1 [P(6r, vifaa;,ssi)] 6,1 = backbone torsion angles (36 bins)

LI

hb’

solv

aa = amino acid type
ss = secondary structure type”

Lennard-Jones 5 G i, j = residue indices 15
interactions [(’J) ia 2(ﬁ) ]e,-,-, 1fd” >06 d = interatomic distance
i dij L e = geometric mean of atom well depths?
522! [ 8759. Z(d") +5672. 0] e, else r = summed van der Waals radii®
Hydrogen i = donor residue index 19-21
}{)onging EZ P (d'l Ihjssi)] j = acceptor residue index
d = acceptor—proton interatomic distance
—111[ ((cos B|dihyssy;)| h = hybridization (sp?, sp>)
—In [P(cos |dihssij)]) ss = secondary structure type®
6 = proton-acceptor-acceptor base bond
angle
7 = donor—proton-acceptor bond angle
Solvation =4 i,j = atom indices 15,18
Z AGHE _ Z 2AG;™ AT d = distance between atoms
7 = 432\ ’1 2 r = summed van der Waal radii®
P AGﬁee 5 )] A= cone{ation lenghth"
= e iV; V = atomic volume
42N AG™, AG™* = energy of a fully solvated

atom”

(continued)
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TABLE II (continued)

pair R?jsidue pgir P g i, j = residue indices 15
interactions = Z i (aa;, aaj|d;) aa = amino acid type
(electrostatics, i P(aa;|dy) P(aa;|d;;) d = distance between residues’
disulfides)
dun Rotamer i, j = residue indi 5
P(rot;|d, v:)P(aailds, Ui i, j = residue indices 14,15
self-energy Z —In [%] rot = Dunbrack backbone-dependent
7 i

rotamer
aa = amino acid type
¢, 1 = backbone torsion angles
ref Unfolded state aa = amino acid type 15
reference energy ;"“ n = number of residues

“ All binned function values are linearly interpolated, yielding analytic derivatives, except as noted.

® Three-state secondary structure type as assigned by DSSP.?

“Not evaluated for atom pairs whose interatomic distance depends on the torsion angles of a single residue.

4Well depths taken from CHARMm19 parameter set.”

E}d(adiki1 determined from fitting atom distances in protein X-ray structures to the 6-12 Lennard-Jones potential using CHARMm19 well

epths.

s EV§luated only for donor acceptor pairs for which 1.4 < d < 3.0 and 90° < ¥, 6 < 180°. Side-chain hydrogen bonds in involving atoms forming
rr}am-chain hydrogen bonds are not evaluated. Individual probability distributions are fitted to eighth-order polynomials and analytically
differentiated.

8 Secondary structure types for hydrogen bonds are assigned as helical (j —

"Values taken from Lazaridis and Karplus.'®

‘Residue position defined by Cj3 coordinates (Ca of glycine).

= 4, main chain); strand (| j — ¢ | > 4, main chain), or other.

\ Model 1

Model 4

RouL £7 AL, CHAPTER 4, Fig. 1. Rosetta-predicted protein structures for CASP 5 targets.
Right: Models predicted using the de novo prediction protocol. Left: Experimental structure of
sach protein. Protein chains are colored in a blue-to-red gradient along the length of the chain
© highlight correctly predicted secondary structure elements. (A) T0135. The predicted
nodel has 54 residues (of 106 total) predicted at a Ca RMSD of 4 A to the experimental
structure. (B) TO171. The predicted model has 60 residues (of 69 total) predicted at a Ca
RMSD of 4 A to the experimental structure. The global Ca RMSD between the prediction
and the experimental structure is 4.2 A. Rout &7 AL, CHAPTER 4, FiG. 2. Modified ““crank” fragment insertion into 1 dan. (A)

Superposition of the protein conformations preceding (black) and following (blue) insertion
of a nine-residue fragment. The fragment insertion window is shown in red. The portion of the
chain unperturbed by insertion is shown in gray. (B) Superposition of the protein
conformations preceding (blue) and following (green) optimization of angles at a wobble
site (cyan) adjacent to the insertion window. (C) Superposition of the protein conformations
preceding (green) and following (magenta) optimization of angles at a second wobble site
(orange) nonadjacent to the insertion window. (D) Superposition of the original (black) and
final (magenta) conformations.
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Rank

Percent

Percent

Aver:

age rank

i

Average acceptance rate

RouL £7 AL, CHAPTER 4, FiG. 3. Comparison of move types in optimizing the all-atom
energy function. Moves are named according to the type of perturbation made and the
number of residues in the original perturbation (see text for details): small, random
perturbation of one or more nonconsecutive (¢, 1) pairs; shear, random compensating

Percent blowups

hanges in a ¢ angle and the preceding ¢ angle; wobble, insertion of a chuck fragment
followed by a wobble of one residue; crank, insertion of a chuck fragment followed by a
wobble of one residue adjacent to the insertion window and then by a wobble of two residues
nonadjacent to the insertion window (illustrated in Fig. 2); frag, unmodified fragment
insertion; gunn, insertion of a fragment selected using the gunn strategy. Addition of lin to
the move indicates the move is followed by a single-line minimization along the gradient of
the potential function before evaluation of the Metropolis criterion. Addition of dfp name
indicates the move is followed by variable metric optimization of the potential function before
evaluation of the Metropolis criterion. For combination 1, the attempted moves were cycled
between smallldfp, small5dfp, shear5dfp, and wobble3dfp. For combination 2, the attempted
moves were cycled between smallllin, shear5lin, wobblellin, and wobble3lin. (A) Average
rank of moves. For each starting decoy in the test set, the energies of the lowest energy decoy
obtained from application of each move were sorted from highest energy (1) to lowest (30).
The histogram reports the average overall decoys for each move type. (B) Percentage of
moves accepted. Acceptance rates are reported for each move type, averaged over all decoys.
The percentage was scaled on the basis of the percentage of independent simulations that
resulted in an expanded structure, in order to account for the dramatic increase in acceptance
rate into expanded models relative to compact models. (C) Frequency of simulations resulting
in expanded structures.
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