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Solving the ab-initio quantum many-body problem

Exact or virtually exact solutions available for:
« A=3: solution of Faddeev equation.
* A=4: solvable via Faddeev-Yakubowski approach.

 Light nuclei (up to A=12 at present): Green’s function Monte Carlo
(GFMCQC); virtually exact; limited to certain forms of interactions.

Highly accurate approximate solutions available for:

 Light nuclei (up to A=16 at present): No-core Shell model (NCSM);
truncation in model space.

« Light and medium mass region (A=4, 16, 40 at present): Coupled
cluster theory; truncation in model space and correlations.
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Green’s Function Monte Carlo

Determine accurate approximate wave function via variation of the
energy (The high-dimensional integrals are done via Monte Carlo

iIntegration). .
F —= <Wtrial‘H|Wtrial>
<\Utrial‘wtrial>

Refine wave function and energy via projection with Green’s
function
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Virtually exact method.

Limited to certain forms of Hamiltonians; computationally
expensive.



Working in a finite model space

NCSM and Coupled-cluster theory solve the Schroedinger equation in a
model space with a finite (albeit large) number of configurations or

basis states.

Problem: High-momentum components of high-precision NN
Interactions require enormously large spaces.

Solution: Get rid of the high-
momentum modes via a
renormalization procedure. (Lee-
Suzuki approach)

Price tag:
Generation of 3, 4, ..., A-body
forces unavoidable.
Observables other than the energy
also need to be transformed.
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No-core shell model

ldea: Solve the A-body problem in a harmonic oscillator basis.
1.  Take K single particle orbitals

2.  Construct a basis of Slater determinants

3. Express Hamiltonian in this basis

4.  Find low-lying states via diagonalization

Get eigenstates and energies
No restrictions regarding Hamiltonian

Number of configurations and resulting matrix very large: There
are
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ways to distribute A nucleons over K single-particle orbitals.
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No-core Shell Model results for 1B and 12C
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Coupled-cluster theory

Ansatz: |W) = el |d) © Scales gently (polynomial, not
' _ exponential) with increasing
T = 14T 1 - .
th+1>r problem size.
Th, = Ztg Tai :
® Open-shell systems require much
T, = Z t ab aja; more work.

1jab

Correlations are exponentiated 1p-1h and 2p-2h excitations. Part of np-nh
excitations included!

a,b,...

Coupled cluster equations

E = (®[H|d)

0 = (PY|H|P)

0 = (PY[H|D)

H = e Thpel = (H6T>C = (H + HTy + HT> + %HT% + .. )



Interaction: Idaho-A based G-matrix

Model space: Up to 8 oscillator shells
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M. Wioch et al, Phys. Rev. Lett. 94, 212501 (2005).

Coupled-cluster calculation for 10O
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Results converged w.r.t size of model
space

Excited 3" state: 1p-1h, about 6MeV to
high

Some deficiencies in form factor.

Three-nucleon force missing.
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Shell structure in nuclei

N
-20
O 10 20 30 40 50 60 70 80 90 100 (10 120 130 140 150 160

Neutron Mumber N
From W.D. Meyers and W.J. Swiatecki, Nucl. Phys. 81, 1 (1966).
Mass differences: Liquid drop — experiment. Minima at closed shells.

Neutron separation energies

N odd

,r'h‘*/ S\ (NZ)=B(NZ)-BIN-1,Z)  ©

[\ Z even

III J
]

III ||III

n'llll /
i'l N

L | 1 1 | 1 L | 1 1 | 1 L i
10 20 30 40 50 60 70 80 80 100 1o 120 T 130 140 150 160
8 20 28 50 82 126

Relatively expensive to
remove a neutron form a
closed neutron shell.

Bohr & Mottelson, Nuclear Structure.
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ISheIII structure cont’d

Nuclei with magic N
« Relatively high-lying first 2+

exited state

« Relatively low B(E2) transition
strength
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S. Raman et al, Atomic Data and Nuclear Data Tables 78 (2001) 1.



1963 Nobel Prize in Physics

Maria Goeppert-Mayer J. Hans D. Jensen

“for their discoveries concerning nuclear shell structure”



Need spin-orbit force to
explain magic numbers

beyond 20.

Magic numbers

Further splitting
from spin-orbit

effect \

Quantum energy

states of potential
well including

angular momentum
r

effects. \ ;
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Multiplicity
of states
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8

Closed shells
indicated by
“magic numbers"
of nucleons,

http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/shell.html



Modification of shell structure at the drip lines!
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FIG. 3. Spherical single-particle levels for the A=120
isobars calculated in the SkP HF model (top) and SkP
HFB model (middle) as a function of neutron number.
The single-particle canonical HFB energies are given by
ex=(¥x|h|¥x). Solid (dashed) lines represent the orbitals
with positive (negative) parity. The bottom portion shows
the average neutron and proton gaps defined by A =

J A()p(r)d®r/ [ p(r)dr.
J. Dobaczewski et al, PRL 72 (1994) 981.

Quenching of 82 shell gap
when neutron drip line is
approached.

Also observed in lighter nuclei

Caution: Shell structure seen
In many observables.



Traditional shell model

Main idea: Use shell gaps as a truncation of the model

space.
Nucleus (N,Z) = Double magic nucleus (N, Z')
+ valence nucleons (N-N', Z-Z')

Restrict excitation of valence nuclons to one
oscillator shell.

— Problematic: Intruder states and core excitations not
contained in model space. <

Examples:
« pf-shell nuclei: 4°Ca is doubly magiC/ a
« sd-shell nuclei: %0 is doubly magic
 p-shell nuclei: *He is doubly magic \
<
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Shell model

Example: <°Ne

N f'f—.
valence |\ P ® P /f Os 1d
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Shell-model Hamiltonian

Hamiltonian governs dynamics of valence nucleons; consists of one-
body part and two-body interaction:

= Zaj&;r-aj + > <j1j2|V|j/1j/2>JTAATJT;jleAJTijllj/Q
J JTj1525175 4

Single-particle energies

Two-bod trix el ts (TBME
(SPE) wo-body matrix elements ( )

coupled to good spin and isospin

Q: How does one determine the SPE and the TBME?



Empirical determination of SPE and TBME
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Determine SPE from
neighbors of closed shell
nuclei having mass

A = closed core +1

Determine TBME from nuclei
with mass

A = closed core + 2.

The results of such
Hamiltonians become
inaccurate for nuclei with a
larger number of valence
nucleons.

Thus: More theory needed.



Effective shell-model interaction: G-matrix

Start from a microscopic high-precision two-body potential
Include in-medium effects in G-matrix

Bethe-Goldstone equation
Pauli operator blocks

occupied states (core)

_ Qp
G/-}f -+ VE—HOG

microscopic bare interaction \
Single-particle Hamiltonian

Formal solution: V

1-VQp/(E—Hp)
Properties: in-medium effects renormalize hard core.

But: The results of computations still disagree with experiment.
See, e.g. M. Hjorth-densen et al, Phys. Rep.261 (1995) 125.




Further empirical adjustments are necessary

Two main strategies
1. Make minimal adjustments only. Focus on monopole TBME:

Vi i, x> (20 4+ 1)(j172|Viri2) yr
7

. Rationale:
Monopole operators are diagonal in TBME.
Set scale of nuclear binding.
Sum up effects of neglected three-nucleon forces.

2. Make adjustments to all linear combinations of TBME that are
sensitive to empirical data (spectra, transition rates); keep
remaining linear combinations of TBME from G-matrix.

. Rationale:

Need adjustments in any case.
Might as well do best possible tuning.



Two-body G-matrix + monopole corrections

G-matrix and monopole adjustments
compared to experiment.
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FIG. 18. The level scheme of *’Ca obtained with the interac-
tions KB, KB’, and KB3, compared to the experimental result.

Martinez-Pinedo et al, PRC 55 (1997) 187.

Monopole corrections capture neglected
three-body physics.
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FIG. 2. Excitation energies for **Na referred to the J = 3
lowest state. See text.

A. P. Zuker, PRL 90 (2003) 42502.



Semi-empirical interactions for the nuclear shell model

pf-shell ~200
TBME (1990) -
10° dimensions —

NEs

sd-shell 63 TBME 1 SEEEEE
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is 50
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2

sd and pf shell.



Shell-model computations

Construct Hamiltonian
matrix

Use Lanczos algorithm to
compute a few low-lying
states.

Problem: rapidly
iIncreasing matrix
dimensions

Publicly available programs

Oxbash (MSU)
Antoine (Strasbourg)
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FIG. 7. (Color in online edition) m-scheme dimensions
(circles) and total number of nonzero matrix elements
(squares) in the pf shell for nuclei with M=T7.=0 as a function
of neutron number N. The dotted and dashed lines serve as
guides for the eye.

Caurier et al, Rev. Mod. Phys. 77 (2005) 427.



Results of shell-model calculations
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Spectra and transition strengths suggests that N=28 Nucleus 44S exhibits
shape mixing in low excited states = erosion of N=28 shell gap.

Sohler et al, PRC 66 (2002) 054302.



Shell-model results for neutron-rich pf-shell nuclei.
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FIG. 3. E(QT) values versus neutron number for the even-even
>4 Cr, 5, T1, and ,,Ca isotopes. Experimental values are denoted
by dashes. Shell model calculations using the GXPFI1 [14] and
KB3G [22] interactions are shown as filled circles and crosses,
respectively.



Summary

Shell model a powerful tool for understanding of nuclear structure.

Shell quenching / erosion of shell structure observed when drip lines
are approached.
Shell model calculations based on microscopic interactions

— Adjustments are needed

— Due to neglected three body forces (?!)

Effective interactions have reached maturity to make predictions,
and to help understanding experimental data.



