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Solving the ab-initio quantum many-body problem

Exact or virtually exact solutions available for:

• A=3: solution of Faddeev equation.

• A=4: solvable via Faddeev-Yakubowski approach.

• Light nuclei (up to A=12 at present): Green’s function Monte Carlo 
(GFMC); virtually exact; limited to certain forms of interactions.

Highly accurate approximate solutions available for:

• Light nuclei (up to A=16 at present): No-core Shell model (NCSM); 
truncation in model space.

• Light and medium mass region (A=4, 16, 40 at present): Coupled 
cluster theory; truncation in model space and correlations.



Green’s Function Monte Carlo

Idea:

1. Determine accurate approximate wave function via variation of the 
energy (The high-dimensional integrals are done via Monte Carlo 
integration).

2. Refine wave function and energy via projection with Green’s 
function

☺ Virtually exact method.

� Limited to certain forms of Hamiltonians; computationally 
expensive.



Working in a finite model space 

NCSM and Coupled-cluster theory solve the Schroedinger equation in a 

model space with a finite (albeit large) number of configurations or 

basis states.

Problem: High-momentum components of high-precision NN 

interactions require enormously large spaces.

Solution: Get rid of the high-

momentum modes via a 

renormalization procedure. (Lee-

Suzuki approach)

Price tag:

Generation of 3, 4, …, A-body 

forces unavoidable.

Observables other than the energy 

also need to be transformed.

E. Ormand
http://www.phy.ornl.gov/npss03/ormand2.ppt



No-core shell model

Idea: Solve the A-body problem in a harmonic oscillator basis.

1. Take K single particle orbitals

2. Construct a basis of Slater determinants

3. Express Hamiltonian in this basis

4. Find low-lying states via diagonalization

☺ Get eigenstates and energies

☺ No restrictions regarding Hamiltonian

� Number of configurations and resulting matrix very large: There 
are  

ways to distribute A nucleons over K single-particle orbitals. 



No-core Shell Model results for 10B  and 12C

P. Navratil and W. E. Ormand, Phys. Rev. C68 (2003) 034305



Coupled-cluster theory

Ansatz:

Correlations are exponentiated 1p-1h and 2p-2h excitations. Part of np-nh

excitations included!

Coupled cluster equations

☺ Scales gently (polynomial, not 

exponential) with increasing 

problem size.

� Open-shell systems require much 

more work.



Coupled-cluster calculation for 16O

Interaction: Idaho-A based G-matrix

Model space: Up to 8 oscillator shells 

Results converged w.r.t size of model 
space

Excited 3- state: 1p-1h, about 6MeV to 
high 

Some deficiencies in form factor.

Three-nucleon force missing.

M. Wloch et al, Phys. Rev. Lett. 94, 212501 (2005).





Shell structure in nuclei

Relatively expensive to 

remove a neutron form a 

closed neutron shell.

Bohr & Mottelson, Nuclear Structure.

Mass differences: Liquid drop – experiment. Minima at closed shells.



Shell structure cont’d

Nuclei with magic N

• Relatively high-lying first 2+

exited state 

• Relatively low B(E2) transition 

strength

S. Raman et al, Atomic Data and Nuclear Data Tables 78 (2001) 1.

E2+

B(E2)



1963 Nobel Prize in Physics

“for their discoveries concerning nuclear shell structure”

Maria Goeppert-Mayer J. Hans D. Jensen



http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/shell.html

Need spin-orbit force to 

explain magic numbers 

beyond 20.

Magic numbers



Modification of shell structure at the drip lines!

Quenching of 82 shell gap 

when neutron drip line is 

approached.

Also observed in lighter nuclei

Caution: Shell structure seen 

in many observables.

J. Dobaczewski et al, PRL 72 (1994) 981.



Traditional shell model

Main idea: Use shell gaps as a truncation of the model 

space.

• Nucleus (N,Z) = Double magic nucleus (N*, Z*)

+  valence nucleons (N-N*, Z-Z*)

• Restrict excitation of valence nuclons to one 

oscillator shell.

– Problematic: Intruder states and core excitations not 

contained in model space. 

• Examples:

• pf-shell nuclei: 40Ca is doubly magic 

• sd-shell nuclei: 16O is doubly magic

• p-shell nuclei:  4He is doubly magic 



Shell model



Shell-model Hamiltonian

Hamiltonian governs dynamics of valence nucleons; consists of one-

body part and two-body interaction:

Single-particle energies 
(SPE)

Two-body matrix elements (TBME) 
coupled to good spin and isospin

Annihilates pair of fermions

Q: How does one determine the SPE and the TBME?



Empirical determination of SPE and TBME

• Determine SPE from 

neighbors of closed shell 

nuclei having mass

A = closed core +1

• Determine TBME from nuclei 

with mass  

A = closed core + 2.

• The results of such 

Hamiltonians become 

inaccurate for nuclei with a 

larger number of valence 

nucleons.

• Thus: More theory needed.



Effective shell-model interaction: G-matrix

• Start from a microscopic high-precision two-body potential

• Include in-medium effects in G-matrix

• Bethe-Goldstone equation

• Formal solution:

• Properties: in-medium effects renormalize hard core.

• But: The results of computations still disagree with experiment.

microscopic bare interaction

Pauli operator blocks 
occupied states (core)

Single-particle Hamiltonian

See, e.g. M. Hjorth-Jensen et al, Phys. Rep.261 (1995) 125.   



Further empirical adjustments are necessary

Two main strategies

1. Make minimal adjustments only.  Focus on monopole TBME:

• Rationale:
• Monopole operators are diagonal in TBME.

• Set scale of nuclear binding.

• Sum up effects of neglected three-nucleon forces.

2. Make adjustments to all linear combinations of TBME that are 

sensitive to empirical data (spectra, transition rates); keep 

remaining linear combinations of TBME from G-matrix.

• Rationale:
• Need adjustments in any case.

• Might as well do best possible tuning.



Two-body G-matrix + monopole corrections

Monopole corrections capture neglected 

three-body physics.

A. P. Zuker, PRL 90 (2003) 42502. 

G-matrix and monopole adjustments 

compared to experiment.

Martinez-Pinedo et al, PRC 55 (1997) 187.



Semi-empirical interactions for the nuclear shell model 

p-shell

1960s

pf-shell ~200 

TBME (1990)  

109 dimensions 

sd-shell 63 TBME 

(1980s)             

105 dimensions 

At present: pf g9/2 shell.

Approach also been used across 

sd and pf shell.



Shell-model computations

1. Construct Hamiltonian 

matrix

2. Use Lanczos algorithm to 

compute a few low-lying 

states.

3. Problem: rapidly 

increasing matrix 

dimensions

Publicly available programs

• Oxbash (MSU)

• Antoine (Strasbourg)

Caurier et al, Rev. Mod. Phys. 77 (2005) 427.



Results of shell-model calculations

Spectra and transition strengths suggests that N=28 Nucleus 44S exhibits 

shape mixing in low excited states � erosion of N=28 shell gap.

Sohler et al, PRC 66 (2002) 054302.



Shell-model results for neutron-rich pf-shell nuclei.

Subshell closure at neutron number 

N=32 in neutron rich pf-shell nuclei 

(enhanced energy of excited 2+ state).

No new N=34 subshell.

S. N. Liddick et al, PRL 92 (2004) 072502.  



Summary

• Shell model a powerful tool for understanding of nuclear structure.

• Shell quenching / erosion of shell structure observed when drip lines 

are approached.

• Shell model calculations based on microscopic interactions

– Adjustments are needed

– Due to neglected three body forces (?!)

• Effective interactions have reached maturity to make predictions, 

and to help understanding experimental data.


