Evaluation of LED and Broadband Sources

R. Timothy Hitchcock, CIH, CLSO LightRay Consulting, Inc. Cary, North Carolina

Quantity	Unit	Quantity	Unit
Radiant energy, H	joule (J)	Luminous energy, Q _v	lumen-s
Radiant power, Φ	watt (W)	Luminous power, F	lumen (Im)
Irradiance, E	W/m ²	Illuminance, E _v	lux (lx)
Radiant intensity, I	W/sr	Luminous intensity, I_v	candela (cd
Radiance, L	W/m ² •sr	Luminance, L _v	cd/m ²

Specific Guidelines

- □ Broadband UVR
- □ UV-A (thermal & photochemical)
- □ Luminance
- **Retinal thermal hazard**
- □ Blue-light hazard
- □ Aphakic hazard
- □ Thermal hazard to cornea & lens
- IR-A (near IR) hazard where strong visual stimulus is absent
 LightRay Consulting, Inc.

ACGIH TLVs: IOR (1)

S(λ)						
R(λ)						
R(λ)						
IOR = incoherent optical radiation						

Name	Metric	λ (nm)	Hazard Function
Blue light (ext. source)	L _B	305-700	Β(λ)
Blue light (<11 mrad)	E_B	304-700	Β(λ)
Blue light - aphakic	L _B	305-700	Α(λ)
Blue light - aphakic	EB	305-700	Α(λ)

$$E_{eff} = \sum_{180}^{400} E_{\lambda} S(\lambda) \Delta \lambda$$

Where E_{eff} = effective irradiance relative 270 nm

 E_{λ} = spectral irradiance (W/cm²•nm)

 $S(\lambda)$ = relative spectral effectiveness (unitless)

 $\Delta\lambda$ = bandwidth in nm

© LightRay Consulting, Inc.

Other Exempl	
Other Exampl	.05
Blue-light radiance, large source	$L_{\rm B} = \sum_{305}^{700} L_{\lambda} B(\lambda) \Delta \lambda$
Blue-light radiance, small source	$E_{\rm B} = \sum_{305}^{700} E_{\lambda} B(\lambda) \Delta \lambda$
Retinal thermal injury	$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} R(\lambda) \Delta \lambda$
	© LightRay Consulting, Inc.

Field Instruments

elding Arcs	
Effective UV irradiance (10-700 A)	$E_{eff} = (k_1 \times l^2) / r^2 W/cm^2$
Maximum luminance	$L_v = k_2 \times l^2 \text{ cd/cm}^2$
IR Irradiance (750- 2000 nm, 40-200 A)	E = $(k_3 \times l^2) / r^2$ W/cm ²
$k_1 = 2 \times 10^{-4} \text{ W/A}^2$	I = current in amperes, A
$k_2 = 2.0 \text{ cd/cm}^2 / \text{A}^2$	R = distance in cm
$k_3 = 9 \times 10^{-4} \text{ W/A}^2$	Consulting, Inc.

