This document assumes that you have read, and understand, the panel users manual. It gives a brief overview of the most important data structures used in the PAWS software. Along with the description of the data structure, some information on how it is used in the system is provided. Understanding the data structures and their use is crucial to trouble shooting and modifing the PAWS software.

�
Message structures

Size = 87 (MS_SZ)

Message buffer for panels: MS_XX (ie MS_00 - MS_7f)

Message buffer for DUARTS: URM_A URM_B

Offset	SYM		Function

0	MS_ST	Message Status

1	MS_INS	Insertion index

2	MS_END	Completion index

3	CRC_HI	High byte of CRC

4	CRC_LO	Low byte of CRC

5	MS_BF	Message buffer (40 bytes)

44	PBB_CT	Push back count

45	PBB_XT	Push back extraction index

46	PBB_BF	Push back buffer (40 bytes)

MS_ST values:

SYM		Value	Function

MS_LK	fc	Locked

MS_ND	fd	Need data

MS_NL	fe	Need length

MS_NS	ff	Need SOM

MS_CMP	0	Message assembled

As bytes are received from a serial port, the code tries to assemble them into a legal message. This structure is where the assembly and validation occurs.

The message status field (MS_ST) indicates the state of this structure.

MS_NS means that the code is looking for the start of message character. (SOM) In this state, only the SOM character is acceptable, other characters are considered to be garbage bytes in front of the message.

MS_NL indicates that the SOM has been received, and the code expects the next byte to be the optional data length. Once the optional data length has been received the code can compute the total message length. With this information in hand the code can record the completion index. When the insertion index is equal to the completion index, the complete message has been received. (The received bytes are stored in the MS_BF buffer.) After the data length has been received, the code is buffering the message data itself.

MS_ND indicates that we buffering the message data. Once the last byte of the message has been received, the structure state is set to MS_CMP to indicate that a complete message has been assembled.

MS_CMP indicates that the message has been assembled.

MS_LK indicates that the message buffer is locked.

Certain messages (such as page requests containing new trays) take a long time to fully process. When one of these messages is being processed, the structure is locked. A locked structure prevents the assembly of any additional message. At a later time, when the message processing is complete, the structure is unlocked so another message may be received.

The insertion index (MS_INS) indicates where in the buffer the next byte received will be stored.

Once the SOM character has been received, the code expects to receive the optional data length byte. This byte indicates how many bytes of optional data are contained in the message being assembled.

MS_END indicates where the insertion index will be when we have received the last byte of the message. We can not calculate the completion index until after we have received the optional data length byte of the message.

In order to detect and reject corrupted messages the code runs a CRC across all bytes in the message except for the SOM and EOM (End of Message) characters. The CRC on the bytes received so far is kept in the CRC_HI and CRC_LO fields.

The message itself ends with a CRC and EOM. The calculated CRC is compared to the received CRC. If they do not match, then an error has occurred, and the message is rejected.

(The message is also rejected if the character stored at the completion index is not the EOM character.)

If a corrupt message is detected, the SOM character is thrown away and the bytes remaining in the MS_BF are saved in the push back buffer. (PBB_BF) Bytes stored here are read in first, before any bytes are processed from the serial port.

The extraction index (PBB_XT) indicates where the next byte is to be read from, while the push back count (PBB_CT) indicates how many bytes are left in the push back buffer.

MS_00 is used to buffer messages from panel 0 while MS_01 is used to buffer messages from panel 1 and so forth.

�
UART receive structures

Size = 259 (URB_SZ)

A side UART rcv buffer: URB_A

B side UART rcv buffer: URB_B

Offset	SYM		Function

0	URB_ST	Buffer state

1	URB_IN	Insertion index

2	URB_EX	Extraction index

3	URB_BF	Circular buffer (256 bytes, URB_DS)

URB_ST values:

SYM		Value	Function

URB_MT	00	Empty

URB_PR	80	Partially filled

URB_FL	ff	Full

This structure is used to store all bytes received by the dual UART. Since dropping even a single byte will corrupt a message, and cause it to be discarded, dual UART reception is interrupt driven. When a byte is received by the dual UART it is stored in this circular buffer.

URB_IN is the insertion index, it indicates where the next byte will be stored.

URB_EX is the extraction index. This indicates where a byte will be removed from when attempting to build a message.

URB_BF is the circular buffer itself. This is where the received bytes are stored.

If the insertion index and extraction index are equal, then the buffer is either full or empty. URB_ST will be equal to URB_MT if the buffer is empty, and URB_FL when the buffer is full. If the buffer is not empty or full, URB_ST will be equal to URB_PR. (partial)

UART reception is a bit tricky because of the memory devices used by PAWS. The main memory device is a XICOR EEPROM, which stores the majority of the executable code, along with the configuration data the system consoles download to the system.

You cannot read from the EEPROM while it is undergoing a programming cycle. This means that you cannot run any code from the EEPROM while you are recording configuration data.

The upshot is that the interrupt handler that services the dual UART must be stored in the EEPROM that is in the CPU, since we cannot stop servicing the dual UART for the 10 milliseconds or so that it takes to program new configuration information into the XICOR EEPROM. This EEPROM is about 500 bytes, and the interrupt vector tables take up part of that space. The dual UART interrupt handler is optimized for small size and high speed, which is why the routine uses a circular queue. The reception routines just store the bytes in the circular buffer, the bytes are extracted later by mainline routines that assemble and process messages.

�
Panel Comm structures

Size = 10

Panel comm records: PA_XX (ie PA_00 - PA_7f)

Offset	SYM		Function

0	PS_FAD	FIFO address

2	PS_SRA	FIFO status address

4	PS_RSM	Receive mask

5	PS_TSM	Transmit mask

6	PS_RSC	Reset command

7	PS_PSA	Pull Station Status address

9	PS_PSM	Pull Station Status Mask

These structures are only present on the matrix. All traffic that flows between the matrix and the panels flows through FIFOs that are present in the matrix's memory map. The hardware actually resides on the PPIC. (Paging Panel Input Card.)

When the matrix is ready to send a byte to a panel, it has to find the address of the FIFO registers used to talk to that panel. There are two FIFO addresses in each panel's record. One is the address of the FIFO status register, and the second is the address of the data registers. Within the status register is a bit to indicate if the receive buffer has any data, and a bit to indicate if there is any room left in the transmit buffer.

The status register contains bits for four FIFOs. Since four FIFOs share a single status register, each panel has its own transmit status mask and receive status mask. There is also a bit value used in resetting the FIFO. (The address of the reset register is "known" because it is a fixed offset from the FIFO status register.)

Please note that the read FIFO and write FIFO for panel communication are mapped to the same address. Reading the FIFO address will return a byte received from the panel, while writing to the FIFO address will send a byte to the panel via the UART connected to the read/write FIFOs.

Another function that is supported on the PPIC is the remote area warning input. There are fields to identify the address and bit within the address that is used to sense the state of a remote area warning station.

(As of this date, 10/23/95, discussion is underway on replacing the remote area warning stations with a modified panel. If this occurs, these fields will become unused. No software changes will be required as you can simply download an empty pull station map to disable pull station processing, but if you pull the pull station support code out of the matrix, the matrix code will be a little faster, and it'll free up some memory.)

The information in the table built from these records is fixed. It supports rapid look up of addresses and masks needed to interface with the panels. The file containing the PA_XX records is actually built by a "C" program, mktab.exe.

�
Message output structure

Size = 87 (OUT_SZ)

Buffer for message to panels: OUTP

Buffer for message to DUART: OUTC

Offset	SYM		Function

0	OUT_ST	Status

1	OUT_LEN	Template length

2	OUT_BEG	SOM byte

3	OUT_DL	Optional data length

4	OUT_CH	High byte of command

5	OUT_CL	Low byte of command

6	OUT_OD	Start of optional data

OUT_ST values:

SYM		Value	Function

OUT_FR	00	Free

OUT_BZ	ff	Busy

OUTC is present on the matrix and the panels, while OUTP is only present on the matrix. On the matrix, OUTC is used for sending messages to the systems console, while on the panels, OUTC is used for sending messages to the matrix. The matrix uses OUTP for sending messages to the panels.

Messages that originate on the panel or matrix are stored as a message template. This contains the message itself, along with several bytes used for transmission of the message.

When a message needs to be sent to a system console, matrix, or panel, the message template is copied to the message output structure and any required optional data is filled in.

For OUTC, transmission is initiated by software that reads the first byte of the message (the SOM byte) and writes it to a UART transmission register. As part of this sequence, the UART transmission interrupts are enabled. This causes transmission interrupts from the UART which result in the rest of the bytes of the message being written to the UART transmission register.

The buffer status byte, at offset OUT_ST, is used to indicate the state of the message output structure. OUT_FR indicates that the buffer is idle while a value of OUT_BZ indicates that the buffer is still in use.

(Some messages are sent to just the A side or just the B side system console or matrix, while other messages are sent to both the A and the B sides. If a message is going to both sides, transmission may be completed on one side or the other, but the buffer can't be freed until transmission is completed on both sides.)

The value stored at OUT_LEN is the number of bytes in the template, which contains the message itself along with several buffer associated values. (Including OUT_ST and OUT_LEN.) This is the total number of bytes copied to OUTC or OUTP.

The fields starting with OUT_BEG are part of the message itself. OUT_DL is the number of optional data bytes in the message. This value is used in figuring out how many bytes will be used in computing the CRC prior to sending the message. It determines how many bytes to include in the CRC, and where in the buffer to store the calculated CRC. When the actual transmission is set up, it is also used to compute the number of bytes that must be written to the UART transmission register. (This is simply the number of optional data bytes, plus the size of the fixed message fields.)

OUT_CH and OUT_CL are the high byte and low byte of the command field. They are not usually changed in message transmission.

OUT_OD is the offset to the optional data area. Any variable message data will be recorded starting at this offset.

On the matrix, for messages being sent to the panels, transmission interrupts are not generated. For these messages, polled output is used. When the matrix wishes to send a message to a panel, it writes each byte of the message to a 1K FIFO which feeds a UART without CPU intervention. A status register indicates if the FIFO register is full. In the unlikely event that the FIFO register fills up, the matrix CPU will poll the status register until it can write another byte.

�
Output module structures

Size = 5

Tray control records: TA_XX (ie TA_00 - TA_bf)

Offset	SYM	Function

0	OM_RA	Register address

2	OM_IA	Image address

4	OM_BM	Bit masks

Bit extraction masks:

SYM	Value	Function

OM_VKM	f0	Voice Key control bit mask

OM_AWM	0f	Area Warning control bit mask

A tray is a device used to distribute audio to an area. Each tray has two control signals. The first is used to key (activate) audio distribution within a given area, while the second removes a 10 db pad from the audio feed when activated, thereby increasing the audio level.

In the matrix, these control signals are referred to as the voice key and the area warning key. (Area Warning controls the 10 db pad.)

When a page, or other audio, needs to be sent to a given area on KSC the matrix must route the required audio feed through a crossbar switch to the tray and then activate the tray. In order to activate the correct tray, it uses the tray number to index into a table of tray control records.

Each record indicates the memory address of the register used to control the tray, (OM_RA) the memory address of the image of the register, (OM_IA) and a pair of bit masks packed into a byte. (OM_BM)

An image of the tray control register is required as there are control bits for four trays packed into a single byte, (by the hardware design of the control tray output cards, CTOC's) and you can not read the current contents of the control register.

In order to control one of the four trays, independently of the other 3 trays, you must OR in or AND out a bit, without disturbing the bits for the other trays. By keeping an image of the contents of the tray control register, we can manipulate the bits for a given tray, and keep the bit values for the other trays intact.

The OM_BM field contains a bit mask for the voice key in the upper nybble, and a bit mask for the area warning key in the lower nybble. By ANDing the OM_BM contents with OM_VKM, you are left with the single bit that controls voice keying. OM_AWM is used to extract the area warning bit from the OM_BM contents.

 �
The sequence used to key a tray is as follows:

Index into the tray table using the tray number.

Grab the image address.

AND the OM_BM field with OM_VKM to get the voice key bit.

OR the voice key bit with the image to "key" the tray.

Save the new value at the image address.

Write the new value to the register address.

The sequence used to unkey a tray is as follows:

Index into the tray table using the tray number.

Grab the image address.

AND the OM_BM field with OM_VKM to get the voice key bit.

Invert the voice key bit value. (and all other bits)

AND the voice key bit inverse with the image to "unkey" the tray.

Save the new value at the image address.

Write the new value to the register address.

�
List structures

Size = 258 (LST_SZ)

Panel polling list: PL_LST

Pull station list: PS_LST

Offset	SYM		Function

0	LST_FR	Free index

1	LST_SC	Scanning index

2	LST_DT	buffer

This structure is used to hold two lists, a list of the active panels present in the system and a list of pull stations present in the system.

In order to make the system as responsive as possible, yet allow expansion, the system will only attempt "reception" from devices that are identified as being present.

Specifically, the matrix will only check those panels listed in the PL_LST for input. (Messages being sent to a panel will be forwarded to the panel even if it is not listed in PL_LST.)

Only those pull stations listed in PS_LST are checked to see if their state has changed.

Once each pass through the main loop of the matrix program, the matrix will get a new panel number from the PL_LST and check that panel's FIFO to see if the panel has sent any data to the matrix.

Any received data is stored in a message buffer where the matrix attempts to build a valid message. There is a limit to the number of bytes that the matrix will fetch from a single panel in a pass. The matrix will also stop fetching data from the panel as soon as a complete, legal, message has been assembled.

On the next pass through the main loop, the matrix will get a different panel number, and check for input from that panel.

The upshot is the matrix receives messages from all the panels listed as being in the system in a round robin fashion.

In addition to a panel list, the matrix contains a pull station list. Once each loop the matrix software gets a pull station number from the pull station list and checks to see if the pull station has changed states.

A pull station is used to activate a local area warning from within a area. When someone activates a pull station mounted on the wall in an area that performs hazardous operations, an area warning tone is generated and distributed to that area. Local beacons may be activated as well.

An important fact to note is that there are several reasons why a panel that is present in the system may not appear in the PL_LST. If a panel request will take some time to fulfill, the matrix will remove the panel from the PL_LST until processing of the request is completed. This is required because each panel has only one message buffer, and any reception of a new message from the panel would overwrite the old message that the matrix was working on.

Panels can also be removed from the polling list (PL_LST) under software command. This may be required when the comm link to the panel fails, which can cause the matrix to spend a lot of time polling the panel on the failed link, trying to assemble a valid message. A temporary fix would be to remove the panel from the polling list until the comm problem can be corrected.

The system will tolerate several down comm links, but system response drops off with each failure, and eventually a point is reached where page attempts will start failing due to the matrix not responding to a working panel in time.

It is a good idea to temporarily remove any panels you know are having comm problems from the polling list until the problem is fixed. This will result in a more robust system.

The lists are large enough to hold the maximum number of units (panels or pull stations) with room to spare.

The LST_FR field indicates which slot in the list is the first open (unused) slot. When a panel is returned to the list after having been removed to service a long request, it will be added to the list in the LST_FR slot, and the LST_FR value is incremented.

LST_SC is the scanning index. It is used to index into the list on each pass to see which panel (or pull station) to check that pass. LST_SC is bumped after each pass, so that on the next pass, a different panel or pull station will be checked. (When LST_SC reaches LST_FR, it wraps back to 0, the top of the list.)

LST_DT is the unit number buffer. Each slot in the list will contain a panel or pull station number. The collection of slots (and their contents) form the LST_DT.

�
Matrix Bit Maps

PN_TBL	16 bytes	Panel present map

PS_TBL	16 bytes	Pull Station present map

NT_TBL	24 bytes	New trays present map

OT_TBL	24 bytes	Old trays present map

PP_MAP	16 bytes	Panel preempted map

IP_MAP	16 bytes	Page in progress map

Panel Bit maps

BSMAP	8 bytes		Button state map (1 is active)

AWT_A	24 bytes	Area Warning Trays, A side

AWT_B	24 bytes	Area Warning Trays, B side

AWZ_A	8 bytes		Affected Zones, A side

AWZ_B	8 bytes		Affected Zones, B side

If a bit is set, that unit is present or marked.

Matrix Structures

The PN_TBL is a list of panels that the system console has indicated are installed in the system. It is used to build the initial polling list (PL_LST) but panels can be added to, or removed from the PL_LST for various reasons.

The PS_TBL is a list of pull stations that the system console has indicated are installed in the system. It is used to build the PS_LST. Pull stations can be added to, or removed from the PS_LST only by downloading a new PS_TBL.

NT_TBL is a list of new style trays that the system console has indicated are installed in the system. New style trays contain a feedback circuit that indicates the current state of the tray, active or idle. Whenever the matrix keys or unkeys a new tray, it will test the state of the tray a short period of time later to insure that the tray went to the desired state. (The system has to allow about 40 milliseconds for the tray to physically reach the desired state, due to propagation delays and mechanical inertia.

OT_TBL is a list of old style trays that the system console has indicated are installed in the system. Old style trays do not contain a feedback circuit, so their state can not be checked.

All trays in a panel's page request or zone select must appear in either the new tray table or the old tray table. If a request contains one or more trays that don't appear in either list, the matrix rejects the request as an illegal request.

PP_MAP is a list of all panels that have already received a cutoff message from the matrix. It is used to reduce the amount of traffic that the matrix sends to the panel when a higher priority page overrides a page from another panel.

IP_MAP is a list of all panels that are currently performing a page. This list is used in page preemption. When the system grabs a tray for a high priority page, the matrix checks to see if a panel that it thinks owns the tray in question is active. If the panel does not have a page in progress, the owning panel number is stale, or leftover from an earlier page. In this case, the matrix does not have to send a cutoff message to the panel.

Panel Structures

BSMAP is a list of all zone buttons that are active. (depressed)

AWT_A is a list of trays that are in the area warning mode on the A side of the system.

Whenever a panel or a pull station initiates an area warning, all panels are notified because they must blink the zones that are affected by the area warning. This is accomplished by each matrix sending a list of trays that are in area warning mode to all panels. The panel stores this list and checks selected zones against it to see which zones it should blink.

AWT_B is a list of trays that are in the area warning mode on the B side of the system.

AWZ_A is a list of zones affected by area warnings on the A side of the panel. The panel builds this list each time it receives a new AWT_A list from the matrix.

AWZ_B is a list of zones affected by area warnings on the B side of the system. The panel builds this list each time it receives a new AWT_B list from the matrix.

When the matrix receives information that one or more devices have activated area warning, it builds a map of trays that are currently in area warning mode. This map is sent to each panel present in the system. The panel stores the map in memory.

A panel will receive an area warning map from both the A matrix and the B matrix. The panel compares the area warning maps to the zone tray maps programmed on each button and builds a list of zones affected by A side area warnings and a list of zones affected by B side area warnings.

Using the A side affected zone map and the B side affected zone map, the panel blinks all zones affected by area warnings.

Every time a panel changes area warning states or a pull station changes state, the matrix builds and distributes a new area warning tray map.

 �
Circular queue structures

 Size = 259 (CRQ_RS)

TON_CQ	Timer on (new trays waiting to close)

VON_CQ	Verify on (new trays that should be closed)

TOF_CQ	Timer off (new trays waiting to open)

VOF_CQ	Verify off (new trays that should be open)

PON_CQ 	 Pending on zones (map numbers)

AS_LST	Assembled panel messages

TMP_CQ	Temporary, used in compaction

Offset	SYM		Function

0	CRQ_IN	Insertion index

1	CRQ_EX	Extraction index

2	CRQ_CT	Count

3	CRQ_DT	Data (256 bytes, CRQ_SZ)

Circular queue structures are mainly used for keeping track of the states of new style trays as they cycle from inactive to active and back to inactive.

When the matrix keys a new style tray, it places the tray number on the timer on circular queue. (TON_CQ) In the outer loop of the matrix software, the matrix will check the tray at the top of the queue to see if enough time has passed that the tray should be in the active state.

The TON_CQ contains the tray number. Each tray has a record that contains the time the tray should reach its next state. When the matrix keys the tray, it adds the tray to the TON_CQ and records the current time plus the amount of time required for a tray to pull in the tray's time field.

If the current time is less than time when the tray is supposed to reach the active state, then the other trays on the TON_CQ do not need to be checked since all trays take the same time to reach the active state and they are placed on TON_CQ in the order that they were activated.

If the tray at the top of TON_CQ has reached the time where it should be engaged, the tray is removed from the TON_CQ and added to the verify on circular queue. (VON_CQ) If the top tray is moved to the VON_CQ, the new top tray on the TON_CQ is checked to see if it has reached the time where it should be engaged. (Since a single page can often pull in several trays, trays are usually added to the TON_CQ as a block.)

The TON_CQ is checked until we reach a tray that has not yet reached the time where it should be engaged. Once that happens, we stop checking the TON_CQ since the rest of the trays are also still waiting.

 The VON_CQ contains a list of trays that should have reached the engaged state. In the outer loop of the matrix software, we check the VON_CQ to see if there are any trays on it. For each tray listed on the VON_CQ, the matrix checks the tray's feedback circuit to see if the tray is actually engaged. The results of the test are then recorded in each panel's record. If the tray failed to close, the failure is recorded in an error table the matrix maintains. Only one tray is processed each pass.

A panel always instigates closure of a tray. It is possible for the tray to be "in use" by more than one panel. Each time a zone select button is pressed on a panel, the panel asks the matrix to test all the trays associated with that button. For each page performed by any panel, the matrix will also test all new trays associated with the page.

The matrix will return the test results to the panel so the panel can indicate to the operator if any problems exist. If more than one panel requests a zone select test, or one panel requests a page, and one or more other panels request a zone test at nearly the same time, there can be many panels waiting for the results of the tray activation.

After a tray's feedback circuit is checked, the tray is removed from VON_CQ.

When the matrix unkeys a tray, it places the tray number on the timer off circular queue. (TOF_CQ) In the outer loop, the matrix code checks the top tray on the TOF_CQ list. If enough time has passed that the tray should be disengaged, the tray number is removed from the TOF_CQ and placed on the verify off circular queue. (VOF_CQ)

The matrix code will check the VOF_CQ, and for each tray on it, it will check the tray's feedback circuit to see if the tray really opened. If the tray failed to open, the failure is recorded in an error table the matrix maintains. Panels are not notified of failures to open.

After each tray is checked, it is removed from the VOF_CQ.

The system console does a periodic read of the matrix error table and notifies the system console operator of any new failures since the last time the error table was checked. The errors count up to 255, and stop. There is a command that can be sent to the matrix that causes it to reset all the error counts.

PON_CQ is a circular queue that contains a list of maps that are pending. Zone buttons are translated to map numbers in the panel. When the user presses a zone select button, the panel translates the zone number to a map number, and adds the map number to the pending on list. The zone select lamp is turned on, and the panel requests a tray test from the matrix. It also records the time it expects an answer back from the matrix in the map record.

The panel's outer loop checks the PON_CQ, and if a map is present, and the map's time field indicates that the matrix answers should have been received by now, the map is removed from the PON_CQ and the panel looks at the response from both the A and B side matrix and either leaves the lamp on, leaves the lamp on but beeps, or beeps and turns the lamp off.

If the lamp is left on, the trays associated with the map are added to the panel's global tray maps. (one for the A side and one for the B side.)

AS_LST is a circular queue used on the matrix to maintain a list of panels that have been removed from the polling list because a complete, valid message has been received from the panel, but the message has not been processed yet. In the outer loop of the matrix, we check the AS_LST and if any panels are listed, the message in the panel's message buffer is processed.

TMP_CQ is a temporary circular queue. If a record is deleted from the middle of a list, the list is compacted by copying all the records, except for the one being removed, to the temporary buffer, and the original buffer is overwritten by the temporary buffer. (This could be cleaned up if we ever do a garbage collection drop, but right now the customer does not want to change the code much. It is used infrequently.)

CRQ_IN is the insertion index. This is where the next item added to the list will go. It wraps around the end to the top.

CRQ_EX is the extraction index. This is where the top record lives.

CRQ_CT is the count of the number of items on the list.

CRQ_DT is the circular buffer itself.

Normally, an item is removed from the list by decrementing the CRQ_CT field, and incrementing the CRQ_EX field.

�
Tray structures

Size = 22 (TR_SZ)

Tray state records: TR_XX (ie TR_00 - TR_bf)

Offset	SYM		Function

0	TR_ST	Tray State

1	TR_FLG	Tray bit flags

2	TR_PRI	Request priority

3	TR_OWN	"Owning" panel

4	TR_TMR	Time relay S/B open/closed

5	TR_CT	Bits set count

6	TR_TM	test map (16 bytes)

TR_ST values:

SYM		Value	Function

TR_FRE	00	Free

TR_PON	02	Pending on

TR_VON	03	Verify on

TR_ACT	ff	Active

TR_POF	11	Pending off

TR_VOF	10	Verify off

Flag bits:

SYM		Value	Function

TR_IV		00	Not installed, unused

TR_TST	80	Testing

TR_OP	40	Pass audio

TR_NW	20	New tray

TR_OL	10	Old tray

TR_AT	08	AW tray too

TR_PA	04	Pending AW

TR_WT	02	WWT required

TR_PW	01	Pending WW

TR_XX records are used to track tray operations.

The TR_ST field indicates the current state the tray is in.

TR_FRE indicates that the tray is idle, ie, no panel has requested the tray for anything.

TR_PON indicates that the tray has been keyed, and in a short time should be closed. (active) Trays with a state of TR_PON should be on the PON_CQ.

TR_VON indicates that enough time has elapsed for the tray to close, and it is awaiting testing of its feedback circuit to verify that the tray closed. Trays with a state equal to TR_VON should be on the VON_CQ.

TR_ACT indicates that the tray is being used for a page. (And the feedback circuit has already been tested if it's a new style tray. Old style trays do not have a feedback circuit, so when keyed, they go directly from TR_FRE to TR_ACT.)

TR_POF indicates that the tray has been unkeyed, and the matrix is waiting for the tray to have enough time to open. Trays that have a state of TR_POF should be on the POF_CQ.

TR_VOF indicates that the tray has been unkeyed long enough that it should now be open, and is awaiting testing of its feedback circuit to verify that it has opened. Trays with a status of TR_VOF should be on the VOF_CQ. (Old trays don't have a feedback circuit, so when unkeyed, they go directly from TR_ACT to TR_FRE.)

The second field, TR_FLG is a collection of flag bits.

TR_IV is the value that indicates that the tray is not listed as being present.

TR_TST is a bit indicating that one or more panels have requested that the tray be tested as a result of an operator's zone selection. (A map of the panels waiting on the test is contained in the structure.)

TR_OP is a bit indicating that a panel has requested that the tray pass audio in support of a page operation by that panel. (Only a single panel can use a tray for passing audio because there is no provision to sum audio from more than one panel to feed to the tray. Since a zone select does not require passing audio, any number of panels can request a zone select test, even in parallel with a page.)

TR_NW is a bit that indicates that the tray is a new style tray that features the feedback circuit. (Which allows the matrix to determine the actual state the tray is in at any given time.)

TR_OL is a bit that indicates the tray is an old style tray, and has no feedback circuit. Without the feedback circuit, the matrix has no way of checking the actual state of the tray, so old style trays are assumed to be good whenever a test is required.

TR_AT is a bit that indicates an area warning operation is being performed with the tray. This means that in addition setting and clearing the voice key bit, the matrix should also set and clear the area warning key bit. (In addition, the audio for the tray may be coming from the panel or from an area warning tone generator in the matrix. The audio source is controlled by message sent by the panel.)

TR_WT is a bit that indicates a weather warning operation is being performed with the tray. This means that instead of audio from the panel being fed to the tray, the tray's audio comes from a weather warning tone generator in the matrix.

The next two bits indicate operations that are requested between the time the tray was released and when it actually became free. These indicate that as soon as the tray is verified off (since it had already been unkeyed when the request came in) it should be keyed in support of another operation.

TR_PA indicates that a panel wants to use the tray in support of an area warning operation.

TR_PW indicates that a panel wants to use the tray in support of a weather warning operation.

TR_PRI indicates the priority of the page. All pages have an associated priority. If a request comes in from a panel requesting a page at a higher priority than the priority the tray is currently being used at, the tray will be taken away from the panel currently using it and given to the new, higher priority, panel.

If a page request comes in from a new panel that is the same or lower priority than the current operation, the new request is rejected.

The current priority must be stored so the matrix can decide which panel gets the tray when it is requested by two or more panels.

TR_OWN indicates which panel "owns" the tray. Normally the audio being fed to the tray will come from the owning panel, but the audio source may be one of the tone generators in the matrix.

In the event that a higher priority page request comes in, the owning panel is sent a cutoff message, and the owner of the tray is changed to the new panel.

The owning panel also serves to help the matrix decide when to send the page request granted/page request rejected messages.

When a tray is taken off the VOF_CQ, the matrix looks at the TR_OWN field to see which panel was waiting for the tray for a page. The panel's record contains a list of all the trays that the panel needs for its current page. The matrix will remove the tray it just verified from the panel's tray map. When the last tray is removed from the panel's tray map, the results of all of the tests are used to determine what kind of page request response to send to the panel.

TR_TMR contains the time when the tray should reach its commanded state. The tray will remain on one of the two pending lists until this time.

TR_CT contains a count of the number of panels waiting on the tray to close. (The number of panels that are waiting on a zone select tray test.) A tray can pass audio on behalf of only a single panel, but several panels can request the tray be tested to see if it is operational, so a bit map of the panels requesting the tray be tested is stored in the tray record. When all of the panels requesting a tray test have been notified of the results the tray can be released. (Unless a panel is using the tray for a page.)

TR_TM is a bit map of the panels that have requested the tray be tested in support of a zone selection by a panel operator.

�
Panel/tray structures

Size = 28 (PT_SZ)

Panel tray records: PTR_XX (ie PTR_00 - PTR_7F)

Offset	SYM		Function

0	PT_OP	Op field

1	PT_BN	Button number

2	PT_FL	Flags

3	PT_BC	Bit count

4	PT_DA	Data area (24 bytes)

PT_OP values:

SYM		Value	Function

PT_TT	00	Tray test

PT_PG	ff	Page

Flag bits:

SYM		Value	Function

PT_TP	20	Tray(s) passed

PT_TF	80	Tray(s) failed

PT_AR	40	AW request

PT_WR	10	WW request

Panel tray records (PTR_XX) are used to keep track of what trays a panel is working with, and what it's doing with them.

PT_OP is the operation field.

If the panel has requested a tray test, PT_OP will be PT_TT.

If the panel is performing a page, PT_OP will be PT_PG.

PT_BN is the button number.

This field is used for tray tests. When a panel operator presses a zone select button, the panel sends a tray test request to the matrix. The request contains the button number along with a list of trays assigned to the button.

Button numbers consist of a row and a column packed into the upper and lower nybble of a byte.

When the matrix returns the tray test results, it includes the button number. (Internally, all panel operations are performed on maps, which act as an index into tables in memory, but outside the panel, everything is done in terms of button numbers. Map numbers are contiguous, button numbers are not.)

PT_FL is the flags field. This consists of a number of bits that indicate specific things.

PT_TP is a bit set if one or more trays have passed. This is used for both tray tests and pages.

PT_TF is a bit set if one or more trays have failed. This is used for both tray tests and pages.

PT_AR is a bit set if the page is an area warning request.

PT_WR is a bit set if the page is a weather warning request.

PT_BC is a count of the number of trays that are still waiting for test results. It is a count of the number of bits set in the tray map field.

PT_DA is the data area. It contains a bit map of the trays that are still waiting on test results.

When a tray reaches the time that its activation can be verified, its state is checked, and one of the flags, PT_TP or PT_TF, is set, and the bit is removed from the bit map and PT_BC is decremented.

When PT_BC reaches 0, the matrix sends a response to the panel based on PT_TP, PT_TF, PT_OP and PT_AR and PT_WR.

(Different opcodes are used for normal pages, area warning pages and weather warning pages.)

�
Error Tables

Error count table: E_TBL

Size = 64 (EC_SZ)

Offset	SYM		Function

0	ERR_00	Garbage in front of message

1	ERR_01	Unused

2	ERR_02	Unused

3	ERR_03	Unused

4	ERR_04	Unused

5	ERR_05	No response from matrix A

6	ERR_06	No response from matrix B

7	ERR_07	Invalid tray number in tracking write

8	ERR_08	Panel polling deletion error, panel not there

9	ERR_09	Invalid panel number in forwarding

10	ERR_0A	Large buffer overflow, side A

11	ERR_0B	Large buffer overflow, side B

12	ERR_0C	Unused

13	ERR_0D	Unused

14	ERR_0E	Unused

15	ERR_0F	Unused

16	ERR_10	Undefined tray state during page attempt

17	ERR_11	Free tray type undefined, page attempt

18	ERR_12	Active tray type undefined, page attempt

19	ERR_13	Attempt to release free tray

20	ERR_14	Tray type undefined during release

21	ERR_15	Invalid message from system console

22	ERR_16	Invalid write command

23	ERR_17	Invalid map number, write command

24	ERR_18	Invalid request

25	ERR_19	Invalid map number, read command

26	ERR_1A	Illegal command

27	ERR_1B	Message from panel not addressed to matrix/console

28	ERR_1C	Invalid message type from panel

29	ERR_1D	Invalid request from panel

30	ERR_1E	Invalid command from panel

31	ERR_1F	Invalid tracking number

32	ERR_20	Invalid message type

33	ERR_21	Invalid write command

34	ERR_22	Bad map number, zone write

35	ERR_23	Invalid response

36	ERR_24	Bad map number, tray test response

37	ERR_25	Invalid request

38	ERR_26	Invalid command

39	ERR_27	Invalid announcement

40	ERR_28	Unused

41	ERR_29	Unused

 42	ERR_2A	Unused

43	ERR_2B	Unused

44	ERR_2C	Unused

45	ERR_2D	Unused

46	ERR_2E	Unused

47	ERR_2F	Unused

48	ERR_30	Not addressed to me

49	ERR_31	False start or corrupted length

50	ERR_32	Invalid EOM

51	ERR_33	Invalid CRC

52	ERR_34	Unused

53	ERR_35	Unused

54	ERR_36	Unused

55	ERR_37	Unused

56	ERR_38	Unused

57	ERR_39	Unused

58	ERR_3A	Unused

59	ERR_3B	Unused

60	ERR_3C	Unused

61	ERR_3D	Unused

62	ERR_3E	Unused

63	ERR_3F	Unused

The error count table contains a count of the number of errors of a given type that have occurred since the table was last zeroed. (The table is zeroed by any reset, and there is a command that will zero several tables, including the error table.)

Each different type of error has its own position within the table. For a list of the errors, look at ETYPE.H. Not all errors can occur on all devices. As an example, the "No response from matrix A" errors occur on the panels, and should not occur on either matrix.

The best way to determine exactly what each error "means" is to examine where the error occurs in the source code. As an example, to figure out what "Undefined tray state during page attempt" means, find where ERR_10 occurs in the source code. (zgrep ERR_10 *.asm while in the root source directory, RS)

�
Interrupt handler error table: IHE_TBL

Size = 4 (IHE_SZ)

The interrupt handler error table records the count of certain errors that are detected during dual UART interrupt handler execution.

Due to hardware constraints, we can't run the normal error recording code for these errors. (You can't read from the XICOR chip while it's in a programming cycle, or you'll corrupt the Xicor contents, so the dual UART interrupt handlers live in a small block of EEPROM in the CPU.)

The dual UART is used in the matrix for communication with the systems consoles. The panel uses the dual UART for communications with the matrices.

It is not unusual to get a break detected error when power is cycled on the matrix or panel, or when cable connections are disturbed. Breaks that occur at other times are usually signs of hardware related communication link problems. Receive buffer overflows should never occur.

Offset	Function

0	Break detected, A side

1	Break detected, B side

2	Receive buffer overflow, A side

3	Receive buffer overflow, B side

�
Zone Map structures

Size = 25

A side zone maps: ZMXXA (ie ZM00A - ZM3FA)

B side zone maps: ZMXXB (ie ZM00B - ZM3FB)

Offset	Function

0	Zone priority

1	Tray map, first byte

Zone maps are used to store panel configuration. Each zone map stores the trays associated with one side of one zone select button. These are recorded in the panel's Xicor chip. The system console performs a download to record new zone maps when the configuration is altered.

Each zone select button has an associated priority, and a list of trays assigned to that zone. A page can be performed with many zones selected.

When a page is performed, the panel looks at the zone maps for all of the selected zones, and uses the highest priority it finds as the global priority. All of the selected zone's trays are ORed together to generate a global tray map. The global priority and global tray map are used in the page request.

There are actually separate priorities and global tray maps for the A side and the B side, since not all areas have redundant trays.

The system consoles must lock the panel before a new configuration can be downloaded. If the panel is performing a page, or awaiting the results of a tray test, it will wave off the lock and the download cannot be performed.

If the panel is idle, the lock is performed. No other operations can be performed while the panel is locked. A timer is started on the panel when it is locked, and if the system console does not perform an unlock within a reasonable amount of time (about 10 seconds for all panels except the admin) the panel will unlock itself.

If the panel is not locked, any download messages that arrive are not processed.

When the panel receives a download message, it checks the message contents against the Xicor contents. If there is no difference, the message is discarded. If the message and the Xicor differ, a write cycle is initiated to program the Xicor.

After the zone record has been updated, the global priority and the global tray maps are updated.

 �
Zone Records

Size = 3 (ZR_SZ)

Zone lamp states: ZLSXX (ie ZLS00 - ZLS3F)

Offset	SYM		Function

0	ZS_OFF	Zone State

1	ZT_OFF	Time field

2	ZR_OFF	Response byte

State values:

SYM		Value	Function

IN_OFF	$00	Indicator off

IN_ON	$01	Indicator on

IN_AWS	$80	AW selected

Response byte bits:

SYM		Value	Function

ZR_RST	$00	No responses

ZR_SAG	$80	Side A good

ZR_SAI	$40	Side A Illegal

ZR_SAP	$20	Side A partial

ZR_SAB	$10	Side A busy

ZR_SBG	$08	Side B good

ZR_SBI	$04	Side B Illegal

ZR_SBP	$02	Side B partial

ZR_SBB	$01	Side B busy

Zone records contain information about zone buttons and zone button operation state.

ZS_OFF contains information about the zone button's lamp state and a flag for an area warning select. (Which requires special processing.)

IN_ON indicates the zone button lamp is on.

IN_OFF indicates that the zone button lamp is off.

IN_AWS is ORed in when a zone selection is performed while the panel has area warning tone active. (Normally, the panel will not allow any zone select operations while audio is being routed to trays, but area warning is a special case.)

ZT_OFF contains the time when all responses should have been received from both matrices. When this time arrives, the panel checks the responses it received from the matrices and leaves the lamp on, beeps and leaves the lamp on, or beeps and turns the lamp off.

ZR_OFF contains flags that record the response received from each matrix.

When the panel receives a page request response from the matrix, it records the information in the ZR_OFF field. When the response timer expires, the panel will check these flags.

There are two blocks of flags in this field, one for the A side, and one for the B side. For the A side flags, the fifth character is A while it's a B for the B side flags. As an example, ZR_SAG is the good flag for the A side.

ZR_RST is the value recorded in ZR_OFF to clear the response byte.

ZR_SAG, ZR_SBG indicate that the page was good, that all the trays requested are available and working.

ZR_SAI, ZR_SBI indicate that one or more trays in the panel's request are not listed as being installed.

The matrix has a list of old style trays and a list of new style trays that are installed. If a panel asks for a tray that does not appear on one of these two lists, the matrix rejects the request as illegal. This can happen if operations are performed during a download when the matrix and the panels may have different configurations on them.

ZR_SAP, ZR_SBP indicate that one or more trays the panel requested are not working. It is only sent if there is one or more trays that did work.

In the event that there are no working trays in the panel's request, the matrix sends a message indicating that there are no trays. There is no bit in this field for this condition, as the occurrence is handled the same as no matrix response. (In the event that there really isn't any response received from a matrix, the panel code will bump the no matrix response received error count. This count is not bumped if the matrix sends a "no trays" response.)

ZR_SAB, ZR_SBB these values are not used in zone selects. They are used for pages. (In other structures.)

 �
Version Detection

SIG 2 bytes

MAGIC 2 bytes

The software compares these two values to determine if it needs to reprogram the CPU EEPROM. The value is generated by running the CRC across UART.ASM. If they differ, the CPU EEPROM is reprogrammed to contain the new interrupt handlers.

(The interrupt handlers have to live in the CPU EEPROM because they have to run during the 10 milliseconds of the Xicor programming cycle as you can't read (and therefore can't run any code in) the Xicor during this period. If interrupts were disabled for the time it takes to program the Xicor, we would loose bytes coming from the matrix.)

�
Look up and translation tables

Zone Map Look up tables

64 words (128 bytes)

MAATAB, MABTAB

These tables are used to translate a map number into the address of a zone map. (ZMXXA/ZMXXB) They are lists of addresses. Given a map number, use it (the map number) as an index into the table to get the address of the record for that map.

Zone Lamp State Look up table

64 words (128 bytes)

ZLMAP

This table is used to translate a zone lamp record number into the address of a zone lamp record structure. (ZLSXX) Given a zone lamp record number, use it to index into the table to get the address of the actual zone lamp record.

Compressed zone number to map number translation tables

Size = 64 bytes

ADMZ2M, WRNZ2M, OPSZ2M

These tables are used to translate button numbers into map numbers. Pack the 3 bits of the row number and the 3 bits of the column number from a button number into the low order 6 bits of a byte. Use the result to index into the table. The value fetched is the map number. The emergency warning and area warning panels share a table.

Key scan code to map number translation tables

Size = 108 bytes

ADMK2M, WRNK2M, OPSK2M

The tables are used to translate a key scan code to a map number. The zone select buttons are interfaced to the panel CPU through a keyboard encoder. The keyboard encoder handles debouncing the contact closures, and reports key hits via a scan code. The panel code uses the scan code as an index into a table to fetch the map number, which is how all the internal routines refer to a "button." The table varies with the panel type, because the actual mapping of button position to scan code varies with the panel type due to wiring differences.

�
Map Number to button number translation tables

Size = 64 bytes

ADMM2B, WRNM2B, OPSM2B

These tables are used to translate a map number to a button number. When the panel needs to communicate with the outside world it has to translate the map number (which is how all internal operations refer to a button) back into a button number. The panel code uses the map number to index into this table to fetch the button number. Button numbers are used in zone selects.

Button numbers are based on physical position on the panel, while map numbers are "logical" button numbers that are mapped to the physical button numbers.

Translation table addresses

2 bytes

ZMTAB, KMTAB, MBTAB

These values are set when the panel code determines what type of panel it is running on. These are the addresses of tables used to do the following translations:

ZMTAB	Compressed Zone (button) to map number

KMTAB	Key scan code to map number

MBTAB	Map number to button number

There are actually several tables for translating button numbers to map numbers, one for each type of panel. (The emergency warning panel and area warning panels share most maps due to the zone select buttons being wired the same way.)

ZMTAB, KMTAB and MBTAB are the addresses of the correct tables to use for the panel the code is running on.

By setting up the variables in the initialization phase, we can avoid code to test what type of panel the software is running on. This saves considerable room in memory and execution time. During the initialization phase the panel code checks to see what type of panel it is running on, and records the panel type and then sets the table variables. �
Control byte

CTLB

SYM		Value	Function

ZLOCK	$80	Zone selections Locked

DL_A		$01	Download in progress, A side

DL_B		$02	Download in progress, B side

The control byte contains lock bits to prevent certain operations.

The zone lock bit, ZLOCK is set when a weather warning is initiated, and it is cleared when the weather warning completes. (or is terminated.)

There are two download locks, one for the A side, DL_A, and one for the B side, DL_B. DL_X (A or B depending on the side.) is set when the panel goes into a download lock, and is cleared when the download unlock command is received from the system console, or when the panel times out without receiving an unlock command.

The weather warning tone is actually a type of page. Normally, the operator will select his zones, then hit the weather warning tone activate button. The weather warning tone is sent out, and the weather warning tone lamp illuminates. When the weather warning lamp goes out on the panel, the operator keys the microphone and makes the weather announcement. When the announcement is completed, the operator releases the mic PTT key, and the page terminates.

When the weather warning tone is activated on an emergency warning panel, the panel sends a weather warning tone page request to the matrices. The matrices pull in the trays listed in the request, and route the output of the weather warning tone generator to the trays.

At the time the panel sent the weather warning tone page request to the matrices, it also started a timer. The weather warning tone takes two seconds to complete a full cycle. While the tone is active, the weather warning tone lamp on the panel is illuminated. Two seconds after the panel sent the weather warning tone page request, the panel will send a tone release. This shuts off the weather warning tone, but does not release the trays. Four seconds after the panel sent the weather warning tone page request, it will send a page release to return the trays to use. (If the cycle has not been overridden by the operator pressing the mic PTT.)

During the four seconds of a weather warning cycle, zone selection operations are locked by the ZLOCK bit. The weather warning tone can be terminated before completion of a full cycle by overriding the tone with mic audio.

�
PMOD

Panel mode

Indicates if the panel is hot or cold.

SYM	Value	Function

PHOT	$ff	Panel Hot

PCLD	$00	Panel Cold

The operator at the system console can call up a display of any given panel in the system. This display visually indicates the state of the panel, including panel type, which zones are selected, and the state of the special lamps. In order to keep the system console display up to date while it is examining the panel, the panel is made "hot." This is accomplished by the system console sending a hot command to the panel.

A hot panel will send a notice to the system console every time a lamp changes state. These messages are used to update the system console's display of the panel so that the system console display tracks the actual appearance of the panel.

When the system console display of the panel is terminated, the system console sends a panel cold command to the panel. This causes the panel to cease sending the lamp state updates to the system console.

(On area warning panels, any time the position of the area warning key switch changes state, the panel will send a message to the system console, wether the panel is hot or not. These changes appear in the system console's log file.)

Lamp state change messages are only sent by hot panels in order to keep down the number of messages the system must process. PAWS is limited by the bandwidth of the link between the matrix and the system console, so this traffic is kept to a minimum.

 �
PNL_TYP

This indicates what type of panel it is

SYM		Value	Function

AW_PNL	$00	Area Warning

AD_PNL	$01	Administrative

EW_PNL	$02	Emergency Warning

OP_PNL	$03	Operational

When the panel code starts up, one of the tasks it performs before entering the main loop is to determine and record the panel type.

Each panel has two lines that connect the CPU to the front panel. These two lines carry the panel type ID. The CPU reads the panel ID lines, and then records the information in the panel type byte. (It also sets up pointers to several tables that vary based on the panel type.)

�
DUART transmitter variables

These variables are used for sending messages out the Dual UART. There are two sets, one for the A side and one for the B side.

XA_BSA, XB_BSA		2 bytes

XA_BEA, XB_BEA		2 bytes

XA_BML, XB_BML		1 byte

XA_TS, XB_TS		1 byte

XX_BSA is the buffer status address. This variable contains the address of the buffer status value.

Some messages transmitted will go to only one side of the system, and others are sent to both sides.

There is only one output buffer. When a message must go to both sides there is only one copy of the message but it is sent to both sides of the dual UART.

When a message is being sent to both sides, the buffer can not be freed until both sides are finished transmitting the buffer. The buffer status byte keeps track of the status of the buffer.

Values are:

SYM		Value	Function

OUT_FR	$00	Free

OUT_BZ	$ff	Busy

If the buffer status is OUT_BZ one or both of the sides of the dual UART is still using the contents of the buffer, so the buffer can not be used to hold a new message.

When both sides are done with the buffer (when the message is being sent to both sides) the last one to finish will set the buffer status to OUT_FR, which indicates that a new message can be copied to the buffer.

XX_BEA is the buffer extraction address. This is where the next byte to be sent comes from.

The first byte of the message is written to the dual UART transmit register and the transmit interrupts are enabled. Since the dual UART used has an 8 byte buffer, as soon as the transmit interrupt is enabled, a series of transmit interrupts will hit that load the next seven bytes of the message into the dual UART transmit buffer. After that, as a character is shifted out of the dual UART, a space becomes available in the dual UART's transmit FIFO, and a transmit interrupt occurs, which will load another byte.

The buffer extraction address field gives the address that the next byte will be fetched from. The value is incremented each time a byte is read from the buffer and sent to the dual UART.

XX_BML is the number of bytes in the message left to send.

This starts out as the message length and every time a byte is fetched from the buffer this value is decremented.

When a transmit interrupt occurs, the interrupt handler will check XX_BML. If XX_BML is zero, then the message has completed transmission. In this case, the transmit interrupt for that side of the dual UART is disabled. If the other side has completed (or was not being used) the buffer is marked as free as well.

XX_TS is the transmitter status.

XX_TS indicates if that side of the dual UART is in use, or is free. The transmitter status is marked as Idle as soon as the last byte of the message has been transmitted. When both transmitters are idle, the output buffer can be released.

The values are:

SYM		Value	Function

UTS_ID	$00	Idle (Free)

UTS_BZ	$ff	Busy

�
SIDE

This indicates which side of the dual UART the last message was received from.

(Please note that reading this value with pds sends a message to the matrix or panel, and receipt of this message will indicate what side of the device pds is talking to. It is much more useful when using the logic analyzer of in-circuit emulator.)

The side the message came from becomes important when data needs to be recorded in the XICOR, when errors need to be recorded, or when certain messages need to be returned.

SYM		Value

SIDE_A	$01

SIDE_B	$02

�
Global tray maps

Size = TT_LEN (24 bytes)

GMA,GMB,OGMA,OGMB,DGMA,DGMB

GMA,GMB are the global tray maps. Each zone button has a tray map for the A side and for the B side. These trays are assigned to the zone button by the system console. The console operator can edit a tray map for any given button on any given panel. After adding and deleting trays as desired, he can perform a download. The panel will record the new tray map in the button's tray record.

For each selected button, the panel will add the trays associated with that button to the global tray map for that side by ORing the button tray map contents with the current global tray map. (The panel maintains two global tray maps, one for the A side and one for the B side. Each button has an A side record and a B side record.)

When the panel operator initiates a page request, the panel copies the global tray map into the page request.

When the system console performs a download to a panel, the panel will regenerate a new global tray map.

Normally, the zones that are selected can only change when there are no pages going on, but in the event that the panel operator has initiated an area warning, the system is required to allow the operator to select and deselect zones while the area warning tone is flowing.

(The system will not allow zone selection and deselection while the microphone is keyed, even when the panel is in area warning mode. The only time you can select and deselect zones in area warning mode is when the microphone is unkeyed and the trays are receiving audio from the area warning tone generator.)

When area warning has been activated, the area warning tone can be overridden by keying the microphone PTT. This causes the panel to send a source select message to the matrices. The source select message does not alter which trays are pulled in, but it does result in the audio going to the trays to come from a different source.

When the microphone PTT switch is keyed the panel sends a source select message switching the trays to the microphone audio from the panel. When the PTT switch is released, the panel sends a source select message to switch the tray's audio source back to the matrix's area warning tone generator.

OGMA,OGMB are temporary copies of the global maps used in computing deltas. (For AW mode zone selections and deselections while tone is flowing.) When a zone is deselected while area warning tone is flowing, the panel has to release the trays that had been in area warning mode, but are no longer required.

You cannot simply send the contents of the button's tray map, because a tray can appear on more than one button on a panel.

Instead, the panel copies the old (before the zone deselect) global tray map to the temporary tray map. It then generates a new global tray map based on the new set of selected zone buttons. (Without the newly deselected zone button.)

Next it computes the difference between the two maps, and sends the results as a page release.

This frees only those trays that were on the recently deselected button that are not on any of the other selected zone buttons.

When a zone is selected while area warning tone is flowing, the panel will copy the old (before the zone button selection takes affect) global tray map to the temporary global tray map.

It then generates a new global tray map (Actually two, one for the A side and one for the B side.) and computes the difference between the two maps.

This delta contains only the trays that are on the new button that were not on any of the other (selected) zone buttons.

Finally it sends this delta map as an area warning request to the matrices.

DGMA,DGMB contain the differences (in selected trays) when doing zone selects with AW Tone active.

In simple terms, they contain the delta tray maps after the panel has computed new sets after a zone selection or deselection when area warning tone is active. These maps are copied to the output message buffer when the panel gets ready to send the tray release or page requests.

�
LHTAB

Size = 130

This table keeps track of serial link failures.

When a message assembly error occurs, the entry in the link health table is incremented.

On the matrix there is one entry for each panel plus one for each side of the dual UART. The panels only use the DUART slots. (The matrix uses the DUART to talk to the system consoles. On the panels, the DUART is used to talk to the matrices.)

Panel 0 errors are stored in slot 0, while panel 127's error count is stored in slot 127. The A side of the DUART's errors are stored in slot in 128, while the B side errors are stored in slot 129.

This table is reset with the zero command. (Which also resets other error tables.)

When the error count for any given link reaches 255, it stays there. (If allowed to roll over, you may be fooled into believing that a link is healthier than it really is.)

Examples of the type of errors that are recorded in the table include: garbage bytes in the front of messages, invalid lengths, bad CRCs, invalid/corrupted End Of Message, etc.

�
Tracking Trays

Size = 1 byte

TRG_TR, MON_TR, GBL_TR, NWA_TR

Each of these contains a tray number.

TRG_TR is the monitor input tray.

MON_TR is the monitor output tray.

NWA_TR is the global input tray.

GBL_TR is the global output tray.

In order to allow the system operators to monitor certain areas, PAWS provides a way of monitoring the activity of any given tray.

To do this, the matrix software implements a monitor tray. The monitor tray operates in parallel with the tray being monitored.

To define the operation, the system console needs to download the tray number that the operators want to monitor to TRG_TR, the monitor input tray. You also need to record the tray number the operators use to monitor the activity by downloading a tray number to MON_TR, the monitor output tray.

After these steps are performed, every time the TRG_TR is keyed, the MON_TR tray will be keyed as well. Every time the TRG_TR is unkeyed, the MON_TR is unkeyed as well. In addition to following the keying, the MON_TR also gets the same audio that is routed to the TRG_TR.

GBL_TR. Another capability supplied by the system is a system activity monitoring function.

With this feature, the system console downloads a tray number to the global output tray, GBL_TR. The global output tray allows the operators to monitor PAWS activity by always outputting the audio from the most recent page.

Every time the matrix starts processing a page, it takes the first tray used in the new page and records it in the newest available tray variable, NWA_TR.

The global output tray is slaved to the NWA_TR just like the monitor output tray is slaved to the monitor input tray. The only difference is that the global tray is slaved to the newest available tray, which changes each time a page is initiated.

(NWA_TR is stored in RAM since it changes so often. The three other tray numbers are stored in EEPROM.)

 �
Pull station tray lists

Size = 24

PSM_XX (ie PSM_00 - PSM_7f)

Each pull station (remote area warning panel) has an associated set of trays that are affected when that station is activated.

The matrix is responsible for notifying all panels in the system of all trays affected by area warning, whether panel initiated or pull station initiated. In order to do this, the matrix requires a list of trays that are affected by each pull station activation.

The panel sends a tray map to the matrix when it requests an area warning, but the pull stations only provide active/inactive indications to the matrix.

The system console is responsible for downloading a bit map of trays affected by a pull station activation for each pull station in the system.

The matrix builds a map of trays affected by area warning by ORing all the trays affected by panel initiated area warnings with all the trays affected by pull station activation. This map is sent to each panel every time there is a change in the trays affected by area warnings. (adding or removing trays from area warning mode)

The pull station tray maps are bit maps. When a pull station is activated, you can tell which trays are affected by looking at its tray map. If a bit is set, then the indicated tray will be in area warning mode. (And the indicated tray will appear in the matrix's area warning tray list.)

�
Pull Station Status

Size = 128 (PSMAX)

PS_ST

This table contains the status of the pull stations.

If a byte is TRUE ($ff) then the pull station is active. If the byte is FALSE ($00) then the pull station is inactive.

This table is used to detect state changes of pull stations. Every time there is a pull station state change, the matrix generates a new area warning tray map. If there is any delta from the old area warning tray map, the new, updated, area warning tray map is sent to all the panels.

The table also serves as input when building the list of trays affected by pull station initiated area warnings.

�
Active Pull Station Count

Size = 1

PS_AC

This is the number of active pull stations. (Pull stations that are in area warning mode.)

�
Active Area Warning Tray map

Size = 24 (TT_LEN)

AA_MAP, LA_MAP

These maps contain the trays that are in area warning mode.

AA_MAP trays are in area warning mode due to an area warning panel activating them.

LA_MAP trays are in area warning mode due to a pull station being activated.

AA_MAP is updated each time a panel initiates an area warning page, or terminates an area warning page. This includes the operator selecting an additional zone when area warning tone is active as this results in the panel sending a new area warning page request with additional trays listed.

Source selects that result from a panel's operator keying and unkeying the microphone do not result in area warning tray maps being sent from the matrices to the panels as this does not cause any changes in which trays are involved in the area warning, only the source of audio being distributed to the trays.

LA_MAP is updated each time a pull station changes state, both from active to inactive and inactive to active.

The area warning tray maps the matrices distribute to the panels are generated by ORing the AA_MAP with the LA_MAP.

�
Page count table

Size = 256 (MAXPNL * 2)

PC_TBL

This table contains the number of pages that each panel has performed since the last zero page count command.

Each count is a word, giving a max count of 65535. When the page count maxes out, the matrix stops incrementing the page count for that panel in order to keep the count from rolling over.

�
Matrix response flags

Size = 1

GOT_A, GOT_B

If the byte is FALSE ($00) then no response was received from the matrix for that side. If a response is received from the matrix, the byte will be TRUE. ($ff)

When a panel sends a request to the matrix, (either a tray test request, or a page request) it resets both of these variables to FALSE. When a response arrives from the matrix, the panel sets the variable for that side to TRUE.

These results are checked when the panel's response timer expires, which is the time that a matrix response should have been received by.

If no response is received from one or both matrices, the no matrix response error count is incremented for the side or sides that failed to respond.

�
LARGE buffer structures

Size = 2053 (LRG_SZ)

A side large buffer LBA

B side large buffer LBB

Offset	SYM		Function

0	LRG_ST	Buffer state

1	LRG_IN	Insertion index

3	LRG_EX	Extraction index

5	LRG_BF	Circular buffer (2048 bytes, LRG_DS)

LRG_ST values:

SYM		Value	Function

LRG_MT	00	Empty

LRG_PR	80	Partially filled

LRG_FL	ff	Full

The large buffers are used to buffer characters that are received from the DUART. Received messages come in the DUART which has an 8 byte FIFO built into it.

When a receive interrupt hits, the interrupt handler gets the character from the DUART and saves it in a small circular buffer that holds 256 bytes. Because writes to the XICOR take so long, and a download can require 135 writes, the circular buffer may overflow during a full download.

In order to avoid the circular buffer from overflowing, in the outer loop, before any time consuming operation is performed, the contents of the circular buffer is moved into the large buffer.

The size of the circular buffer could have been increased, but due to limitations of the 68HC11 instruction set, the code to store characters into a larger buffer would have been larger and taken longer. Since the interrupt handler is memory and time limited, this approach is not practical.

The outer loop actually drains the circular buffers several times to insure that the maximum amount of storage is available when we enter code sections that may take a long time to execute.

The message assembly code actually goes to the large buffers to get system console / matrix messages. (Because each panel has a 1K hardware FIFO in the matrix, the matrix only uses the large buffers for the system console messages.)

�
LRG_ST is the buffer status.

 It has the values:

LRG_MT	Empty

LRG_PR	Partially filled

LRG_FL	Full

LRG_IN is the insertion index.

LRG_IN indicates where the next byte should be stored. Note that the buffer is used as a circular queue, so the insertion index wraps around to 0 when it reaches the physical end of the buffer.

LRG_EX is the extraction index.

LRG_EX indicates where the next byte should be removed from the buffer. It also wraps around to the beginning of the buffer when it reaches the physical end of the buffer.

LRG_BF is the actual buffer itself.

 �
VER

This buffer contains a null terminated ASCII string that gives the date and time the code was linked to produce the version installed in the matrix or panel in question.

�
SSS

Seconds Since Starting

4 bytes

This field gives an approximation of the number of seconds that the code has been running.

The basic unit of time in PAWS is a 4 millisecond real time interrupt. This is referred to as a tick. Every time a real time interrupt hits, a variable, ticks, is incremented.

In the outer loop, a routine, CK_TMR, will process these ticks by decrementing the ticks, and incrementing the tick count. The tick count is our basic timer. The tick count is an 8 bit variable, and wraps from 255 to 0. Short duration intervals are based directly on the tick count, while longer duration intervals are based on counts derived from the tick count.As an example, the maximum interval for the tick count is 1.024 seconds.

For each 16 ticks, we bump a click counter. (KLIKS) Clicks give a maximum time interval of 16.384 seconds. Clicks are used for download lock timers, and other timers that require a duration in excess of a second.

Finally, for every 16 clicks, we bump our seconds count. This results in our second being 1024 milliseconds long, so the seconds since starting is only an approximation.

SSS is a very useful variable to check to see if the system has hit any snags. There is a watchdog timer that causes a reset when the code gets wrapped, and most other error vectors, (such as illegal instruction) also vector to a reset. This keeps the panel or matrix available, at the danger of missing some bugs. For this reason, the panel and the matrix code will send a reset message to the system console every time they go through a reset. These messages can be lost if the console are not up and running, so the seconds since starting gives you a backup method to spot problems.

 �
RST

2 bytes

Reason for last reset

When the CPU on a panel or a matrix goes through a reset, it will record the reason for the reset in the reset variable. This is actually the reset vector number and its complement. You can inspect this variable and determine the reason for the reset by looking at an MC68HC11 manual. You can also look at the file UART.ASM, which has a comment on each vector in the table.

_

