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BACKGROUND 
 

The rollover mitigation plan of the National Highway Traffic Safety 
Administration (NHTSA) seeks to “…reduce the likelihood of rollover crash 
events and to improve crashworthiness in such crashes, thereby saving lives and 
reducing serious injuries.” 1  

 
September 2002 marked the plan’s beginning when NHTSA formed four 

integrated project teams (IPTs) to conduct an in-depth review of the agency’s 
four priority areas: 

• Safety Belt Use 
• Impaired Driving 
• Rollover Mitigation; and 
• Vehicle Compatibility 

 
According to NHTSA, the comprehensive plans resulting from the work of 

its IPTs “Recommended strategies (that) were based on science, data and 
other available evidence.” 2 (Emphasis added).  In February 2003, NHTSA 
senior management analyzed the IPTs’ recommended strategies to determine 
which strategies the agency should pursue. The final agency plan for rollover 
mitigation strategies was published in the Federal Register on June 18, 2003.  
The plan included three proposed initiatives to mitigate rollover crashes: 

1. Vehicle Strategies 
o Crash Avoidance 
o Crashworthiness 

2. Roadway Strategies 
o Roadway and Roadside Improvements 

3. Behavioral Strategies 
o Consumer Information Program 

 
As part of the crashworthiness strategies, the NHTSA recently published a 

Notice of Proposed Rulemaking (NPRM) on August 23, 2005 “…to upgrade the 
agency’s safety standard on roof crush resistance in several ways.” 3 

1. Extend the application of the standard to vehicles with a Gross Vehicle Weight Rating 
(GVWR) of 4,535 kg (10,000 lb) or less 

2. Increase the applied force to 2.5 times each vehicle’s unloaded weight, and to 
eliminate the existing limit on the force applied to passenger cars 

3. Replace the current limit on the amount of roof crush with a new requirement for 
maintenance of enough headroom to accommodate a mid-size adult male occupant. 

 
This report documents fundamental flaws in the agency’s “comprehensive 

rollover plan,” in general, and NPRM, in particular, from a biomechanical 
engineering and scientific perspective. 
 

                                                 
1 NHTSA-2003-14622, p. 3 
2 Ibid, p. 4 
3 Docket No. NHTSA-2005-22143; Federal Register/Vol. 70, No. 162/Tuesday, August 23, 
2005/Proposed Rules, p. 49223 
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SCIENTIFIC FLAWS  
 
 

The NPRM suffers from a fundamental scientific flaw in that the proposed 
test methodology and outcome variables fail to support the stated purpose and 
specific aims of the Federal Motor Vehicle Safety Standard (FMVSS) No. 216, 
Roof Crush Resistance,  

 
“The purpose of this standard is to reduce deaths and 
injuries due to the crushing of the roof into the occupant 
compartment in rollover crashes.”4  

 
In order to achieve such a purpose, the agency must necessarily incorporate in 
its rulemaking the well known, published and broadly accepted biomechanical 
principles for injury prevention in rollover crashes.  
 
 
1. Serious occupant injury in rollovers is not and cannot be predicted by a static 

test, either one-sided or two sided, as occupant injury severity depends upon 
dynamic load variables, including load rate and degree of head 
entrapment. 

 
 

The scientific literature1-9 is replete with cadaver studies, which conclusively 
demonstrate the rate dependence of serious (MAIS ≥3) injury of the head and 
cervical spine (Figures 1-2, Tables 1-2). When the head is not trapped by roof 
crush (i.e. unconstrained end condition), a threshold for catastrophic injury 
appears to be 3-4 m/s (7-9 mph).   

 
Importantly, absolutely no serious spine or head injury is predicted by any 

published laboratory data under static or quasi-static tests such as the loading 
rate in the range of FMVSS 216 or the NPRM. Thus, at its most fundamental 
level, the NHTSA proposal to “upgrade” the FMVSS 216 test “…to reduce deaths 
and injuries due to the crushing of the roof into the occupant compartment in 
rollover crashes” is incapable of predicting occupant injury due to an 
inappropriate test methodology. 

 
Restated, the existing FMVSS 216 test as well as the “upgrade” proposed in 

the NPRM are simply structural component tests, which have no scientific basis 
for predicting occupant injury in rollovers. The only scientifically valid test for 
serious occupant injury MUST necessarily be a dynamic test, which evaluates 
the entire vehicle occupant protection system. 

 
 

 
                                                 
4 FMVSS 216, Section S2. Purpose 
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FIGURE 1 
AIS ≥ 3 Spinal Injuries 

(Unconstrained - Head/Cervical Spine Component Tests)
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FIGURE 2  
AIS ≥ 3 Spinal Injuries

(Unconstrained - Full Cadaver Tests)
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TABLE 1 
AIS ≥ 3 Spinal Injuries 

(Unconstrained - Head-Cervical Spine Component Tests) 
 

Note: Superscripts refer to reference citations (see Bibliography)  

Specimen # Specimen 
Source Label 

Impactor Speed 
(m/sec) 

Injury 

1 21,2 4.52 
Dislocation of C5 
with respect to C6; 
C5 burst fx. with 
cord compromise 

2 N24-R+04-8; B4-8 3.20 
C1 2-part fx. through 
the posterior ring; 
C2 Hangman’s fx. 

3 N18-R+154-8; F4-8 3.26 Basilar skull fx.; C2 
Hangman’s fx. 

4 41,2 8.13 
C6 anterior vertebral 
body compression 
fx. 

5 N05-R+304-8; G4-8 3.23 C3 burst fx. 

6 N22-R+04-8; C4-8 3.26 C1 3-part 
comminuted fx. 

7 69 5.3 
Burst compression 
fx. of C5 vertebral 
body 

8 19 7.3 
Wedge fxs. of C5 
and C4 vertebral 
bodies 

9 39 5.8 
Anterior 
compression(60%) 
of C3 vertebral body 

10 51,2 7.11 
Anterior 2/3 of C3 
vertebral body fx. 
and displaced 2mm 

11 31,2 5.49 Wedge compression 
fx. of C4 

12 49 7.8 
Anterior 
compression (40%) 
of C4 vertebral body 

13 A3 0.045 No injury 
14 B3 0.045 No injury 
15 C3 0.045 No injury 
16 D3 0.045 No injury 
17 E3 0.045 No injury 
18 F3 0.045 No injury 
19 D41-R+154-6 3.11 No injury 
20 N26-R+04-8; A4-8 2.43 No injury 
21 N11-R-154-6 3.14 No injury 
22 N13-R-154-8; E4-8 3.28 No injury 
23 UK3-R-154-6 3.13 No injury 
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TABLE 2 
AIS ≥ 3 Spinal Injuries 

(Unconstrained - Full Cadaver Tests) 
 

 

1. Yoganadan, N., Sances, Jr. ,A., Maiman, D., Myklebust, J., Pech, P., Larson, S.,               
“Experimental Spinal Injuries with Vertical Impact” Spine 11(9) 1986 

Specimen # Specimen 
Source Label 

Impactor 
Speed (m/sec) 

Injury 

1 HS771 4.2  

Anterior 
subluxation of C5 
on C6 w/ bilateral 
locked facets 

2 HS921 4.8 
C2 vertebral body 
and lamina 
fracture 

3 HS841 5.4 Type II Odontoid 
fracture 

4 HS801 4.8 
T7 wedge 
compression 
fracture 

5 HS861 5.4 T4 burst fracture 

6 HS811 4.8 Shattering of T7 

7 HS851 5.4 Bilateral basilar 
skull fracture 

8 HS881 4.8 Right parietal skull 
fracture into base 

9 HS871 5.4 
Occipital linear 
skull fracture into 
base 

10 82L4872 1.4 No Injury 
11 83L4882 1.4 No Injury 
12 83L4902 1.4 No Injury 
13 83L4912 1.4 No Injury 
14 83L4922 1.4 No Injury 
15 83L4932 1.4 No Injury 
16 83L4952 1.4 No Injury 
17 83L4962 1.4 No Injury 
18 83L4972 1.4 No Injury 
19 83L4982 1.4 No Injury 

2. Nusholtz, G., Huelke, D., Lux, P., Alem, N., Montalvo, F. “Cervical Spine Injury Mechanisms” 
831616  pgs 939-957 
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A series of case studies are presented in this report, which provide real world 
examples of the tragic consequences of a static FMVSS 216 test for predicting 
serious rollover injuries. Each case is classified according to (1) the type of 
predictable roof crush pattern, identified by Volvo in the development of the XC90 
Sport Utility Vehicle (SUV) and (2) the type of predictable injuries that occur in 
real world rollover crashes.  
   
CASE STUDY 1: Basilar Skull Fracture, Open 
 

A restrained female driver (37 yrs, 62 inches, 111 lb) of a 2000 Ford 
Explorer rolled over during highway driving conditions with the SUV sustaining 
damage to the right A- and B-pillars, roof rail and driver’s window frame (Figure 
3).  The driver was found dead at the scene, still restrained by her lap-shoulder 
belt (Figure 4).  During the rollover, her head was partially ejected out the driver’s 
side window when the dynamic, downward deflection of the upper window frame 
cleaved open her skull on the right side (Figure 5). The magnitude of the dynamic 
roof crush, which significantly exceeded the post-impact crush profile (Figure 3), 
was the cause of her death. The nature of the soft tissue wounds to her face and 
the location of the open skull fracture on the right (not left) side of her skull 
eliminated ground contact as the cause of death.  She sustained a complete 
atlanto-occipital transection, a complete transection of her brainstem and 
maceration of the cerebellum. (Figure 6) 

 
 

                          FIGURE 3 
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FIGURE 4 
Restrained driver’s skull cleaved by dynamic, vertical crush of roof 

rail/window frame 

 
 

FIGURE 5 
Blood and tissue noted at scene on interior and exterior of intruding 

window frame/roof rail 
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FIGURE 6 
  Regular borders of skin wounds consistent with cleavage by “sharp” 

metal of window frame/roof rail. 

 
 
CASE STUDY 2: Basilar Skull Fracture, Closed 
 

A restrained female driver (21 yrs, 66 inches, 136 lb) of a 2000 Ford Explorer 
rolled under highway conditions, passenger-side leading a total of four complete 
rolls.  During the rollover, her head was partially ejected out the driver’s side 
window and was positioned below the driver’s side roof rail when the structure 
crushed downward and inboard.  The impact, which was just left of the mid-
sagittal plane resulted in a degloving, scalp laceration, linear skull fracture and 
underlying fatal brain injury. During the collision, a minimum of 7 inches of slack 
was introduced dynamically into the driver’s belt restraint system, due to B-pillar 
collapse and retractor unlocking during the rollover.  This slack, in turn, passed 
into the driver’s lap belt with concomitant loss of effective restraint. She was 
found dead at the scene.  

 
FIGURE 7 

2000 Ford Explorer at Final Rest 
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FIGURE 8 
Deceased college (honors) student in post-crash, final rest position  

(Note adequacy of post-crash headroom, as defined by NPRM.) 
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ddition to load rate, published cadaver tests conclusively demonstrate that 
“end conditions” or (in the real world) the degree to which the head is free to 
e out of the way of an intruding roof has a fundamental influence on whether 
ot serious neck injury occurs. Nightingale et al. (1991) have reported that 
n the upper cervical spine is free to move through its full physiologic range of 
ion (i.e. “unconstrained”, no injury results when loaded under quasi-static 
ing conditions.  By constraining or trapping the upper spine or head in one 
e (i.e. “rotational constraint”) a specific catastrophic injury was produced 
teral facet dislocation, BFD, also known as bilateral locked facets.) Full 
straint (i.e. upper cervical spine and/or head unable to move in any 
ension; fully trapped) resulted in compression fractures of the vertebral 
ies.  Real world rollover cases often demonstrate a combination of these 
ry modes due to the three dimensional, dynamic nature of the roof-to-head 
tacts.  Neither one-sided nor two-sided static tests can reproduce this injury-
ucing environment found in real world rollovers. Such crash scenarios are 

mplified by the following case studies.  
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CASE STUDY 3: Wedge Compression Fracture with Bilateral 

A restrained female driver (40 yrs, 64 inches, 200 lb) of a 1998 Kia 
Sporta

FIGURE 9 
1998 Kia Sportage 

 

Locked Facets 
 

ge lost control of her vehicle under icy road conditions and rolled two 
times.  During the rollover, the driver’s side of the vehicle sustained roof damage 
and the driver’s head was trapped underneath the deforming window frame. 
(Figure 9) She sustained multiple spinal fractures, including C7-T1 bilateral 
locked facets with anterior wedging, resulting in permanent quadriplegia.     
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The entrapment of an occupant’s head, resulting in a catastrophic cervical 
spine injury was predicted in the dynamic rollover tests of the 1998-1999 Ford 
Explorers, which was described in a previous submission to the roof crush 
docket. (Docket No. NHTSA-1999-5572-120) Referring to Figure 10, the video 
clips of the first 1000 milliseconds from test B190043 demonstrate: 

 
• Test B190043, which have been time-

synchronized with the passenger dummy My (head flexion: chin-to-
chest) neck load cell.   

 
• A continuous deformation wave progressing from the first ground strike 

(driver’s roof rail), across the roof, and onto the passenger’s side roof 
rail (indicated by the red box in the data graph).   

 
• During the first ground strike, the driver’s side roof rail strikes the driver 

dummy’s head; however, the dummy head is unconstrained and no 

 
 

on the 
dummy sensor data, a catastrophic neck injury was predicted at 764 

 
• rst 1000 ms, the dummies’ heads were in 

contact with the roof.  Restated, the dummies exhibited ZERO 

 
• The far side occupant dummy repeatedly demonstrated injurious neck 

 
•  

. NHTSA-1999-5572-75) is also illustrated in the 
passenger neck load data trace. This misrepresentation of data was 

no 
otor 

of 

 

Internal camera views of Autoliv 

injurious neck loads were recorded. 
 

• In contrast, the passenger dummy head is “trapped” between the
deformation wave progressing toward the passenger side, as well as,
the collapse of the A-pillar on the passenger side.  Based 

ms (Table 3).  

At all times during the fi

HEADROOM beginning with the roof-to-ground contact; however, 
injurious neck loads were not recorded until significant roof crush 
occurred. 

 
• Dynamic roof crush (not simple head contact) was the direct cause of 

the injurious neck load recorded in the passenger dummy. 

loads in all three Autoliv tests, whereas the near-side occupant 
escaped likely injury during the first ground strike event. 

The timing of roof crush that Ford represented to NHTSA in this same
test (Docket No

reported to NHTSA previously (NHTSA-1999-5572-120). To date, 
specific factual clarification or rebuttal has been filed by Ford M
Company to the public docket in response to this author’s criticism 
Ford’s actions in this regard. 



The fa id
Autoliv tes

MAGNITUDES OF LOCAL AND ABSOLUTE MAXIMUM NECK LOADS  

 1 Magnitudes in red indicate these test parameters exceed the known tolerance of the human 
cervical spine (see Section 1.3.1 in NHTSA-1999-5572-120) 
 
2 In Test 180220, no absolute maximum Fz was identified as all peak neck compression loads 
were within the range of 200-260 N.  Notably, the My values in B180220 and B190043 exceeds 
the known tolerance value, even though no driver side My injurious loads were recorded for any of 
the tests, though the Fz loads were as high as approximately 2000 N. 
 
3 Fz was measured at the dummy upper neck load cell; My and Mx measured at the lower load 
cell. 

r s e occupant dummy consistently predicted injurious neck loads in the 
ts, which occurred simultaneous to observed roof crush. 

 
TABLE 3  

(From NHTSA-1999-5572-120) 
 

(During Time Interval of Continuous Roof-to-Ground Contact) 

DRIVER PASSENGER TEST
PARAME 0

 
TER B190042 B190043 B180220 B190042 B190043 B18022

Max Peak
(N)3

  
  Fz  -958 -1960 -1920 -59331 -3245 None2

Local 
Peak(s), Fz  

-200 -295 -223 -361  -50 200-260 

Max Peak My 
(Nm) 

58 110 93 304 177 261 

Local 
Peak(s), My 

2 11 2-54 12-22 20-24 10 

Max Peak Mx 
(Nm) 

-106 -124 -167 68 98 41 

Local 
Peak(s), Mx 

-11 to-18 n/a -20 to-46 9 12 19-21 
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FIGURE 10 
Observable Roof Crush and Passenger Neck Load  
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CASE STUDY 4: Unilateral Facet Dislocation 
 

A 1999 Jeep Cherokee rolled onto its driver’s side after being struck in the 
passenger side by a Ford Taurus which was driven through a red traffic light in 
an intersection.  The Jeep then slid on the road (on its driver’s side).  The 
restrained, male driver (49 yrs, 68 inches, 168 lbs) did not lose consciousness 
during this initial ground impact.  Instead, he reportedly used his left arm as a 
brace to keep his head from being partially ejected and sliding on the road.  
While in this “braced” position, the roof of the Jeep impacted a parked minivan, 
causing the roof to intrude into the driver’s occupant survival space.  The 
deforming roof contacted the right side of the driver’s head, causing it to rotate 
counterclockwise (i.e. toward his left shoulder) beyond its physiologic limits. 
(Figure 11)  The resulting injury was a right, unilateral locked facet at the level of 
C4-C5 with concomitant spinal cord injury and quadriplegia. 

 
FIGURE 11 

1999 Jeep Cherokee SUV 
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CASE STUDY 5: Facet Fractures and Traumatic Brain Injury 

A r

  The 

 
estrained female driver (37 yrs, 66 inches, 135 lb) was driving a 1997 

Nissan Pathfinder 4-door SUV when it drifted off the pavement to the left.  The 
driver steered back to the right to bring the vehicle back onto the roadway.
vehicle began to yaw and subsequently rolled over (Figure 12).  She sustained 
bilateral fractured facets and a large right frontal parieto-temporal epidural 
hematoma with underlying depressed skull fracture. 
 

FIGURE 12 
1997 Nissan Pathfinder 
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FIGURE 13 
Concave Impression in the Driver’s Side Roof Liner with Blood Stain 

( t) Photographic perspective taken from the rear occupant compartmen

 
 

FIGURE 14 
a. Belted Driver Rolls out of Shoulder Belt Toward Intruding 

Passenger Side Roof 
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b. Blood and hair located on passenger side sun visor from driver head 
contact 

 
 

 
2. The argument advanced by the auto industry and supported by NHTSA that 

the existing FMVSS 208 dynamic dolly rollover test is neither repeatable nor 
reliable is scientifically false and misleading. 

 
 

The auto industry for year
rollover test methodology for its alleged lack of reliability and/or repeatability. 
Such conclusions, however, suffer from a fundamental scientific flaw in 
methodology. The proper frame of reference for assessing the validity of a 
dynamic test aimed at occupant protection in rollovers is, of course, THE 
OCCUPANT.  Instead, the auto industry has obscured the injury-predictive 
opportunities inherent in the existing J2114 rollover tests by focusing 
inappropriately on test-to-test differences, which are largely scientifically 
irrelevant with respect to injury causation (e.g. number of ground contacts, 
number of rolls, pitch, roll and yaw angles during the roll).  

 
Rollover tests of the Ford Explorer conducted by Autoliv5 demonstrate the 

existing FMVSS 208 dynamic, dolly rollover test to be reliable when viewed from 
a scientifically valid, occupant protection (vehicle-based) frame of reference.  
The Autoliv dolly rollover results were remarkably similar in predicting the time of 
occurrence of absolute maximum neck loads in four different tests. In these tests, 
the driver was the near-side occupant and the passenger was the far-side 
occupant in these driver-side leading rollover tests. 
 

• The absolute maximum value for Upper Neck Fz occurred in all three tests 
at 530 ± 15 ms for the driver dummy (Figure 15a) and 730 ± 15 ms for the 
passenger dummy (Figure 15b). 

                                              

s has sharply criticized the FMVSS 208 dolly 

   
 Docket No. NHTSA-1999-5572-120 5
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FIGURE 15a 
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FIGURE 15b 

Passenger Upper Neck Fz
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• The absolute maximum value for Lower Neck My occurred in all three tests at 530 ± 18 ms for the driver dummy (Figure 16a) and 
750 ± 21 ms for the passenger dummy (Figure 16b).  

FIGURE 16a 
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FIGURE 16b 
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• The absolute maximum value for Lower Neck M der lateral bending) occurred in all three tests at 530 ± 18 
ms for the driver dummy (Figure 17a) and 770 ± 13 ms for the passenger dummy (Figure 17b). 

 
FIGURE 17a 
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FIGURE 17b 
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These small variations in time of occurrence of roof/pillar deformation and peak 
neck loads are particularly remarkable given, that  

• The data came from 6 different dummies and 3 different (Ford Explorer) 
vehicles tested on 3 different days 

• The differences in the time of occurrence of the peak neck loads was ≤20 
ms in an overall time interval of 1000 ms 

• Each 1000 ms time interval included either a sampling rate of 20,000 data 
points (B190043 and B190042) or 12,500 (B180220) 

 
At least one manufacturer, Volvo, has put into practice the FMVSS 208 dolly 

rollover test as the best available test for assessing the entire occupant 
protection system in rollovers. (Figure 18) Volvo refers to the existing FMVSS 
216 test as a “component” test, necessary for legal compliance.  In contrast, the 
test for occupant protection used by Volvo is the existing FMVSS 208 dolly 
rollover test protocol and (modified) SAE J857 test. 
 

Occupant injury in rollovers is a function of load magnitude, direction, duration 
and rate, as well as degree of head entrapment and head initial position, which 
may only be assessed in the three-dimensional test environment of a full-scale 
dynamic rollover test.  It is important to realize that a dynamic roof energy 
calculation to transform a static test into a dynamically equivalent result is limited 
by the type of dynamic test utilized for comparison.  As reported by Rains and 
Voorhis (1998), the dynamic transformation was based upon drop tests of the
same vehicle.  It is well established that drop tests cannot and do not predict 
occupant injury in a rollover environment.  Rather, a drop test only provides 
another means of a “component” test for “retention system and roof 
characteristics” (Figure 18) in a single ground contact.  The drop test is a well-
accepted method routinely used to evaluate weak points in the roof structure and 
proposed alternative methods of strengthening those weak areas. 

 
FIGURE 18 

Summary of Test Methods for Volvo XC90 Development 
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3. Rollover occupant protection is not and cannot be predicted by a singular, 

 
occ . 

 
point, a comprehensive 

occ a
safety, lopment of its XC-90 

UV in the mid to late 1990’s (Figure 19). 

 

             

static “component” test, which is proposed in the NPRM; a test of the entire
upant protection system is required

From a rollover occupant protection stand
up nt protection system must include three key components of passive 

 all of which was put into practice by Volvo in the deve
S

 
(1) A safety belt system that provides and 

maintains appropriate fit, comfort, and proper coupling 
of the occupant to the vehicle seat, with appropriate 
energy attenuation capability for the foreseeable 
range of occupant sizes,  

(2) A body structure that maintains the 
occupant survival space (Franchini, 1969) and does 
not pose an unreasonable risk of injury to belted 
occupants, and  

 
(3) Effective restraint and structural integrity so 

as to prevent lateral head impacts and partial ejection 
through side window portals.  

 
                                            FIGURE 19 
 

 
 
 
Such enhanced passive safety is clearly achievable and has been for 

many years, at least from a technological standpoint.  Enhanced safety may be 
achieved using a variety of features, including belt pretensioners, strengthened 
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upper body structures, integrated safety belt systems that incorporate 
pretensioning systems, roll bars, extended head restraints, and inflatable side 

tains, coupled with energy-attenuation padding to roof rail and pillar 
ctures.  These features, both independen
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air 
cur
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4. Post-test h  in dolly 

rollover an , it is scientifically baseless to use 
post-test headroom as a sole measure of occupant injury potential in 
roll

 
 

er 

analys

 
 there is a 

statistically signific

 real-world, dynamic rollover environment. 

eadroom does not reflect dynamic headroom observed
d real world crashes; therefore

overs. 

A recent NHTSA study of 1997-2001 NASS data6 concluded that a rollov
occupant with negative post-crash headroom7 had 5 times the odds of a 
particular level of injury severity than an occupant with positive post-crash 
headroom.  The study limitations were carefully documented and the statistical 

is was robust in comparison to other industry-sponsored studies of NASS 
rollover data related to FMVSS 216 published in the rollover docket8.   

The stated purpose of the NHTSA study was “to determine whether
ant relationship between the severity of head, neck, and face 

injuries due to roof contact during rollovers and the headroom remaining over the 
occupant after the crash.”  Importantly, the authors cautioned against unintended 
uses of the study related to rulemaking. 

                                                 
6 Docket No. NHTSA-2005-22143-52 
7 Post c ad 

 Refer to Docket No. NHTSA-1999-5572; Submissions by JP Research, Inc./Padmanaban et al. 

rash headroom was defined as the vertical distance from the top of the occupant’s he
to the bottom of the roof liner over the occupant’s head after a relevant rollover.  Thus “negative 
post-crash headroom reflects roof crush below the original position of the top of the occupant’s 
head. 
8
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“The study is not intended to make specific recommendations for ch
Federal Motor Vehicle Safety Standard (FMVSS) No. 216, “Roof Crush 
Resistance,” nor is it intended to calculate benefits from any such chang
Instead, the conclusions in this study are meant to provide a basis and rational
for further analysis.” 

 

anges to 

e.  
e 

From a biomechanical engineering perspective, post-crash headroom is a 
necessary, but insufficient measure of occupant protection in rollovers.  To
use the variable as a sole measure of occupant protection potential in roll
scientifically baseless.  The case for using a full scale dolly rollover test with 
dynamic monitoring of restrained crash dummy head and neck sensors has been 
made in this report and previously (Docket No. NHTSA-1999-5572-120). The 
points listed below provide further bases for rejecting the current NHTSA 
proposal to use post-test headroom in a static FMVSS 216 test as the sole 
predictor of occupant injury in rollover crashes. 

 
1. Post-crash headroom as measured in real world rollover crashes

 
overs is 

 is ve
different in magnitude and final profile than post-test headroom as 
proposed within the “upgraded” static test of FMVS

ry 

S 216 NPRM.  
2. Post-crash headroom as measured in dolly rollover tests is very different 

in magnitude and final profile than post-test headroom as proposed within 

 
al 

ed in all 
e of the far-side (passenger) crash dummies earlier in each dolly 

llover test. (Table 4).  
TABLE 4 

the static test of FMVSS 216 NPRM.  
• In two out of three dolly rollover tests of the Ford Explorer conducted

by Autoliv, post-crash vertical headroom actually EXCEEDED the initi
headroom, even though catastrophic neck injuries were predict
thre
ro

Autoliv Rollover Tests of Ford Explorer  
(Source: Docket No. NHTSA-1999-5572-120) 

Test 
Driver Head to Roof 
(Using only z-component 
from ref. data) 

Passenger Head to 
Roof 
(Using only z-component 
from ref. data) 

B180220 
212mm (8.3in) 
∆   27.3mm 

(1.1in) 

210 mm (8.3in) 
∆   22.8mm 

(0.9in) 

B190042 
 

∆   -31mm 
(-1.22in) 

151mm (5.94in) 
∆   -53.5mm 

(-2.11in) 

149mm (5.9in)

B190043 
m (17.5in) 

∆   201mm 
(7.9in) 

333mm (13.1in) 
∆   94.7mm 

(3.73in) 

444m
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The Autoliv FMVSS 208 dolly rollover tests, the scientific literature regarding 
dynamic human injury tolerance, and finally, the case studies presented 
report document the scientific invalidity of post-(static) test headroom as the
means of rollover occupant injury prediction. 

 

in this 
 sole 

 
 

erly 

CASE STUDY 6: Fatal Head Injury due to Lateral Roof 
De

5.  Significant lateral roof crush, which often exposes a restrained occupant to
serious head impacts with the ground, is not considered in the NPRM. 

 
 
The NPRM appears to arbitrarily choose to only consider vertical intrusion as 

a measure of occupant safety, which is a significant omission.  Lateral roof 
intrusion, as observed in Case Study No. 6, can expose an otherwise prop
restrained occupant to partial ejection with catastrophic injury or death. 

 

formation 
FIGURE 20 

 
A restrained adult male was driving a 2000 Ford Expedit
highway, accompanied by his wife and 2 children (seated
w g the availabl tems. The rear
loaded with luggage. The w lear and the roa
they traveled down the highway, the Expedition was invo
event that resulted in a si road rollover. T
c t wheels down. nt passenger wa
scene, still restrained in her lap and shoulder belt.  (Figu
crush opened an ejection portal above her head and she
g act. (Figure 22)

 
 

ere wearin e safety belt sys
eather was c

ngle vehicle, on-
ame to res The right fro

round cont   

 

 

ion on a two-lane 
 in back). All occupants 

 s 
d surface was dry. As 
lved in a loss of control 

ed and 
s f the 
re 20 ral roof 
 died from head–to-

of the vehicle wa

he Expedition roll
ound dead at 

-21) Late
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FIGURE 21 
Restrained RF Passenger Dead at the Scene 

 

 
 
 

FIGURE 22 
Surrogate demonstrates partial head ejection of front seat passenger 
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CASE STUDY 7: Bilateral Locked Facets 
 

A properly restrained driver (30 yrs, 74 inches, 180 lbs) was the sole 
occupant of a 2002 Ford Escape SUV, driving on a four-lane divided highway in 
the New England area. Snow and slush were noted to be present on the road. 
His SUV slid off the left side of the roadway into the median and rolled over 
twice, coming to rest wheels down. (Figure 23) The driver was found alert, but 
unable to exit the vehicle. EMS personnel cut his seatbelt, the vehicle roof and 
the driver’s door during the extrication process. The air bags did not deploy.  
 
 The 2002 Ford Escape slid approximately 50 feet off the left side of the 
roadway into the median, and at approximately 31 mph, rolled a total of 2 rolls, 
driver-side-leading over a distance of 70 feet. The rollover occurred over a 3.1 
second interval, resulting in an average roll rate of 232 degrees/second for this 
low speed rollover event. As the rollover occurred, the driver initially moved to his 
left, against the driver’s door, remaining in that position, essentially upright, until 
the Escape’s roof structure collapsed into his occupant survival space, crushing 
the driver’s roof rail both inboard and downward.  Violent contact was made 
between the driver’s head and the buckling roof. The dynamically deforming roof 
drove his head into hyperflexion resulting in C6-7 bilateral locked facets with 
significant anterior dislocation and resultant quadriplegia. 
 

FIGURE 23 
2002 Ford Escape after 2-roll, low-speed rollover accident 
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6.   An important, vulnerable population is completely neglected in the NHTSA 
“Co  

 
n 

ade to protect these most vulnerable passengers in the current NPRM. Many 
 

mprehensive Rollover Plan” and the NPRM: rear occupants, including
children restrained in aftermarket child restraints as well as OEM belt 
restraints. 

 
 
Rollover crashes result in the highest rate for MAIS 3+ injury to children aged

4-12 years old in car crashes (Figure 24), yet absolutely no provision has bee
m
adult women, including those presented in case studies in this report, are in the
same stature range as 11-12 year old youth. (Table 5).  No dynamic rear seat 
occupant protection criteria is provided for this population in any part of the 
NPRM or the entire FMVSS. NHTSA, however, as well as the auto industry and 
every child advocacy group in the U.S., continue to advise parents and 
caregivers to restrain all children aged 12 years and under in the back seat.  

 
FIGURE 24 

Rate (#/1000) of seriously injured MAIS 3+ children aged 4-12 years involved in 
crashes for front and second row seating.   

(Parenteau and Viano, 2003) 

 
 
Table 5 also demonstrates examples of adults (male and female) who are 

operly restrained front seat occupants; however, their stature is significantly 
th percentile male crash dummy proposed in the current NPRM. 

pr
less than the 50
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TABLE 5 
 

ase 
udy 

No. 

I
Oc
S

C
St

 
njured 
cupant 

ex/Age  

 
Injured 

Occupant 
Stature 

 

Stature 
Compared to 

50th 
Percentile 

Male 
Dummy1 

(175.3 cm; 69 
in) 

 
Comparable 

Anthropometry 
Table  

Age Range2 

 
95

erc

 
ax 
ure 

 
5th 

Percentile

 
50th 

Percentile P

 
Minimum 

Stature 
th 

entile
M

Stat

1 Female 
37 yrs 

158.8 cm 
(62.5 in) 

16.5 cm 
(6.5 in) 

9.5 – 10.5 yrs m 147.8 c  cm 120.1 c 127.0 cm 137.3 cm m 159.0

2 Female 
21 yrs 

167.6 cm 
(66.0 in) 

7.7 cm 
(3.0 in) 

11.5 – 12.5 yrs m 159.9 c  cm 133.3 c 137.3 cm 149.3 cm m 169.0

3 Female 
40 yrs 

162.6 cm 
(64.0 in) 

12.7 cm 
(5 in) 

11.5 – 12.5 yrs m 159.9 c  cm 133.3 c 137.3 cm 149.3 cm m 169.0

4 Male 
49 yrs 

172.7 cm 
(68.0 in) 

2.6 cm 
(1.0 in) 

12.5 – 13.5 yrs 169.5 c  cm 136.4 cm 142.1 cm 153.4 cm m 179.8

5 Female 
37 yrs 

167.6 cm 
(66.0 in) 

7.7 cm 
(3.0 in) 

11.5 – 12.5 yrs 159.9 c  133.3 cm 137.3 cm 149.3 cm m 169.0 cm

6 Female 
41 yrs 

160.0 cm 
(63.0 in) 

15.3 cm 
(6.0 in) 

10.5 – 11.5 yrs 156.3 c  cm 122.0 cm 133.0 cm 144.0 cm m 161.1

7 Male 
30 yrs 

188 cm 
(74 in) 

12.7 cm 
(5.0 in) 

15.5 – 16.5 yrs m 185.2 c  cm 147.3 c 161.1 cm 174.6 cm m 188.3

8 Female 
5 yrs 

91.4 cm 
(36 in) 

83.9 cm 
(33 in) 

2.0 – 3.5 yrs m 99.4 cm  cm 83.8 c 85.1 cm 92.0 cm  105.9

9 Female 
8 yrs 

142.2 cm 
(56 in) 

33.1 cm 
(13.0 in) 

8.5 – 9.5 yrs m 142.2 c  cm 117.8 c 124.1 cm 132.3 cm m 150.3

10 Female 
5 yrs 

109.2 
(43 in) 

66.1 cm 
(26.0 in) 

3.5 – 4.5 yrs  108.7 c  cm 91.1 cm 93.9 cm 101.7 cm m 114.1

No
SS 216 NPRM proposes post-test vertical headroom measurement relative to se height th

e youngest

tes: 
1. FMV
2. Th

ated  of 50  percentile male dummy 
 age range that includes the injured occupant’s stature according to SA cial P ti ry of Infant en, 

 Youths to Age 18 for Product Safety Design” 
E Spe ublica on SP-450; “Anthropomet s, Childr

and
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CASE STUDY 8:  Fatal Eje in Booster Seat 
 

ction of Child 

FIGURE 26 
1996 Isuzu Trooper 

 

 
 
 
 
A 1996 Isuzu Trooper (Figure 26) was on a highw
the tread came off the left rear tire. The driver lost

 rest wheels up.  r
 
olled, coming to

During the crash, a female child (5 yrs, 36 inches,
belt positioning booster seat, through the left rear 
the overturning sport utility vehicle (Figure 27a,b).
force trauma,” including basilar skull fracture with 
right side of face.  
 
 

 
 

 

 

ay in the southern US, when 
 control of the vehicle and it 

a to 

 65 lb) was ejected out of her 
window and was crushed by 
 She died of “massive blunt 
massive bruising and traum
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FIGURE 27 
a. Five Year Old Child Ejected From Belt Positioning Booster Seat 

     
   
 

b. Belt positioning booster seat used to restrain the child, according to 
vehicle and booster seat manufacturer’s instructions 
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CASE STUDY 9:  Catastrop y of Restrained Child in 
Rea
 

hic Brain Injur
r Seat 

 
 
A woman driving her 1997 Chevrolet Suburban, with her husband, mother-in-law 
and four children, were traveling down a four-lane divided highway, at about 
65mph. As it traveled, the right rear tire of the Suburban experienced tread 
separation, causing it to go flat. The driver applied the brakes and attempted to 
maintain control.  She lost control of the Suburban; it traveled into the grassy 

to rest wheels down in the media
emale child (8 yrs, 56 inches, 110 lbs) was the properly lap-shoulder 

s
he
violently imp re. (Figure 
26) She sustained a depressed skull fracture in the frontal bone as well as a 
significant basilar skull fracture, with catastrophic brain injury.  

 
FIGURE 26 

Head Contact for left, second row occupant of Suburban 

median where it rolled. The Suburban came 
A f

n. 

re trained passenger seated directly behind the driver.  During the rollover crash, 
r torso rolled out of her shoulder belt and the left frontal aspect of her head 

acted the unpadded forward window frame/B-pillar structu
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CASE STUDY 10: Fatal Ejection of Child Properly Restrained in 
Aftermarket Child Seat 

 
FIGURE 27 

1994 Chevrolet Suburban 
 

  
 
 
 
A woman was driving her 1994 Chevrolet Suburban (
the southe
of the Suburban.  Both girls were properly restrained 
seats. As they proceeded through an intersection, a p

n on the r
to yaw clock

over, comi driver’s side
crash, the right rear child occupant (5 yrs, 43”, 46 lb) 
Suburban and came to rest with the top of her head p
vehicle. All occupants of the Suburban received non-
exception of the ejected young girl seated in the right
Chevrolet Suburban. She sustained a massive skull f
pronounced dead, just over one hour post-crash. (Fig

 

rn US. Her five-year-old twin girls were ridi

posted stop sign and impacted the Suburba
impact to the Suburban caused the SUV 

ng to final rest off road, on the 

 

 

Figure 27) on a highway in 
ack seat 

in Ascend SE Century child 
ickup truck did not stop at a 
ight passenger side. The 
wise and ultimately roll 
 of the vehicle.  During the 
was ejected from the 
artially underneath the 

disabling injuries with the 
 side, middle row of the 
racture (MAIS 5) and was 
ure 28) 

ng with her, in the b
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FIGURE 28 
5 Year Old Girl Fatally Ejected from 5-Point Harness Booster Seat in 1994 

Chevrolet Suburban Rollover 
 

 
 
CONCLUSIONS 
 

An upgrade of the existing FMVSS 216 is long overdue; however, the 
current NPRM, if implemented as a final rule, will provide no additiona

st, irrespective of the test variables, 
scientific basis in injury prevention within the rollover crash 

nvironment.  The arguments against more meaningful upgrades citing a 
kelihood of upsetting the balance within NHTSA’s comprehensive rollover plan 

ed 

l protection 
to rollover occupants. A static, component te
simply has no 
e
li
are disingenuous.  How can a plan be considered comprehensive when 
absolutely no protection is offered to anyone in the back seat(s) of vehicles, 
particularly children? NHTSA has seemingly arbitrarily ignored the fact that the 
rate of MAIS 3+ injuries for children aged 4-12 years is 2-3 times higher in 
rollover crashes compared to all other crash modes! 

 
This report supplements my research group’s prior submission to Docket 

No. NHTSA-2005-5572-120, which is included by reference.  NHTSA has full 
access to ALL of the Volvo XC90 development documents, which are protect
against public view. I have included only limited images of those which are 
unprotected.  The Volvo XC90 documents contain a clear, proven road map to 
what is required to provide meaningful, comprehensive rollover protection. 
Anything less is a reckless, arbitrary abdication of the agency’s responsibility to 
protect the motoring public. 
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