X-band Structure Design For The NLC

Zenghai Li

Design Considerations

- Emittance preservation, tolerance specs wakefield suppression
 - Short-range wakefields $\propto a^{-3.8}$: set lower limit on aperture: $a \cong 0.18\lambda$
 - Long-range wakefields: mode detuning and damping
- Minimizing surface field
- Reducing breakdown damage
- Minimizing RF pulse heating
- Cost effective
- ...

Continuing Improvements

- Breakdown problems with 1.8m structure (RDDS, DDS)
 - Low achievable gradient
 - Severe damage, large frequency shift
- C.Adolphsen theory

$$- \cdot \frac{G^2 v_g^2}{(R/Q)^2} \frac{\sin(\phi)}{\phi \sin(\phi) + 2v_g \cos(\phi)}$$

- Low v_g or low RF power/structure
- Structure design approach
 - Traveling: $v_g/c \sim 3-5\%$
 - Standing wave: $v_g=0$

Low v_g With Large Aperture

- Traveling wave
 - Magnetic coupling
 - High phase advance
- Standing wave

(rf heating?)
(bandwidth?)
(short length)

Traveling Wave Approach

High Phase Advance – 150⁰/cell

- With Phi=150 deg, one can
 - reduce v_g
 - maintain large aperture
 - maintain good rf efficiency
- Shorter length due to low v_g
- Low input power per structure
- Low surface field

IIGNIC2 Standard			
HOUVUS Structure	T _{fill} (ns)	110	
	τ	0.54	
	P _{RF} (MW)	58.85	
	I (A)	0.9	
	G _{RF} (MV/m)	65.0	
	G _B	-13.8	
	GL	51.0	

Standing Wave Approach PI-mode *vs* PI/2 Bi-periodic

PI-mode

Bi-periodic Structure m=0 Mode

Bi-periodic Structure, a=4.7mm

A =
$$4.7$$
mm
F = 11.424 GHz
Q = 8463
R = 70.2 M Ω /m
R/Q = 8291
Es/Ea = 3.314

- Large mode separation, can be longer in length
- Major concern multi-pactoring in coupling cell
- Twice as many cells
- Efficient (with thin disk, but maybe high in Es/Ea)

PI-mode SW Structure

PI-mode SW Structure, a=4.75mm

A = 4.75 mmF = 11.424 GHzQ = 8820R = $68.0 \text{ M}\Omega/\text{m}$ R/Q = 7710Es/Ea = 2.646

- Dense modes at PI
- Short structure length
- Low surface field with thick disk

Standing Wave Design

- PI-mode
- Short length
- Low input power and stored energy in structure
- Structure always operate at loaded gradient (55MV/m vs 70MV/m unloaded)
 - Coupling design for nominal current.
 - Adjust rf power at beam injection for different current

Cell Profile

	DLWG	Ellip iris	Round
	Thin T	Thick T	
A (mm)	4.75	4.75	4.75
T (mm)	2.6	3.6	3.6
R (MΩ/m)	67.7	64.2	71.7
R/Q	7742	7519	7478
Es/Ea	2.53	2.08	2.09

- PI mode
- Rounded cell
- Detuned
- Average $a: 0.18\lambda$
- Es/Ea designed to be about 2

Dipole Mode Detuning

- Need similar detuning as TW $\Delta F_1 = 8 \sim 10\%/4\sigma$
- Cannot detune within one structure
- Detune in 8 sections, 15 cells each (20cm)(not interleaved)
- 120 cells to detune full 8-10% spectrum

Tapered Structure Parameters (round iris)

- Inverse taper in "t" for wider bandwidth at small "a"
- Adjust cell parameters to obtain flat field

RF Parameters Of 8X15 Sections

	S 1	S2	S 3	S 4	S 5	S 6	S 7	S 8
$R(M\Omega/m)$	52.1	55.0	57.6	60.0	62.6	65.5	69.0	74.0
P(MW) for	18.5	17.5	16.7	16.1	15.4	14.7	14.0	13.0
G=70MV/m								
G(MV/m) for	71.1	73.1	75.8	76.3	78.0	79.8	81.9	84.8
P=22MW								

8X15 Detuned Dipole Dispersion

Dipole Mode Kick Factor

8x15 Stack Dipole Kick Factors

Linear

Detuned Standing Wave Structure (?) Field Symmetric

Detuned Standing Wave Structure Assembly

Flattening Field By Adjusting End-"b"

Flattening Field By Adjusting End-plate

KEK SW20A375 Stack

Parameters	SW20A375
a (mm)	3.75000
b (mm) (with square corners)	10.55666
t (mm)	2.6000
a _{nose} (mm)	2.2000
L (mm)	13.12117
R (MΩ/m)	81.92
Q	8621
Es/Ea	2.046
"b" with two r0.51mm fillets	10.56721
ZERO mode frequency	11.2247

Optimizing Field Profile

- Half of 15-cell stack
- Boundary:M-E
- "b" of coupler cell 10-µm larger

Simulation Of 15-cell Tapered Structure

N	F1 (Hz)	a (mm)	b (mm)	t (mm)
0	1.42E+10	4.85462	10.87390	2.65200
1	1.42E+10	5.14991	10.83400	2.81487
2	1.42E+10	5.13882	11.00350	2.80825
3	1.43E+10	5.12785	10.99830	2.80174
4	1.43E+10	5.11700	10.99330	2.79534
5	1.43E+10	5.10627	10.98830	2.78904
6	1.43E+10	5.09565	10.98340	2.78285
7	1.43E+10	5.08502	10.97850	2.77669
8	1.43E+10	5.07450	10.97370	2.77063
9	1.43E+10	5.06411	10.96890	2.76468
10	1.43E+10	5.05384	10.96420	2.75883
11	1.43E+10	5.04355	10.95950	2.75300
12	1.43E+10	5.03324	10.95490	2.74720
13	1.43E+10	5.02320	10.95030	2.74157
14	1.43E+10	5.01300	10.94570	2.73589
15	1.43E+10	4.85462	10.80320	2.65200
N	F1 (Hz)	a (mm)	b (mm)	t (mm)
0	1.42E+10	4.85462	10.87390	2.65200
1	1.42E+10	5.14991	10.83700	2.81487
2	1.42E+10	5.13882	11.00350	2.80825
3	1.43E+10	5.12785	10.99830	2.80174
4	1.43E+10	5.11700	10.99330	2.79534
5	1.43E+10	5.10627	10.98830	2.78904
6	1.43E+10	5.09565	10.98340	2.78285
7	1.43E+10	5.08502	10.97850	2.77669
8	1.43E+10	5.07450	10.97370	2.77063
9	1.43E+10	5.06411	10.96890	2.76468
10	1.43E+10	5.05384	10.96420	2.75883
11	1.43E+10	5.04355	10.95950	2.75300
12	1.43E+10	5.03324	10.95490	2.74720
13	1.43E+10	5.02320	10.95030	2.74157
14	1.43E+10	5.01300	10.94570	2.73589

Test SW (#1 of 4) cell 1-15 R= 63 MΩ/m

Flat field can be obtained in tapered structure

Plunger Measurement Simulation

Pulse Heating (G=70MV/m)

- Slots perturb current of accelerating mode. Current concentration at slots produce RF heating
- ∆T: RDDS1: 25⁰C 55⁰C; RDS : <14⁰C