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ABSTRACT 

Quadratic elements place stringent requirements on a surface mesh smoother. One of the biggest challenges is that a good linear 
element may become invalid when mid-side nodes are introduced. To help alleviate this problem, a new objective function for 
optimization-based smoothing is proposed for triangular and quadrilateral elements, linear or quadratic. Unlike the current 
popular approaches, this objective function makes it possible for a smoothing algorithm to untangle and smooth in a single 
process. This objective function has higher order continuous derivatives and only one minimum, if any, that make it suitable for 
optimization techniques. Even though optimization-based smoothing obtains much higher quality results compared to other 
algorithms, such as constrained Laplacian smoothing, it is also slower than these algorithms.  That said, we also present an 
effective way to limit the number of calls to optimization-based smoothing such that the highest quality mesh is obtained in the 
least amount of time. 

Keywords: optimization-based smoothing, constrained-Laplacian smoothing, smoothing objective function, surface mesh 

1. INTRODUCTION 

Mesh quality is a key factor in FEM analysis. There are 
numerous ways to achieve a high quality mesh [1], such as 
controlling the discretization size, controlling the edge 
valence of mesh nodes and controlling the distortion of the 
individual element shapes. Mesh smoothing (relaxation) [2], 
improves quality by adjusting node locations to reduce the 
distortion of the element shapes without changing the 
topology of the mesh.  In general, mesh smoothing can be 
classified into two major groups [3]:  local and global. In 
local smoothing, nodes are moved one by one, while global 
smoothing changes all the nodal locations in a mesh 
simultaneously. 

The most commonly used smoothing technique is Laplacian 
smoothing [4], which moves a given node to the geometric 
center of its incident nodes. Various weighted Laplacian 
smoothing algorithms have been developed to improve the 
performance of the original smoothing technique. Laplacian 
smoothing is computationally inexpensive but does not 
guarantee improvement in mesh quality. In fact, it is possible 
to create inverted or invalid elements with this technique. A 
valid mesh is one whose elements have acceptable quality 
metrics [2].  Constrained Laplacian smoothing [5] overcomes 
this problem by placing a node at a new location only when 
the mesh quality is improved. This method successfully 
prevents the degradation of mesh quality but does not always 
improve the quality of the mesh or place nodes at their best 
locations.  

In recent years, optimization-based smoothing algorithms 
have been drawing the attention of the mesh generation 
community. Several optimization-based smoothing 
algorithms have been developed [2,3,4]. These algorithms 
integrate some mesh quality measures into objective 
functions.  Optimization techniques should, in general yield a 

better mesh, if the objective function is properly formulated. 
Optimization-based smoothing varies based on:  the type of 
mesh being smoothed, the optimization method used, and the 
distortion metric selected to construct the objective function. 

One of the keys to the success of an optimization-based 
smoothing algorithm is to define an appropriate objective 
function. An inappropriate objective function can waste time 
in the optimization algorithm along with causing the 
algorithm to fail to improve the mesh quality. Most efficient 
optimization algorithms [6] require the objective function be 
C1 continuous.  

Various measures for element [7] quality have been used in 
the objective function, such as distortion metrics, aspect ratio, 
minimum angle, etc…. Recently, the inspiring work of P. 
Knupp derived an objective function from the condition 
number of element Jacobian matrix [8]. His work along with 
the work of L Freitag [3,10], has lead to mesh quality 
improvement algorithms for 2D and 3D linear elements. S. 
Paoletti [9] stated that using Interpolation Tensor could be 
applied to various polyhedral meshes in 2D and 3D. Even 
though the published works show enormous potential, there 
are two general limitations in these algorithms:  

1. They only apply to linear elements.  

2. They require that the initial mesh is valid.  

 
Quite often, the mesh to be smoothed is not valid.  Most of 
the existing objective functions have been designed in such a 
way that the optimization smoothing schemes mentioned 
above cannot guarantee a converged solution for an invalid 
mesh. For this reason, untangling techniques[10] have been 
proposed to remove invalid elements from the mesh before 
executing optimization-based smoothing.  

 



1. Efficiency: Since optimization-based smoothing is 
computationally expensive, the metric used must be 
efficient to compute. 

Canann [2] combined the use of Laplacian and optimization-
based smoothing to speed up the smoothing process along 
with benefit of better mesh quality from optimization 
smoothing. For optimization-based smoothing, α for a 
triangle, as defined by S.H. Lo [11], and β for a 
quadrilateral[2], are used in the objective function. Based on 
our experience, reasonably good meshes have been achieved 
in most cases. However, there are some cases, especially 
when smoothing nodes near curved boundaries, or smoothing 
nodes attached to higher order elements, in which the 
resultant mesh quality around these elements are not always 
satisfactory (Figure 1). As a modification to Canann’s work, 
we recently improved our smoother to make it suitable for 
working with quadratic elements by developing a new 
objective function to be used for optimization-based 
smoothing [12] 

2. Continuity: Since derivatives are used during the 
optimization process, the objective function is 
expected to be continuous. In general, to have 
higher rate of convergence, higher order derivatives 
are used. 

3. Monotonically Decreasing: If an objective function 
has multiple local optimum locations, it will be 
difficult for the optimization algorithm to find the 
best solution. If the metric is not monotonically 
decreasing, the optimized location may vary based 
on the initial location of the node to be smoothed. 

4. Shape Independence: It is favorable for the metric 
to be defined and normalized in such a way that the 
metrics for all element shapes can work together 

 

 

Historically, we at Ansys have used two shape metrics: α for 
triangular elements and β For quadrilateral elements. Let us 
now discuss their properties.  

2.1 α for triangular elements 
The triangular metric, α, [11] is defined as , 
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where, , , and  are the edge lengths of the 

triangle ∆ABC, and 

ABl BCl CAl

BC and AC  are the edge vectors of the 
triangle, as shown in Figure 2.  The metric is signed to 
account for a positive valid metric and a negative invalid or 
inverted element. For a linear triangular element, the 
numerator of equation (1) is directly related to the area of the 
triangle, while the denominator is the sum of the squared 
edge lengths of the triangle. The shape metric α is bounded 
by [ ]1,1−∈α .  A value 1 corresponds to the best triangle, 
an equilateral triangle, while  –1 indicates an inverted 
equilateral triangle. When all the three points of the triangle 
are co-linear, the triangle has a zero area which yields a value 
of α=0. 

Figure 1.  A simple mesh with poor smoothing 

In our recent work, we improved our smoother by employing 
the following: 

• introduced a new objective function 

• modified Fletcher-Reeves [6] optimization to 
enhance its performance for our domain 

• Judicious use of optimization-based smoothing 

• A priority based smoothing order is introduced.  

 
 In what follows, section 2 will address our new objective 

function for optimization-based smoothing, section 3 will 
discuss our improvement on optimization algorithm, section 
4 presents the decision making process for calling 
optimization-based smoothing. In the last section, we will 
conclude our discussion and present future work in the area. 

2. OBJECTIVE FUNCTION FOR SMOOTHING 

A distortion metric is a measure of a mesh’s quality. 
Therefore, an objective function for smoothing is usually 
constructed based on some distortion metric or combination 
thereof.  A metric is suitable for use in an objective function, 
if the following criteria are met: 



 

 

Figure 3. β for a quad. (a) A quadrilateral with point 
C set to be free , (b) The change of β when point C 
is perturbed in the x-y plane. 

2.3 Problems with higher order elements Figure 2. α for a triangle. (a) A triangle with point C 
perturbed over the x-y plane. (b) The change of α on 
y=0 and y=2. (c) The 3D plots of α; (d) the contour 
of α on the x-y plane 

It is quite often observed that a linear element is of acceptable 
quality but becomes unacceptable when it is converted to a 
higher order element. As demonstrated in Figure 4: The 
elements in (a) and (c) are of acceptable quality when the 
elements are linear. However, with the introduction of a mid-
side node, the quadratic elements in (b) and (d) show interior 
angles close to 0 and 180 degrees.  

It is obvious that if α alone is used in the objective function 
for optimization-based smoothing, the smoother will have 
trouble untangling inverted triangles. For example, if an 
initial point is placed at the location as shown by the arrow in 
Figure 2 (b), the shape metric α would tell us move the point 
in the negative x-direction to improve mesh quality. 

 

 

2.2 β For quadrilateral elements 
Similarly, we have used a quality metric β [2] (Figure 3) for 
quadrilaterals, which is comprised of a combination of the 
α’s of the triangular elements that compose the given 
quadrilateral. The basic idea is to split a quadrilateral into 
four different triangles, ∆abc, ∆dac, ∆abd, and ∆dbc, Figure 8 
(a) . Each of these triangles has a quality metric, α1, α2, α3, 
and α4.  

Figure 4 the difference of element quality for linear 
and quadratic elements 
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A curved element edge usually happens only when the 
element edge is on boundary. In the above example, the 
element (b) might be improved by moving node C, if node C 
is an interior node. However, element (d) has no node to 
move to improve its quality. The shape improvement of this 
class of element is beyond the scope of smoothing.   where, 90α  is the α right triangle having unit base and 

height lengths, and is the number of negative negn α .  90α  

is used as a normalization factor where  is a historical 

heuristic value that was placed into our code many years ago.  
 was used to help the algorithm, published in [2] , un-

invert tangled meshes such that inverted elements would have 
a very high weight in the objective function. 

negn

negn

Smoothing for linear simplex elements (three node triangle 
for two dimensions and four node tetrahedral for three 
dimensions) has been studied substantially with fruitful 
achievements. However, simple straightforward means to 
extend these studies to quadratic triangular and quadrilateral 
elements do not seem to exist. 

By investigation, the effects of mid-side nodes of higher 
order elements can be represented by a new term as a 
function of element interior angles. In the case of quadratic 
elements, interior angles and vectors at nodes are computed 
using the tangent vector of the quadratic edge at the given 
node. The proposed objective function is made up of two 
parts: 

 Since the β for quadrilaterals is derived from α for triangle, 
the β has similar problems to α (Figure 3). 
 

        )()( θα fff +=  (3) 



where, )(αf  is based on the shape metric α  computed at 

the node of interest and )(θf  is a penalty term based on 
element angles computed at the  other two nodes.  The 
purpose of the )(θf  term is to prevent the element from 
inverting and smooth the element when it is quadratic. 
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Figure 6. angle is not a continuous function in (x,y) 
plane. (a) Angle distribution over x-y plane. The 

angle has a discontinuity along the line (x=0, y>1); 
(b) weight function introduced to make adjusted 
angle smooth; (c) the adjusted angle. Adjusted 

angle is continuous and smooth everywhere except 
at point A and B. 

As stated previously, discontinuous functions are not suitable 
for optimization. To overcome the problem a weight, , is 
introduced as a multiplier to the angles to generate an 
adjusted angle, 

w

ω . 

Figure 5. triangle with node C as a moving node 

For a node 
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where, is the number of element using the smoothing 

node, and 
en

)(αif
 is the contribution from the ith element to 

the objective function. 

 

The adjusted angle is continuous everywhere but at point A 
and point B, Figure 7 (c). Our penalty term is introduced as. 
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Where, 
iα is the shape metric α of the ith element.  Since the 

function )(αi
(

f  is derived from α, the properties and 

problems of )αif
 are similar to α.  

 

Where a is the edge length opposite the node where θ is 
computed and c is the edge length opposite where α 
computed. This smooth penalty term increases rapidly when 
an element angle approaches “0” and the negative angle 
region. When an element is in the valid region, the penalty is 
relatively small compared to the near invalid and invalid 
regions. The constants, and  are used normalize the 
metric such that 

1k 2k
)(θf  will have little to no effect for an 

equilateral triangle. 

A penalty term, )(θf , was introduced to give our objective 
function a monotonically decreasing property with one 
minima, which we have observed via empirical data. It is 
because of these penalty terms, that the optimization-
smoothing algorithm is able to untangle invalid meshes. 
Interior angles, at node A and node B, are convenient means 
to determine the validity of a triangle.  When smoothing 
quadratic elements, the quadratic edge tangent vectors at 
nodes A and B are used to compute the angles at A and B. 

 
However, angle A and angle B in Figure 5 are not continuous 
functions on X-Y plane, Figure 6(a). There is a discontinuity 
on the line, { , where the angle jumps between }0=x

π− and π . When point C is on the positive x side of the 
plane, the angle is π .  When the point is at the negative x 
side of the plane, the angle is π− . Therefore, the angle on 
the line of { is undefined }0,1 => xy

 

 

 

 

 

 



The effectiveness of the above formulation can be 
demonstrated by the example in Figure 9. As clearly 
indicated on (a), when the top edge is pushed toward the 
center node, the best location for the center node is below the 
intersection of the two dash lines. The other two illustrations 
show similar results for quadrilateral elements. 

 

(c) 

 

Figure 7. the penalty term and the objective 
function (a) the penalty term when considering only 

one side of the triangle, (b) the final shape of the 
objective function, (c) the contours of the final 

objective function in the feasible region. 

For quadrilateral elements, the objective function, , is 

formulated as  
qf

Figure 9. configuration with one quadratic edge 

  (9) 321 ffff q ++=  
An example configuration similar to the one presented in [3] 
is used to show the result of our current work. Figure 10 
illustrates that even though the level sets outside of the valid 
region for the center node is non-convex, the near convexity 
of the set enables faster convergence of the optimization 
algorithm.. 

where, , , and  are the objective functions from 

triangles , , and ∆ , as shown in 
Figure 8, and the node D is the moving node. Notice that 

has been omitted from this function since the 
movement of point D has no effect on this triangle. The 
triangle is a dead zone to node D. 
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The issue of how to combine the nodal metrics from a mixed 
mesh arises when triangular and quadrilateral elements are 
present.  This resolution of this issue is actually quite simple. 
As shown in equation (9), the objective function for a 
quadrilateral is made up of three functions using the sub-
triangles. Each of these sub-triangles is equivalent to equation 
(5). Therefore, for a mixed mesh, the contribution of each 
triangular element to the total objective function should be 
multiplied by a factor of three in order to evenly weigh 
triangles and quadrilaterals. 

Figure 10. example with star shaped configuration 
with 10c illustrating the level sets in the feasible 

region 

 

 

 

3 OPTIMIZATION-BASED SMOOTHING 

Optimization-based smoothing is an iterative process. Each 
node for smoothing is optimized for location in a number of 
iterations. Generally, as in popular approaches, the 
optimization process is a constrained optimization process. 
However, the presented objective function actually combines 
angle constraints into part of the objective function, which 
enables the optimization-based smoothing process to be 
unconstrained.  

Figure 8. is the dead zone for the 
quadrilateral during smoothing 

ABC∆
ABCD

As discussed above, each part of the objective function is 
continuous function with at least up to 2nd order derivatives. 
This property makes the objective function very suitable for 
an optimization process. Derivatives such as these enable us 
to use gradient methods such as the method of conjugate 
gradients. 

Let  X  be nodal location of a node,  the optimization process 
is to find the best location in iterations: 

q1)(qq sdxx += −  (10) 

where, q is the iteration number,  is the vector of the 
search direction and s is the step length to move in this search 

qd



direction. Optimization is a classical area of study in 
mathematics and it is not our intent to discuss it in depth 
here.  However, it is valuable to share some of our 
experiences with it when related to mesh smoothing. 

 

3.1 Search direction 
Since the objective function is smooth, the Fletcher-Reeves 
[6] conjugate gradient method is used. 

)1()( −+−∇= qqq rf dxd  (11) 

where, 

2)1(

2

)(

)(

−∇

∇
=

q

q

f

fqr
x

x

 (12) 

Figure 12. The convergence history for a node 
using conjugate gradient direction 

3.2 Step length for one-dimensional search In our implementation, the gradient direction is used at the 
first iteration and conjugate gradient direction is used in the 
consequent iterations. We have found that after a number of 
iterations, the convergence speed using the conjugate 
gradient direction actually slows down. Figure 11. illustrates, 
the iteration using gradient direction is marked with a letter 
“g” and the iteration using conjugate gradient directions are 
marked with a letter “c”. At the first iteration, when the 
gradient direction is used, the proceeding step length is 
relatively small, while at the second iteration, the conjugate 
gradient direction is used and the step length is much larger 
than the first step length. However, two more iterations later, 
the progress becomes relatively small. In this case, a new 
gradient direction is used and the process restarts 
[13].

 

A one-dimensional search is conducted to find a local 
minimum along the search direction. Quadratic interpolation 
is used in our one-dimensional search. Progressively, three 
points are found in order to compute a “high-low-high” 
pattern. For faster speed, an acceleration factor is used. The 
choice of the acceleration factor is very tricky. In the 
beginning of the search, because the initial step length is 
relatively small, a large factor, 8, is used. Other accelerating 
factors might also be used in the consequent searches. Once a 
failure to find the “high-low-high” pattern is encountered, the 
factor is reduced by half. The one-dimensional search fails if 
a “high-low-high” pattern cannot be found.   

4. OVERALL SMOOTHING ALGORITHM 

4.1 The use of optimization-based smoothing 
Since optimization-based smoothing is much slower than 
Laplacian smoothing, it is critical to make a correct decision 
when to use optimization-based smoothing to gain the best 
cost effectiveness. Here are our rules: 

1. a node is connected to a curved boundary node; 
2. a node is connected to an invalid element; 
3. a node has failed to move from Laplacian 

smoothing; 
4. forced to use optimization-based smoothing by 

caller. 
Figure 11. convergence history According to the rules above, an untangling process, for 

example, is mostly smoothed by optimization smoothing 
because a tangled mesh contains many nodes that are 
connected to invalid elements. Once untangled, most interior 
nodes are actually smoothed by constrained-Laplacian 
smoothing. 

Furthermore, we have found that the first few iterations make 
the most significant contribution to finding the best nodal 
location, Figure 12. Combining the investigations above, a 
constant number of three is used as the limit of iterations for 
each optimization-based smoothing call.   Constrained-Laplacian smoothing has trouble dealing with 

concave regions.  If a new location, determined, by Laplacian 
smoothing is not acceptable, optimization-based smoothing is 
called to resolve the problem. 

 

 



There are cases when the caller detected that a mesh is not 
acceptable after smoothing. In such cases, one pass of 
optimization-based smoothing usually gives us satisfactory 
results. 

4.2 Smoothing by priority order 
It is found that node smoothing in order of “worst one first” 
is very helpful. As shown in Figure 13, when priority is used, 
smoothing takes 4 iterations for the tangled model to be 
untangled, while 7 passes are needed if nodes are smoothed 
in a order of “first come first serve”. The priority is simply 
computed based on the shape metrics of each node. For the 
node with the worst quality, the highest priority is assigned. 
The other priorities are computed by linearly dividing the 
range of shape metric value into 5 bins.  The priority is then 
computed for each smoothing iteration.  An inner priority 
loop counter sets the current priority during a smoothing 
iteration. If the current node’s priority is less than that of the 
current priority, it will not be smoothed in the inner priority 
loop  

5. EXAMPLES AND RESULTS 

5.1 Smoothing improvement statistics 
The improved smoothing algorithm has been fully tested 
under the ANSYS/Classic and ANSYS/Workbench 
regression test sets along with many customer problems to 
verify that it is sufficiently robust and efficient as a 
commercial product.   

Table 1. mesh quality without new smoothing 

 
 

Table 2. mesh quality with new smoothing 

 
 
The above two tables are statistical results from meshing 183 
complex and planar surfaces randomly picked from 
regression test sets. Some of the surfaces are meshed with 
just several elements where some are meshed with thousands 
of elements.   

Table 1 is the result before the new smoothing was 
implemented where Table 2 is the result with new smoothing. 
A detailed explanation of Table 1 and Table 2 follows: 

1. With new smoother, the number of Quadrilateral 
elements (NQUAD ) generated is increased and 
consequently, the number of Tri elements (NTRI) 

generated is decreased.   The reason the number of 
elements varies between the two smoothing 
algorithms is because the smoother is integrated 
into the mesh generation process.  This 
phenomenon illustrates how different mesh 
generation algorithms are sensitive to node 
placement. 

2. As indicated in the fourth column (MAX), the best 
quality elements generated with new smoothing is 
actually not as good as it used to be, however, this 
is not statistically significant ( sig =  .49 > .05 ). 

3. The worst elements have improved substantially, 
column 5 (MIN). 

4. The average, column 6 (AVG), of the element 
shape metrics has also increased.  

5. The last column (STDEV) of the tables illustrates 
the standard deviation that measures the variance of 
the samples. It is clearly indicated that, the standard 
deviations of the minimum and average have 
decreased in Table 2. However, the max standard 
deviation remains the same. 

 

Table 3. t-test for shape metrics 

Metric Significance (2-tailed)
Min 0.00 
Max 0.00 
Avg 0.49 
Standard Deviation 0.00 

 
 
Table 3 condenses the information found in Tables 1 and 2 
with a paired samples t-test, a statistical test that compares 
means (the details of the test are outside the scope of this 
paper.  For more information, consult almost any basic 
statistics textbook), for minimum, maximum, average, and 
standard deviation of shape metrics. The improvement 
minimum, average, and standard deviation of the shape 
metrics are significant while the decrease in the maximum is 
not statistically significant 

. 

5.2 Examples meshes 
In this section, we will present a number of example meshes. 
Figure 13 is an example for the untangling of the “plate with 
a hole” model. The tangled mesh (Figure 13a) is created by 
perturbing the nodal locations of each interior node (a node 
not on surface boundaries) randomly. The tangled mesh has 
many nodes outside the surface domain. Figure 13b is the 
mesh after smoothing. It takes 3 iterations for this model to 
be untangled( Figure 14 and Figure 15). 

 

 



 

 

(a)

(b)

 

Figure 13. untangling example 

 

Figure 16. a node with three edges close to a 
curved boundary and two quadratic boundary 

edges 

Figure 17 illustrates another unit test example. Similar to the 
above example, a node is connected to some curved quadratic 
boundary elements. The optimization-based smoothing result 
(Figure 17a) yields higher quality than the same 
configuration smoothed with constrained Laplacian 
smoothing, (Figure 17b).  Figure 14. untangling, initial mesh and first iteration 

mesh 
 

(a) (b) 
 

 Figure 17.  quadratic curved boundary quads 
Figure 15. untangling, second iteration mesh and 

third iteration mesh  
 
Figure 18 shows an example of high quality mesh generated 
using the new smoother. 

Figure 16 is a unit test case where a node is connected to a 
curved boundary sharing two quadratic boundary elements.  
This is a difficult case for most smoothing algorithms that 
deal only with linear elements.  Figure 16a is the result of 
smoothing with only constrained Laplacian smoothing where 
Figure 16b is the result of smoothing using our presented 
optimization-based smoothing. 



 

Figure 18. example surface mesh 

 
Figure 19 illustrates a mesh of a human head using the new 
smoothing algorithm. 

 
Figure 19 Head 

 

5.3 Objective function comparisons 
Our previous method of constructing the objective function-
based on the maximizing the minimum shape metric posed 
serious convergence problems for any optimization method.  

Figure 20 illustrates the differences between the old objective 
(b) function and the new objective function (c) for a given 
configuration of quadrilaterals. 

 

Figure 20 a Test quadrilateral configuration with the 
center node being smoothed 

 

 
Figure 20 b Maximizing Minimum Objective 
Function 



 

 
Figure 20 c The newly presented objective function 

 

 

 

6. CONCLUSIONS AND FUTURE WORK 

A new objective function for optimization-based smoothing 
is proposed for both triangular and quadrilateral elements. 
Unlike the current popular approaches, the new objective 
function makes it possible to untangle and smooth in a single 
process. The objective function has higher order continuous 
derivatives and only one minimum, if any, that make it quite 
suitable for optimization techniques. Because optimization-
based smoothing is much slower than other algorithms, such 
as constrained Laplacian smoothing, an effective way to limit 
the number of calls to optimization-based smoothing is 
critical in order to obtain the best result in terms of quality 
and speed.  

Future work in this area may include: 

• Speed improvement on metric calculation so we 
can use optimization smoothing more often 

• Mathematically prove properties of the objective 
function 

• Extend the algorithm to solid elements 
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