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Abstract

In this report we investigate the measurement of local
transverse coupling from turn-by-turn data measured at a
large number of beam position monitors. We focus on a di-
rect measurement of coupled lattice functions using the sin-
gular value decomposition (SVD) modes and explore the
accuracy of this method.

INTRODUCTION

The coupled betatron oscillations become decoupled in
the two eigenmode planes (labelled with a and b), in which
beam motion can be described by the action Ja,b and an-
gle φa,b variables, together with the beta functions βa,b and
phase advances ψa,b. The oscillation observed in the hori-
zontal plane is the sum of the contributions xa and xb from
these modes, with [1]

xa =
√

2Jaβaγ cos(φa + ψa), (1)

xb =
√

2Jbβacb cos(φb + ψb + ∆ψb) (2)

where γ, cb, and ∆ψb relate to the coupling matrix C̄
by γ =

√
1− det C̄, cb =

√
C̄2

11 + C̄2
12, and ∆ψb =

arctan(C̄12/C̄11). The oscillation in the vertical plane can
be similarly expressed by switching x to y and a to b, and
with ca =

√
C̄2

22 + C̄2
12 and ∆ψa = − arctan(C̄12/C̄22).

The coupling is completely determined by the coupling
matrix C̄. There are several ways to measure the elements
of C̄ using turn-by-turn beam histories at BPMs. Here
we describe a method using the untangled SVD modes in
Model-Independent Analysis (MIA) and explore the use-
fulness of this method via simulations.

THE METHOD

Extraction of Coupled Betatron Modes

Let BP×M be the data matrix whose columns contain
P -turn beam histories at M BPMs in a transverse plane. A
singular value decomposition of B yields

B = ÛSV̂ T =
∑

modes

σiuiv
T
i , (3)

where ÛP×P = [u1, · · · , uP ] and V̂M×M = [v1, · · · , vM ]
are orthonormal matrices comprising the temporal and spa-
tial eigenvectors, and SP×M is a diagonal matrix with non-
negative singular values σi along the upper diagonal. When
beam motion is dominated by the coupled betatron oscilla-
tions, there are typically four SVD modes associated with

∗Work supported by U.S. Department of Energy, Office of Basic En-
ergy Sciences, under Contract No. W-31-109-ENG-38.

this motion: two of them are dominated by the eigenmode
“a” with tune νa and the other two by the eigenmode “b”
with tune νb. In general, both tunes can show up in the
temporal vectors of the orthonormal SVD modes, i.e., SVD
modes are a mixture of the physical eigenmodes. It can be
shown [2] that such a mixing can be untangled by a 4×4 ro-
tation matrix O such that the rotated temporal vectors ÛO
contain the normal coordinates of the “a” and the “b” eigen-
modes, i.e.,

ÛO =
1√
P






· · ·
√

2Ja/J̄a cos(φa + ψ0
a) · · ·

· · · −
√

2Ja/J̄a sin(φa + ψ0
a) · · ·

· · ·
√

2Jb/J̄b cos(φb + ψ̃0
b ) · · ·

· · · −
√

2Jb/J̄b sin(φb + ψ̃0
b ) · · ·






T

,

(4)
and the rotated spatial vectors OT SV̂ T read

OTSV̂ T =







· · ·
√

J̄aβaγ cos(ψa − ψ0
a) · · ·

· · ·
√

J̄aβaγ sin(ψa − ψ0
a) · · ·

· · ·
√

J̄bβacb cos(ψb + ∆ψb − ψ̃0
b ) · · ·

· · ·
√

J̄bβacb sin(ψb + ∆ψb − ψ̃0
b ) · · ·







.

(5)
Here J̄a,b are the ensemble average of the turn-by-turn ac-
tion Ja,b, which may not be constant due, for example, to
damping. ψ0

a,b and ψ̃0
a,b are unknown phase constants to

ensure orthogonality of the singular vectors. The above ex-
pressions are for the transverse plane dominated by the “a”
mode; hereafter we assume it is the x-plane and label the
matrices B, Û , S, V̂ , as well as O with a subscript x. Ex-
pressions for the y-plane can be obtained simply by replac-
ing x with y and a with b.

Note that if Ja,b are constants and φa,b advances by
the tune νa,b every turn, the right-hand side of Eq. (5)
can be obtained directly from harmonic analysis of x

by computing the summation
√

2
P

∑
p fp xp at each BPM

with f = cos(2πp νa), − sin(2πp νa), cos(2πp νb), and
− sin(2πp νb), respectively. This is the commonly used
method.

Determination of Coupling Matrix Elements

From the spatial vectors in OT
x SxV̂ T

x , it is easy to com-
pute the amplitude from the “a”-mode A2

a ≡ J̄aβaγ2 and
the amplitude coupled from the “b”-mode Ã2

b ≡ J̄bβac2
b

at all BPMs by taking the square sums of the first two and
the last two vectors. The phase advance ψa − ψ0

a can be
obtained from the arctangent of the ratio of the first two
vectors. The uncertainty due to the inversion of the trian-
gular function complicates the phase determination but can
usually be resolved by referencing to some estimated val-
ues of phase advance. However, such uncertainty makes it
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difficult to compute ψb + ∆ψb − ψ̃0
b with the same tech-

nique because ∆ψb may take any value even with a little
coupling from machine errors. From the spatial vectors in
OT

y SyV̂ T
y , A2

b ≡ J̄bβbγ
2 and Ã2

a ≡ J̄aβbc
2
a can be simi-

larly computed, and so can the phase advance ψb − ψ0
b .

If all the BPMs can read both x and y positions, it is
well known that three of the four elements of the coupling
matrix C̄ can be determined. Using the measured coupled
betatron modes, this can also be done with the expressions

C̄12

γ
= sgn(sin ∆ψa)

√
ÃaÃb

AaAb
sin ∆ψa sin ∆ψb (6)

and C̄11
γ = C̄12

γ cot ∆ψb and C̄22
γ = − C̄12

γ cot ∆ψa, where

γ = 1 to the first order of C̄ elements. Before getting into
the calculation of those ∆ψ related terms, let us make a
few comments here. Everything on the right-hand sides
of these expressions can be derived directly from mea-
sured SVD modes, i.e., these three elements are directly
measurable. However, since C̄21 is not involved in the
beam positions xa,b and ya,b, it can not be measured di-
rectly unless the exact transfer matrices between BPMs
are known such that one can determine the slopes in ad-
dition to the positions. One nice feature to note is that
the four amplitudes depend on the BPM gains, but their
ratio in Eq. (6) as well as the computed C̄ elements do not,
thanks to cancellation of the gains. Also note that, in prin-
ciple, the ratio of the average action can be measured by
J̄a/J̄b = AaÃa sin ∆ψa/AbÃb sin ∆ψb. Unfortunately,
since it is the ratio of two small quantities, this relation
is poorly conditioned for numerical computation and does
not provide an accurate measure of the ratio.

To compute sin ∆ψb, cos ∆ψb, sin∆ψa, and cos ∆ψa,
we normalize all the spatial vectors in OT SV̂ T (the ma-
trix form is used for implementation in vector-oriented pro-
grams) to get

Ra =
[

cos(ψa − ψ0
a) · · ·

sin(ψa − ψ0
a) · · ·

]

2×M

and (7)

R̃b =
[

cos(∆ψb + ψb − ψ̃0
a) · · ·

sin(∆ψb + ψb − ψ̃0
a) · · ·

]

2×M

(8)

as well as similar expressions for Rb and R̃a (by switching
a and b). From these vectors we have

diag(RT
b R̃b) =

[
cos(∆ψb + ψ0

b − ψ̃0
b ) · · ·

]
, (9)

diag(RT
b JR̃b) =

[
sin(∆ψb + ψ0

b − ψ̃0
b ) · · ·

]
, (10)

and similar expressions for ∆ψa. Here J =
(

0 1
−1 0

)
.

To further eliminate ψ0
a − ψ̃0

a, we use the temporal vectors
from both the x and the y SVD modes to obtain a 2 × 2
rotation matrix R(ψ0

a − ψ̃0
a) as

R(ψ0
a − ψ̃0

a) =
(
ÛxOx

)T

1:2

(
ÛyOy

)

3:4
, (11)

where the subscript 1:2 means taking the first two vectors.
Note that we have assumed the “a” mode dominates x mo-
tion, thus it is associated with the first two singular vectors
of Ûx. Similarly, R(ψ0

b − ψ̃0
b ) can be obtained by switching

a to b and x to y. Now we can compute
[

cos ∆ψb · · ·
sin ∆ψb · · ·

]
= R(δψ0

b )
[

cos(∆ψb + δψ0
b ) · · ·

sin(∆ψb + δψ0
b ) · · ·

]
(12)

where δψ0
b = ψ0

b − ψ̃0
b . Similar expression holds for ∆ψa.

Using the Concatenated Data Matrix

Instead of analyzing Bx and By separately as described
above, we can also work with the concatenated data matrix
BP× 2M = [Bx, By]. The temporal vectors of the SVD
modes are still given by Eq. (4) but with a different set of
phase constants, say, ψ̄0

a and ψ̄0
b . (We assume the “a” eigen-

mode results in larger singular values and thus are the first
two modes.) The spatial vectors in OT SV̂ T read






Aa cos(ψa − ψ̄0
a)

... Ãa cos(ψa + ∆ψa − ψ̄0
a)

Aa sin(ψa − ψ̄0
a)

... Ãa sin(ψa + ∆ψa − ψ̄0
a)

Ãb cos(ψb + ∆ψb − ψ̄0
b )

... Ab cos(ψb − ψ̄0
b )

Ãb sin(ψb + ∆ψb − ψ̄0
b )

... Ab sin(ψb − ψ̄0
b )







(13)
where the first (last) M columns correspond to x (y).
Again, the square sums of the first and the last two row
vectors yield A2

a, Ã2
a, Ã2

b , and A2
b . Normalizing the spatial

vectors by these amplitudes gives






cos(ψa − ψ̄0
a)

... cos(∆ψa + ψa − ψ̄0
a)

sin(ψa − ψ̄0
a)

... sin(∆ψa + ψa − ψ̄0
a)

cos(∆ψb + ψb − ψ̄0
b )

... cos(ψb − ψ̄0
b )

sin(∆ψb + ψb − ψ̄0
b )

... sin(ψb − ψ̄0
b )







,

(14)
from which it is easy to extract the sine and cosine of ∆ψb

and ∆ψa as in Eqs. (9, 10), without the complication due to
the different phase constants from separate SVD analysis.

A major advantage of using a concatenated data matrix
is that the small coupling oscillations become part of the
large betatron modes, and thus it is easy to identify them.
When analyzed separately, the weak coupling modes could
be too close to the noise floor.

SIMULATIONS

To study the effectiveness of this new MIA-based
method, simulations were carried out using a simple ring
consisting of 80 FODO cells. The lattice is constructed and
single-particle tracking was performed using MADX [3] to
generate turn-by-turn data at a large number of BPM loca-
tions. Three skew quadrupoles of different strengths were
introduced at arbitrary locations in the lattice to add cou-
pling, and matching was done in MADX to get the desired
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Figure 1: C12/γ for FODO lattice with 80 cells and three
skew quadrupoles.

tunes. The coupling matrix element C12/γ was model-
independently computed using Eq. (6) from the untangled
SVD modes, which can be obtained either by analyzing Bx

and By separately or by analyzing the concatenated ma-
trix [Bx, By] (marked as Bx/By or [Bx, By] in figures, re-
spectively). The rotation matrix O was determined using a
Fourier projection. Figure 1 shows a C12/γ comparison be-
tween the design (MADX) and the calculated (SVD) with
both methods using the data from single-particle tracking
(x0 = y0 = 0.1mm) without BPM noise. The agreement
for 2000 turn tracking with Qx = 0.22, Qy = 0.25 is on
the order of 10−7. Such a small rms error is owing to the
fact that 2000 turns contains an integer number of periods
for both horizontal and vertical betatron oscillations, which
allows a very accurate determination of the O matrix using
the Fourier projection.

Turn Dependence

To investigate the dependence on turns, the rms dif-
ference between the model and the measured C12/γ was
calculated for the same lattice using different numbers of
turns. Two cases with different number of significant digits
in tunes are shown in Fig. 2, where the rms difference is
plotted against the number of turns used to extract the SVD
modes. There are two bands in the rms difference: the up-
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Figure 2: RMS difference between the model and measured
for different number of turns. Three significant digits in
tune (top) and two significant digits in tune (bottom).
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Figure 3: RMS difference between the model and measured
for different levels of Gaussian noise in BPMs.

per one is inversely proportional to the number of turns as
expected from Fourier analysis used in the determination of
the O matrix (the errors from SVD are much smaller) and
the lower one is around 10−7. This constant value shows
the effect due to the number of significant digits in the tune
as discussed above and is visible in both cases. However,
such an effect can be removed by using more appropriate
computation (employing window function for example) of
Fourier coefficients.

Noise Tolerance

To investigate the robustness of the SVD technique to
noise in BPMs, the rms difference of C12/γ was computed
for different levels of Gaussian noise in turn-by-turn data.
Figure 3 shows the rms errors as a function of σnoise/signal
amplitude. It is clear that noise degrades the C12/γ mea-
surement. The dependence on the noise roughly follows a
power of 3/2 for the concatenated case. One has to note
that the choice of turns used will effect this dependence as
seen in Fig. 2. It is evident that, when the coupling is close
to the noise level, using the concatenated data matrix yields
better results than using the x and y data separately, as ex-
plained in the previous section.

CONCLUSION

We showed how to use the SVD modes for transverse
coupling measurement and demonstrated that the method
works well. More simulation studies are needed to deter-
mine if this methods has any advantage over other methods.

Thanks to R. Tomás for valuable discussions.
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