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Abstract
In an attempt to automatically produce high-quality all-hex meshes, we investigated a mesh
improvement strategy: given an initial poor-quality all-hex mesh, we iteratively changed the element
connectivity, adding and deleting elements and nodes, and optimized the node positions. We found a set
of hex reconnection primitives. We improved the optimization algorithms so they can untangle a
negative-Jacobian mesh, even considering Jacobians on the boundary, and subsequently optimize the
condition number of elements in an untangled mesh. However, even after applying both the primitives
and optimization we were unable to produce high-quality meshes in certain regions. Our experiences
suggest that many boundary configurations of quadrilaterals admit no hexahedral mesh with positive
Jacobians, although we have no proof of this.



1 Introduction.1

The automatic generation of high-quality, all-hex meshes for complex 3D geometries would greatly
reduce the Design to Analysis to Manufacturing (D2A2M) cycle time. Two essential elements in the
mesh generation process are constructing the topological connectivity of the elements and constructing
the geometric position of the nodes. The connectivity problem was recently solved via the Whisker
Weaving (WW) and T-HEX algorithms, which both automatically produce all-hex meshes. These
algorithms do not produces meshes of high enough quality for certain analyses. Optimization based
smoothing has recently solved the problem of positioning the nodes optimally, given a fixed mesh
connectivity.

The goal of the LDRD was to improve the quality of the hex meshes produced by WW, T-HEX and
other algorithms. The approach investigated was to iteratively reconnect the hex elements and optimize
the nodal positions. There are algorithms in the literature for improving quadrilateral, triangular, and
tetrahedral meshes based on this approach as well. A key difficulty was that, prior to this LDRD project,
nobody knew how to locally reconnect a hex mesh. We developed a set of reconnection primitives; see
Section 2.

Hex reconnection is much harder than reconnection for other meshes. E.g., in tetrahedral and triangle
meshing, a given set of nodes has many topologically distinct meshes, but in order to change the
elements in a quad and especially in a hex mesh, nodes must usually be added or removed. Also,
collapsing a quad in a quad mesh is a purely local operation, but collapsing a hex in a hex mesh induces
an entire column of hexes to be collapsed. For some small quadrilateral boundary meshes, no high-
quality conforming hexahedral mesh is known, even though we know a well-defined hex mesh exists.[1]
E.g., Schneiders’s open problem, a square based pyramid with three quads per triangle and four quads
on the base, has no known high-quality mesh despite years of effort. So, our intuition is that the space of
hex meshes is more “sparse” than that of other types of meshes. The space of high-quality hex meshes
appears to be even sparser.

The dual of a hex mesh, grouped into surfaces, provides some insight into the possible ways of filling a
fixed boundary of quadrilaterals with hexahedra. A T-HEX mesh dual has a special spherical structure
that we tried to exploit.

We first inspected poor quality areas and applied reconnection primitives manually, thinking that we
would gain insights into how to design an automatic algorithm. However, we were unable to remove
certain poor quality areas: improving the mesh locally just pushed the poor quality area somewhere else.
Even after many dependent steps, negative Jacobians remained. Sometimes these negative Jacobians
would be pushed near the boundary of the region. The quadrilateral surface mesh bounding the hex-
meshed volume was considered to have fixed connectivity and position, so there is little freedom to
reconnect the hexes near the boundary. It appears that Schneiders’s open problem is not an anomaly, that
many large surface meshes have features, which do not admit a high-quality hex mesh.

Despite this setback, we noticed certain poor configurations could be improved. In particular, 4-valent
nodes, nodes contained in only four hexes, were common causes of poor quality. One of the primitives
“rotates” a set of three hexes sharing an edge. When applied to one of the four edges of the 4-valent
nodes, the connectivity was markedly improved. In a T-HEX mesh, the node at the center of every
original tet is 4-valent, so this operation can be applied widely. In a WW mesh, a surprisingly large
fraction of the poor quality hexes are attached to 4-valent nodes.
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We implemented an automatic algorithm that applies the rotation strategy. It also applies a pillowing
strategy that subdivides high-valence nodes into two lower-valence nodes. Various reconnections are
tried at poor-quality nodes. This algorithm is in progress. While we suspect that it may ultimately be
able to improve certain portions of a mesh, it is unlikely that it will be able to significantly improve the
minimum Jacobian in many meshes.

Another means to improve mesh quality is by node-movement strategies, also sometimes referred to as
mesh optimization. A mesh quality objective function is posed that, when minimized with fixed nodal
connectivity, yields a mesh with improved quality. Two objective functions figure prominently in our
latest thinking, a mesh Untangle objective function and a mesh Condition Number optimizer (see [5])
for a discussion of the theory of the condition number optimizer). The mesh condition number optimizer
improves element aspect ratio and skew while avoiding inverted elements. The condition number
optimizer was already partially implemented at the beginning of this LDRD and works well with
simplicial mesh elements. More work remains to include “boundary terms” for non-simplicial elements
but this was not addressed in the LDRD. Even so, the condition number optimizer was useful for this
study, particularly on T-HEX meshes, where modest mesh quality improvement was demonstrated.

The major focus in the LDRD in terms of node-movement strategies was the development of an
Untangle objective function, including boundary terms, for mesh untangling. We found that boundary
terms could be best included using a global objective function that includes all elements of the mesh, as
opposed to a local objective function that uses only certain elements attached to each node of the mesh.
The Untangle objective function, applicable to both simplicial and non-simplicial elements in two- and
three-dimensions, was able to successfully untangle most tangled meshes. There is no a priori way to
determine if a given mesh with fixed connectivity can be untangled. The Untangler is an effective means
of doing so a posteriori. Results with the Untangler on Swept, T-HEX, Geode[4] and Whisker Weaving
meshes suggests that the objective function and its implementation in CUBIT will automatically
untangle any mesh for which an untangled solution exists.

Unfortunately, tangled Whisker Weaving meshes could rarely be untangled. We strongly suspect that
the current WW algorithm, which uses no geometric information except on the volume boundary,
usually produces mesh connectivities for which an untangled mesh does not exist. Although this is a
negative result, the mesh Untangler has proven its worth by showing that this is the case. In addition,
mesh untangling will prove useful in conjunction with other 3D meshing schemes in CUBIT.

2 Hex Primitives
Before this work, there were only a few ways known to change the connectivity of a hex mesh. This is in
marked contrast to the situation for tet meshes.

For a tet mesh, the most common local reconnection is an edge flip: take the tets surrounding an edge,
remove them, and consider the polygon formed by the edge of each tet that is opposite the removed
edge. This polygon can be triangulated in a number of ways, depending on how many sides it has and its
angles. The convex hull of each triangle with each node of the removed edge forms a new tetrahedron.
The inverse operation is also possible. This reconnection primitive can be applied widely in a tet mesh.
The reconnection is purely local: tets not containing the removed edge are unaffected.

Another common operation for tet meshes is an edge collapse: combine the two nodes of an edge into
one. Some triangles turn into edges and some tets turn into triangles. Tets not containing the removed
edge are unaffected, except that two originally disjoint tets may now share a triangle, etc. That is,
triangles on the boundary of the primitive region have been combined.



General edge flipping does not work in a hex mesh because in many cases the hexes surrounding an
edge are the only way to fill their boundary quadrilaterals. However, in some cases a primitive does
exist, e.g., the rotate primitive below.

Edge collapsing does not work in a hex mesh because hexes are non-simplicial. E.g., if an edge of a
quadrilateral is collapsed the quad degenerates to a triangle, not an edge. However, if two edges of a
quad are collapsed, the quad degenerates to an edge. Some primitives we discovered do resemble the tet
edge collapse in that elements are collapsed by collapsing some of their sub-elements, and elements on
the boundary of the primitive region are combined.

2.1 Collapse two hexes
Two hexes sharing a face or more may be collapsed, removing both hexes and leaving only a collection
of faces. Like the edge collapse operation in a tet mesh, the boundary of the elements is unchanged,
except certain sub-elements are combined. The general principle for collapsing two hexes is to find a
common face, and, for each hex, find the opposite face. Each node of the first hex’s opposite face is
merged with the corresponding node of the second hex’s opposite face. If the hexes share more than one
face, two merging nodes may already be the same. Hexes sharing one through five faces can be
collapsed in this way, as well as hexes sharing a face and an edge, etc. Common cases are illustrated in
Figure 1, Figure 2 and Figure 3. The inverse operation inflates a pair of hexes. Any set of faces
surrounded by a ring of faces pairwise sharing an edge can be inflated: each face of the set inflates into
two hexes, and each face of the surrounding ring opens into boundary faces of two inflated hexes. This
large operation can be accomplished by many smaller operations. Similarly, the inverse operation
collapses a large set of hexes at once, or can be built up by smaller primitives. Collapsing can lead to
degenerated hexes nearby. In some cases degenerated hexes can be removed by further collapsing, or
fixed by pillowing; see Section 2.3 below.

Figure 1. Collapsing two hexes sharing one face. Nodes a and b are combined.



Figure 2. Collapsing two hexes sharing two faces. Nodes b and c are combined.

Figure 3. Collapsing two hexes sharing three faces. Nodes b and c are combined.

2.2 Rotate three hexes
The rotate three hexes primitive is applicable whenever three hexes 1h , 2h , 3h  share an edge e ; see

Figure 4. Consider the cycle of the six faces 1f , 2f , 3f , 4f , 5f , 6f  of 1h , 2h , 3h  not containing e ,

where 1f  and 2f  are in 1h , etc. We remove 1h , 2h , 3h  and replace them with hexes 1H , 2H , 3H ,

containing e , where 1H  contains 2f  and 3f , etc. This change is fully conforming to 1f , 2f , 3f , 4f ,

5f , 6f , but not to the pattern of three faces 7f , 8f , 9f , containing just the top node of e . In order to

restore that pattern, a single hex must inserted containing 7f , 8f , 9f  and the new top faces of 1H , 2H ,

3H . If there was originally a single hex containing 7f , 8f , 9f , these two hexes are collapsed. Similarly,
a hex is inserted and perhaps collapsed for the bottom node of e .

There doesn’t appear to be a way to rotate an arbitrary number of hexes sharing an edge; for most
internal re-arrangements around the shared edge, there isn’t a set of hexes on the ends that matches the
original boundary connectivity. If some hexes sharing the edge are first pillowed, so that some new
edges are shared by three hexes, these hexes can be rotated, but this operations doesn’t seem to be
helpful.



The configuration in Figure 4 is exactly the hexes inside a single pre-subdivision tet in a T-HEX mesh.
If this primitive is performed on the hexes inside two tets sharing a triangle, then we end up with six
hexes instead of eight. Unfortunately, when applied to the hexes inside a tet, we were unable to find a
situation in which the quality of the mesh improved. The cases in a T-HEX mesh where the quality did
improve were when the primitive was applied to three hexes inside three different tets that shared an
edge prior to subdivision. In WW meshes, the mesh quality improved when there was a pre-existing
bottom hex that was flat (i.e. had nearly coplanar faces).

Figure 4. Rotating three hexes. Left, there is a bottom hex. Right, there is a top hex.

2.3 Pillow
Pillowing is a very generally applicable operation that inserts an entire layer of hexes that closes on
itself. A pillowing strategy that fixes two faces sharing two edges in a hex mesh is described in
Pillowing Doublets[2]. Pillowing starts with a pillow set of hexes whose boundary is a shell of quads
meeting edge to edge. Each boundary quad is split into two quads, one for a hex in the pillow set and
one for the external hex sharing the boundary quad (or region boundary quad mesh). Then a new hex is
created connecting each boundary quad with its split quad. Nodes are repositioned by smoothing. The
inverse of pillowing removes an entire layer of hexes. If the region boundary quad mesh can be
modified, then pillowing and its inverse have obvious extensions in which the layer terminates on the
region boundary, rather than closing on itself. Examples of pillowing are given in Figure 5.

Figure 5. Left shows pillowing a single hex. Right shows pillowing two hexes sharing a face.

Pillowing can be used to decrease a node’s edge-valence. Each node on the boundary splits into two, and
the resulting valences can be less than the original valence of the node. Let h  be the number of pillow
set hexes, H  the number of external hexes and f  the number of boundary faces attached to a boundary
node. Before pillowing, the node has Hh + attached hexes. After pillowing, the node has fh + attached
hexes and the split node has fH + attached hexes. If a node has too many attached hexes, some will



have a small Jacobian at the node. Pillowing can be used to split such a node and reduce the maximum
hex valence. In principle, smoothing could spread the hexes out so that the minimum Jacobian is
increased. Although this appears to be a useful quality improvement strategy on paper, in practice it is
not effective.

2.4 Inflate hex ring
Inflating a hex ring takes a circular sequence of pairs of faces sharing an edge, and inflates each pair into
a hex. A column of hexes pairwise sharing a face is created. Figure 6 illustrates the simplest form of this.
The inverse operation collapses a circular column of hexes. If the region boundary quad mesh can be
modified, then inflating and its inverse have obvious extensions in which the column starts and finishes
on the region boundary, rather than closing on itself. Like pillowing, inflating can be used to manipulate
the hex valence of nodes.

Figure 6. Inflating a ring of hexes using the pairs of faces around two hexes sharing a face.

2.5 Folwell Starfish
Nate Folwell, formerly dept. 9226, discovered the Folwell Starfish. This primitive applies whenever
there is a chain of edges, the spine, with two symmetric sets of faces on either side. The spine is
bounded by nodes a  and b . Each set is bounded by the spine, and also an outer chain between nodes a
and b . The outer chains are symmetric. The primitive flips the roles of the spine and outer chains. The
Folwell Starfish is its own inverse.

The sub-operations of the primitive are the following: The edges of the spine are split into two chains,
meeting at nodes a  and b . Similarly, each face is split in two, an upper and lower face, meeting at the
outer chain. The edges of the two outer chains are merged, as are symmetric pairs of upper faces, and
symmetric pairs of lower faces. No hexes are created or destroyed. Geometrically, the new faces lie in a
plane perpendicular to the old faces, but, for clarity, this distinction is not made in the following figures.
Pairs of faces sharing two nodes are usually created or removed. If the primitive is applied to a single
pair of faces sharing two edges, it separates that pair but creates a new pair of faces sharing two edges.
See Figure 7, Figure 8 and Figure 9 for some other examples.



Figure 7. Folwell Starfish applied to four faces sharing a node.

Figure 8. Folwell Starfish applied to six faces sharing a node.

Figure 9. Folwell Starfish applied to six faces along a spine of three edges.

2.6 Dual Interpretation
Each primitive has an interpretation in the dual STC [3] of the hex mesh. Rotating three hexes locally
moves a dual sheet so that it passes to the other side of the intersection of two other sheets. Inflating a
hex ring moves two locally disjoint sheets so that they intersect (at the ring). Large-scale sheet moving
can be created by repeatedly applying primitives. Collapsing two hexes merges two locally disjoint



sheets, creating a topological handle connecting the two sheets. The Folwell Starfish merges sheets in a
different way. Pillowing creates a new sheet. All known STC changes can be accomplished using the
primitives in this paper, although arrangements may have degenerated hexes. In a T-HEX mesh, tet-
mesh edge swaps can be simulated using the hex primitives.

3 Optimization
A mesh untangling objective function was strongly suggested by certain remarks in reference [6]. The
proposed objective function referred only to simplicial elements and was not considered within the
framework of global optimization. A similar objective function was independently discovered by P.
Knupp and extended to non-simplicial elements with the present LDRD. By our definition, a mesh is
untangled if it has no negative Jacobians at the corners of an element. Untangled meshes are highly
important because they are a necessary condition for a mesh to be usable (a tangled mesh will likely
cause physical assumptions such as positive energy to be violated during the course of numerical
simulations). Tangled meshes rarely occur when simplicial elements are used but are frequent when
advanced hex meshing algorithms are used on complicated geometries.

For each corner node of a tetrahedral mesh, we define a Jacobian matrix whose columns consist of the
three edges that emanate from a node. Let α be the determinant of the Jacobian matrix. One can show
that the determinant is invariant to the node at which it is computed, i.e., each tetrahedral element has a
unique Jacobian determinant. Let the tetrahedral mesh be composed of M elements, with determinants
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. The global objective function for mesh untangling that we propose is
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If the mesh is untangled, the determinants are all positive and the objective function attains its minimum
value, zero. The sum is over all elements in the mesh. If some of the determinants are negative, then the
objective function may be written as
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where the sum includes only elements with negative determinants. For non-simplicial elements, one
simply includes the determinants at all corners of the element. In this way, Jacobian determinants that
reflect the “boundary terms” are included. Using the fact that the determinants are linear in their node
positions, we were able to prove that the objective function is convex, thus a global minimum always
exists. If the objective function at the minimum is non-zero, then an untangled mesh does not exist.
Otherwise, the minimum is not usually unique since any untangled mesh will minimize the objective
function. This is not a difficulty in practice because the goal is to obtain any untangled mesh.
Optimization of the mesh condition number will then reduce element skew and aspect ratio.

Numerical experiments with this objective function suggested the following refinement to give users
more control over the value of the minimum Jacobian determinant. Let 10 << β  be a user parameter
and modify the untangle objective function to read
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The objective function is then minimized when the Jacobian determinant is greater than β. If β is zero,
the original objective function is recovered. In this case scaled-Jacobians as small as 1.e-05 could be
obtained, which potentially could cause the condition number optimizer to fail to give non-inverted



elements. Condition number optimization worked well with untangled meshes for which β=0.01. If β=1,
the feasible region for the objective function is generally empty, signifying that it is not possible to
produce a mesh with all elements having scaled-Jacobians greater than one. In this case, the Untangling
objective function acts somewhat like the “maximize-the-minimum-Jacobian” objective function we
jointly proposed with L. Freitag. In general, to achieve automatic mesh untangling, β=1 is a good choice
although finding the minimum for this case is slower than for β=0.

The mesh-untangling algorithm was first tried in two dimensions so that results could be easily
visualized. Meshes with triangular elements are seldom tangled, so smooth scheme “randomize” was
invoked to create tangled meshes. The untangle objective function readily untangled these meshes.
Quadrilateral meshes generated using the paving algorithm are also rarely tangled. After tangling them
with scheme randomize, the Untangler successfully untangled the paved meshes. A more challenging
test problem is the Horseshoe geometry with a mapped mesh. The problem is difficult because Laplace
smoothing of this mesh produces a tangled mesh in which many contiguous elements are inverted. Our
original approach using a local mesh Untangler failed to untangle the Horseshoe mesh. The results
suggested that the reason for the failure was that local information is insufficient to drag all the inverted
elements over the zero-Jacobian line in the mesh. The global Untangler was then implemented and was
able to untangle coarse Horseshoe meshes. We were unable to test the algorithm on fine meshes because
it took too much CPU time; improving the efficiency of the Untangler has become a priority.

In all these test cases, it was known that an untangled mesh existed. A more interesting test case was
created using scheme Hole on a region with complex outer boundary. The resulting mesh was tangled
and it was unclear if an untangled mesh existed for the given node connectivity and fixed boundary
points. Visually, it appeared that an untangled mesh did not exist. This was confirmed by the Untangler
which, while it improved the minimum Jacobian determinants, failed to untangle the mesh (but failed
gracefully).

We then turned to the untangling of 3D meshes. The algorithm rather easily generalizes to 3D, although
some issues concerning data structures within CUBIT had to be sorted out. The Untangler readily
untangled Mapped, Sub-mapped and Swept meshes. The latter is significant because one current time-
to-mesh bottleneck is getting untangled meshes for some Swept volumes. The method was tried on the
HexTet algorithm with Geode transition element. Most examples were untangled after meshing but one
case was found for which Geode resulted in a negative Jacobian element. The Untangle objective
function successfully untangled the mesh.

A major disappointment was the inability of the Untangler to achieve positive Jacobians for the
Whisker Weaving meshes. Weaving generates connectivity for all-hex meshes given arbitrary surface
meshes, but usually fails to give a mesh with positive Jacobians. Although the Untangler typically
improved the minimum scaled-Jacobians of WW meshes from –0.90 to –0.010, the resulting meshes
were still tangled. Because of the success of the Untangler in untangling meshes generated by methods
other than WW, we conclude that the difficulty lies not with the Untangler, but with the pathological
nature of the mesh connectivities generated by the current WW algorithm. Another important use of the
Untangler is thus illustrated – that of a Mesh Connectivity Quality measure – where, if a given tangled
mesh cannot be untangled with the Untangler, the connectivity is useless for meshing purposes.

The ability of the Condition Number objective function to improve the quality of T-HEX meshes was
investigated in this LDRD. T-HEX meshes are created by first meshing a given geometry with
tetrahedral elements, then subdividing each tetrahedron with four hexahedra, giving an all-hex mesh.
Unfortunately, on complex geometries, the hexahedra thus generated are often of poor quality. The basic
question we asked was, could the Condition Number optimizer improve element quality enough for
analysts to use the meshes?



Because condition number works particularly well on tetrahedral elements, the optimizer was applied to
T-HEX meshes before they were sub-divided into hexahedra. Five complex geometries were meshed:
Gear1, Hook, A-Block, DistDuct and Foam5. For each geometry, three meshes were generated: (1) T-
HEX with no smoothing, (2) T-HEX with 2�  Condition Number optimization, and (3) T-HEX with

∞� Condition Number optimization. T-HEX failed on DistDuct and Foam5 geometries because negative
Jacobians were generated on the boundary due to high geometric surface curvature. Optimization was
not tried on these examples because the algorithm does not presently permit movement of boundary
nodes. Results for the three remaining geometries are given in the table below.

Mesh1 Mesh1 Mesh2 Mesh2 Mesh3 Mesh3
Geometry Max Cond. Min J Max Cond. Min J Max Cond. Min J
Gear1      8.1 0.093      5.1 0.094      4.3 0.088
Hook    10.6 0.078      5.4 0.086      6.5 0.089
A-Block     6.7 0.111      5,5 0.143      6.2 0.146

From these results we have two conclusions: (1) Condition Number optimization can substantially
reduce the worst condition number in a mesh; (2) however, since ideally one wants condition numbers
below 3.0 to avoid “sliver” elements, the connectivity of T-HEX meshes is poor enough that quality T-
HEX meshes of complex geometries cannot be achieved via Condition Number (or other) optimization
methods. We believe that, had a quality mesh with the given connectivity existed, Condition Number
would have produced it.

4 Automatic Quality Improvement Algorithm
We researched selecting primitives by hand and smoothing in order to improve quality. The most
successful case was applying the rotate three hexes primitive when four hexes shared a node. We also
considered the case when a node had too many hexes attached, resulting in at least some hexes having a
very small solid angle at the node. In some T-HEX meshes, some of the edges attached to such a high-
valent node had three attached hexes. Rotating the three hexes around that edge reduced the number of
hexes attached to the node by two, and improved quality somewhat. However, an edge flip in the
original T-HEX mesh may have accomplished the same thing. We were pleasantly surprised that
rotating three hexes sharing an edge often improved quality in Whisker Weaving meshes as well.
Rotations were often helpful in a long column of dependent hexahedral elements.

In a T-HEX mesh, for two diced tets that shared a triangle, two rotations results in six hexes instead of
eight. The hexes typically have large dihedral angles, due to the edges bounding the tets having too few
hexes. Pillowing all of the six resultant hexes restored good hex valences to the boundary edges, but
overall the quality was poorer than in the initial mesh.

On paper, pillowing looks promising for some "waist" nodes - nodes with high edge degree, where the
edges are geometrically grouped in clusters. Pillowing the hexes surrounding the clusters of edges seems
like it would improve quality: the valence of the node is reduced; and, after pillowing, smoothing should
have more room to spread out the cluster of edges. In real-world meshes, the existence of a good pillow
set is rare. Usually, the initial set of hexes has some convex features which would make the new hexes
in the pillow layer have poor quality. Adding more hexes to the set can cover the convex features, but
then new convex features arise.

We found one interesting example in which the most regularly connected mesh was not the highest
quality mesh; mesh quality is a matter of both connectivity and geometry. The example consists of a
length-four chain of triples of hexes sharing an edge. When the middle two triples are rotated, resulting
in an extra hex between the first and second, and third and fourth triples, mesh quality is better. The



reason is that nearby mesh constrains the shape of the boundary of the middle two triples, so that having
one internal structure is better than the other; see Figure 10 and Figure 11.

Figure 10. Face cross-sections between a chain of four triples of hexes with regular connectivity.

Figure 11. Face cross-sections between a chain of four triples of hexes with irregular connectivity:
the middle two triples have been rotated. This internal mesh happens to have better quality due to

the geometry of the boundary surfaces.

We wrote an automatic algorithm that applies the rotation primitives to degree-three edges next to flat
hexes, and the pillowing strategy near nodes with a small solid angle. The control structure loops
through all hexes of the mesh several times, evaluating the quality and shape of the hex. If a poor quality
hex of the right type is found, we attempt to improve the quality locally. The current quality is evaluated
in a neighborhood around the hex, and the connectivity of the neighborhood is saved. Next, we apply a
primitive to change the local connectivity, and the mesh is smoothed. The new quality in a neighborhood
near where the old hex was is evaluated, and the neighborhood is saved. If more primitives could have
been applied to the original mesh, the original connectivity of the neighborhood is restored, and those
primitives are tried as well. When all options have been tried, the connectivity with the best quality is
retained. This process destroys some hexes, so care is taken to ensure that deleted hexes are never
referenced.

Saving and restoring the neighborhood is currently accomplished using CUBIT’s general mesh export
and import capability, exporting and importing the entire mesh of the 3d region to a file. We also
partially implemented a more efficient mesh rollback mechanism that stores just the local neighborhood
affected by the primitives in a stack in memory. The mesh rollback mechanism saves information about
the boundary and original connectivity inside a neighborhood, so that the original connectivity can be
stitched back into place after the primitives change the connectivity inside the neighborhood. This
general mechanism should be useful in future mesh-connectivity improvement work, but is not fully
implemented at present.

5 Conclusions
There is a small but rich set of hex primitives that locally change the connectivity of a hex mesh. Global
optimization can position the nodes of a hex mesh optimally, with respect to untangling the mesh and



optimizing the condition number of the Jacobian matrix of a hex. We can locally reconnect and optimize
a hex mesh and fix some quality problems. However, in many real-world examples we are unable to
remove certain knots of poor quality. We suspect that this is due to fundamental constraints imposed by
the connectivity and geometric embedding of the quadrilateral mesh of the region boundary. Constraints
imposed by the self-intersections of dual curves have been studied,[3] but overall the conditions under
which a quad boundary mesh admits a high-quality hex mesh are not well understood.
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