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Abstract 

 Quantum teleportation is a communication protocol for the exchange of information 

between remotely separated parties. We survey some prominent applications of quantum 

teleportation that show potential for collecting and analyzing information. In addition to a 

background review of the underlying principles, we highlight the use of quantum teleportation in 

quantum key distribution, long-distance quantum communication networks, and quantum 

computing. The latter applications are significant as they show promise for cracking 

conventional public-key encryption systems and providing alternate key distribution systems that 

are secure against attack.  
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Introduction 

 Quantum information science (QIS) formulates a theory of information using the 

principals of quantum physics, an effort driven by the insight that physical systems encoding 

information are ultimately governed by the laws of quantum mechanics. But more importantly, 

adopting a quantum paradigm (instead of a classical one) provides unique opportunities in 

communication, cryptography, and computation [1]. Examples illustrating the uniqueness of QIS 

include: theoretically secure quantum key distribution schemes for encrypting classical 

information [2, 3], the creation of quantum communication channels for nonlocal sharing of 

secret quantum information [3], and the ability of a quantum computer to more efficiently 

execute algorithms, e.g., for factoring large numbers [5] and querying unsorted databases [6].  

 These emerging quantum capabilities are of specific interest. For example, the advent of 

a quantum computer would enable a dramatic speed up in factorizing large numbers. However, 

many public-key (asymmetric) encryption systems, e.g., RSA, rely on factorization as a 

computationally intractable problem to guarantee the security of the key. Consequently, a 

quantum computer poises a risk to the encryption and information security of many 

communication networks. An equally important example is quantum key distribution (QKD), 

which is a quantum-based protocol for securely distributing a one-time pad of random numbers 

between two parties. While QKD provides a secure alternative for publicly encrypting messages, 

it is also a means available to any technologically sophisticated adversary. These two 

considerations alone have made QIS an active interest.  

 The above breakthroughs are expected to revolutionize the ways information is collected 

and analyzed in the future. In this article, we survey some of the novel opportunities afforded by 

QIS with an emphasis on applications of the quantum teleportation protocol [2]. In its bare form, 
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quantum teleportation is a method for communicating quantum information, i.e., information 

encoded into the quantum-mechanical state of a physical system. When a quantum bit, or qubit, 

of information is teleported between two locations, it does not pass through the intervening 

space. Instead, quantum teleportation uses two communication channels to transfer information. 

Remarkably, neither communication channel can individually identify the transmitted 

information. One of these channels is a classical communication channel that connects the sender 

with a remotely located recipient. The other channel is a quantum communication channel that is 

established between the sender and recipient when they share a pair of entangled particles. As 

described in more detail below, entangled particles are uniquely characterized by their ability to 

demonstrate perfect correlations between their individual properties.  

 In the quantum teleportation protocol, the sender make a measurement on her particle and 

then conveys to the recipient the minimal amount of classical information that characterizes the 

measurement outcome. With the classical information in hand, the recipient performs a 

correcting operation to account for quantum-mechanical uncertainty and, subsequently, recovers 

the teleported information. Perhaps the most intriguing aspect of quantum teleportation comes 

from the observation that at not time during the protocol does the teleported information exist in 

the space between the two parties. The classical information that is transferred is cannot by itself 

identify the teleportation information. Similarly, in absence of the classical measurement 

information, the recipients particle appears to exist in a statistically random state. 

 The ability to teleport information (a feat realized experimentally [7]) underlies a variety 

of applications in quantum communication and quantum computation. Our survey highlights the 

most prominent of these applications and some of the supporting quantum technologies. 

However, our account is not exhaustive; the relatively young field of QIS is undergoing a period 
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of rapid expansion. In addition, we omit most references to the pragmatic issue of how these 

quantum information protocols may be best implemented, especially in regards to potential 

physical systems. Though the latter issue is perhaps the most daunting challenge facing 

applications of QIS at the moment, our goal is to highlight the opportunities that others are 

diligently working to realize. 

Quantum Teleportation 

 The novelty of quantum teleportation arises from the properties of entangled particles. 

Entanglement is a feature of quantum mechanics whereby two or more quantum systems show 

correlations in their measured properties, even though the individual systems appear to behave 

randomly. Mathematically, entanglement implies that the joint state of a two-particle system is 

not factorizable. Using bra-ket notation, an example of entanglement is given by the two-particle 

state 
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where subscripts 1 and 2 label the particles and the orthonormal ket vectors, 

! 

"  and 
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" , span the 

two-dimensional Hilbert space of each subsystem. For example, the arrows could label the “up” 

and “down” spins of an electron or the horizontal and vertical polarizations of a photon. In either 

case, correlations inherent to the entangled state are readily observed by noting that when system 

1 is measured in the up 

! 

(")  state, system 2 will always be in the down 

! 

(")  state and vice versa. 

Quantum mechanics does not allow us to predetermine which of these two results will be 

observed, but we are assured that the measured results of the individual systems will always be 

perfectly correlated. What makes entanglement a powerful resource for information processing is 

that these correlations are guaranteed even when the two systems are remote from one another. 

In contrast, an unentangled state cannot show nonlocal correlations. 
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 In its simplest form, quantum teleportation considers two parties, conventionally named 

Alice and Bob, to share a pair of particles in the entangled state (1). Alice wishes to teleport a 

qubit of information to Bob that is encoded in the state of a third particle as 
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e.g., if the particle is a photon, the polarization vector could be  a(horizontal) + b(vertical). The 

complex coefficients a and b satisfy normalization 
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to Alice. For Alice to convey a complete description of the state (2) would generally require an 

infinite number of classical bits to specify the (arbitrary) complex-valued coefficients a and b. Of 

course, in Alice’s efforts to discover this information, she would necessarily destroy the state of 

the particle. But, by using quantum teleportation, Alice can completely transfer the qubit to Bob 

at a significantly reduced communication cost (2 bits). 

 To demonstrate, we rewrite the composite three-particle state 
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following set of orthogonal (Bell) states [8] 
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These four states, widely used by Bell, form a complete basis set for the two-particle Hilbert 

space of particles 2 and 3. In addition, the Bell states are maximally entangled, in that they 

maximize the entropy of the individual particles while minimizing the entropy of the pair. Using 

the Bell basis, we express the three-particle state as 
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According to Eq. (4), if Alice projects (measures) particles 2 and 3 into any one of the Bell 

states, then the subsequent state of particle 1 is unitarily related to the original qubit, regardless 

of where the first particle may be located. It is this nonlocal aspect of information transfer that 

led the original authors to term this protocol quantum teleportation [3]. 

 For example, a projection into the state 
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Bob applies to particle 1 the local unitary transformation 
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Recovery of the original qubit following projections into the remaining three Bell states, 
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In the case of polarization-encoded qubits, all of these unitary transformation can be carried out 

using polarization rotators and quarter waveplates. 

 The four possible measurement outcomes (labeled a, b, c, and d) are equally probable, 

and the result of Alice’s Bell-state measurement must be relayed to Bob in order for him to 

recover the unknown qubit; if Bob does not apply the correct local transformation, he cannot 

infer any information about the teleported qubit [3]. This step necessitates 2 bits of classical 

information to be transferred across the classical channel. Unsurprisingly, since the protocol 

requires the use of a classical channel, quantum teleportation cannot be used for faster-than-light 

signaling. Figure 1 is a schematic of the described protocol. 
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Figure 1. A schematic demonstration of the quantum teleportation protocol, where the circles 
represent particles, the solid line represents the quantum communication channel (entanglement), 
and the dashed line represents the classical communication channel. (a) Initially, Alice and Bob 
share some entanglement via particles 1 and 2. Alice has a third particle in which a quantum state 
ψ is encoded. (b) Alice subjects particles 2 and 3 to a Bell-state measurement (BSM), which 
generates two bit of classical information j, that distinguish between the four possible 
measurement outcomes. Alice communicates this information to Bob using a classical channel, 
whereupon Bob uses his knowledge of j to apply the appropriate unitary operator Uj and ensure 
his particle now encodes the state ψ. 

 
 In addition to the classical communication cost, Alice and Bob also incur a cost in using a 

pair of entangled particles to execute the teleportation protocol. The latter cost has been 

quantified by Bennett et al. as 1 ebit, where an ebit is the amount of entanglement between a pair 

of maximally entangled particles [9]. Moreover, the aggregate cost of 2 classical bits and 1 ebit 

has been shown to be the minimal number of each resource type necessary for teleporting a 

qubit. Finally, we note that Alice must destructively measure the state of particles 2 and 3, and 

that she does not retain a copy of the unknown qubit for herself. This outcome is consistent with 

another well-known feature of quantum mechanics, the fact that quantum information cannot be 

copied [10]. 
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 One notable aspect of quantum teleportation is that the qubit of information is never 

accessible except by Alice and Bob. Following Alice’s Bell-state measurement, particles 2 and 3 

are destroyed and Alice retains no information about the qubit. Before receiving the appropriate 

message from Alice, particle 1 is related to the original qubit in a random way that provides Bob 

with no useful information. During this intervening period, which is necessarily as long as it 

takes for Alice to communicate the measurement outcome to Bob, the qubit of information is not 

accessible to anyone. It is only by combining the information transferred across both the 

quantum and classical communication channels that a qubit is successfully teleported. This 

interpretation has led to teleportation being called the “quantum one-time pad,” a reference to the 

theoretically secure means of classically encrypting a message [11].  

Remote State Preparation 

 In the foregoing discussion, teleportation of a qubit was shown to require 2 classical bits 

and 1 ebit. When the qubit is unknown to both parties, these resources have been shown as both 

sufficient and necessary for teleportation. However, it is possible that Alice has foreknowledge 

of the qubit she wishes to teleport, in which case the classical communication cost can be 

reduced to 1 classical bit. This economical variant of the teleportation protocol has been termed 

remote state preparation [12].  

 The simplest example of remote state preparation is when Alice wishes to teleport a state 

of the form 

! 

" j = # j + ei$ % j( ) 2 ,    (7) 

where 

! 

"  is a real-valued phase. We denote by 

! 

" j  the state that is orthogonal to Eq. (7), i.e.,  

! 
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i% & j( ) 2 .    (8) 
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Alice and Bob share a pair of entangled particles whose state is given by 
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#( ) , cf. Eq. (3).  Alice 

projects her member of the pair (particle 2) into the state 
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Yet, a successful projection occurs only 1/2 of the time; the remaining measurements are 

projections into the orthogonal outcome, i.e., 
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2 . It is possible for Bob to 

correct for this “failure” when the state is known to be of the form (7), provided Alice notifies 

him that a failure has occurred. As Alice needs to communicate to Bob only which of two 

possible outcomes she recorded, the subsequent communication cost is 1 classical bit plus 1 ebit 

[12]. 

 Remotely preparing qubits of a more general form, e.g., as given by Eq. (2), is also 

possible, though probabilistic in practice. That is to say, the protocol succeeds when the 

orthogonal complement to 

! 

"  is projected onto the entangled pair, resulting in the state 

! 

"
1

, but 

fails otherwise. In the case of failure, Bob is generally unable to recover the intended state 

because the necessary inversion operation cannot be implemented by any physical means (see 

Ref. [12] for elaboration on this point). Thus, this scheme, which is probabilistic but exact, 

requires Alice to make more than one attempt at remote state preparation. In addition, Alice and 

Bob will need a bookkeeping scheme to identify those outcomes that are deemed successful. 

Remarkably, Bennett et al. have shown that it is possible to recover the minimal cost of 1 

classical bit and 1 ebit per qubit, provided one takes the asymptotic limit, i.e., in the limit that 

many states are remotely prepared,  [12]. 
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Entanglement Distribution and Quantum Repeaters 

 An essential component of the quantum teleportation protocol is that Alice and Bob share 

a pair of entangled particles. But the distribution of entangled particles over long distances is 

currently very challenging experimentally. Part of the challenge is that the physical system 

encoding a qubit is always embedded in a surrounding environment. Interactions between the 

system of interest and the environment act as sources of noise that can destroy the encoded 

information. The influences of noise may manifest as bit errors or phase errors in the state of 

particle, or through the complete destruction of the particle altogether.  

 For example, when photons are used to encode quantum information, e.g., using the 

polarization state, subsequent transmission through a fiber optic cable makes the photons 

susceptible to depolarizing effects (bit and phase errors) and absorption (destruction). The 

probability for these errors to occur scales exponentially with the length of the fiber and places a 

significant limit on the distances over which polarization-entangled photons can be reliably 

transmitted [13]. Quantum information encoded into other physical systems (notably atomic and 

molecular structures) is similarly hampered by forms of decoherence induced by the surrounding 

environment. 

 A means of circumventing these forms of noise, while achieving entanglement 

distribution, is to use a variation of the quantum teleportation protocol called entanglement 

swapping [2, 14]. In this scenario, particle 3 (the original message qubit) is initially entangled 

with a fourth particle. The composite state of the four-particle system 
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where pairs of subscripts denote which particles are entangled. Now, if Alice projects particles 2 

and 3 into a Bell-state, the state of particles 1 and 4 will be subsequently entangled, as portrayed 

by Fig. 2.  

 The four possible measurement outcomes from Eq. (10) correspond with the four 

possible Bell states; the measurement needs to be communicated to both ends of the newly 

formed quantum channel so that the parties are aware of which entangled state they share. This 

step also verifies to the parties that entanglement swapping occurred. But what is perhaps the 

most remarkable feature of entanglement swapping is that particles 1 and 4 are never required to 

be in physical contact with one another. In particular, the distance by which the particles are 

physically separated can be exceedingly great.  

 Entanglement swapping provides a means for preparing quantum communications 

channels over arbitrary distances through the use of a quantum repeater [15, 16, 17]. Suppose 

Alice and Bob are separated by a distance L, which is divided into N piece-wise segments 

connected by N - 1 nodes, as shown in Fig. 3(a). Let each node in the transmission line also be a 

source of entangled particle pairs. In a quantum repeater setup, both Alice and node 1 transmit a 

particle to the middle of the first segment. Upon meeting in the middle of the segment, 

entanglement swapping is performed on the transmitted particles, cf. Fig. 3(b). Consequently, 

Alice’s remaining particle is entangled with the other particle originating from node 1, which can 

then be moved a distance L/2N along the second segment of the transmission line. Thus, this 

process extends the original quantum channel over a distance of 3L/2. 
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Figure 
2. Entanglement swapping between Alice and Bob. (a) Initially, both parties posses a pair of 
entangled particles. (b) Bringing together a member from each pair, a Bell-state measurement 
(BSM) is performed. (c) Transmission of the BSM outcome j to both Alice and Bob verifies 
entanglement swapping occurred and notifies the parties which entangled state they share. 
 

 The above procedure can be repeated in a stepwise manner along successive segments 

with each swapping operation increasing the distance over which the quantum channel extends 

by an amount L/N. Ultimately, after N – 1 such actions, Alice and Bob share a quantum channel 

across the whole distance. (More efficient strategies are also possible, e.g., by preparing quantum 

channels across each segment in parallel [16].) 

 Even though any one particle only traverses a distance L/(2N) in the scheme presented 

above, there is still a finite probability that the transmitted particles will be affected by noise, 

which will reduce entanglement of the final particle pair. Without any means to correct for these 
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errors, the segmented transmission line presented above does not offer any advantage over direct 

distribution of the entanglement. This is because the transmission probabilities across each 

segment decreases as 

! 

exp "L /NL0( ) , where L0 is a characteristic length scale. When multiplied 

by the number of segments N, we see no advantage over the original scheme of direct 

distribution.   

 But, if the errors accrued across a segment are not too great, it is possible to correct for 

them using entanglement purification [9]. Entanglement purification reduces an ensemble of 

nonmaximally entangled states into a single, maximally entangled state. In practical terms, this 

amounts to sending multiple particles across each (noisy) segment, after which entanglement 

purification is performed. The number of nonmaximally entangled states required by the 

purification protocol depends on the desired level of output entanglement. Note that for a state to 

be “purified”, however, a minimal amount of entanglement must belong to each member of the 

ensemble. This effectively places a bound on the acceptable noise level, which in turn restricts 

the maximal distance of each segment. But, more importantly, by using entanglement swapping 

and purification in concert, a reliable quantum channel can be established between Alice and 

Bob over arbitrary distance. 
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Figure 3. A quantum repeater for entanglement distribution. (a) The transmission distance L is 
divided into N segments (here N = 5) with the intervening N-1 nodes as sources of entangled 
particles. (b) Midway the first segment, a Bell-state measurement (BSM, blue box) swaps 
entanglement using one of the particles from node 1 and one of Alice’s particles. The 
measurement outcome j1 labels the newly formed quantum channel. (c) Repeated applications of 
the BSM extend the quantum channel further along the transmission line. (d) After N BSM’s, 
Alice and Bob share a long distance quantum channel determined by the string of outcomes j. 
Entanglement purification requires that steps (b) and (c) are repeated many times.  

 Presently, implementations of a quantum repeater face a significant technical challenge 

due to the resources required by entanglement purification, i.e., the ensemble of minimally 

entangled states spanning each segment. In general, the number of states required depends on the 

degree of desired fidelity, as well as the amount of minimal entanglement initially available; 

typical numbers are on the order of 10’s of pairs spanning each segment [16, 17]. Unfortunately, 

current state-of-the-art techniques for generating entangled states (photonic implementations are 
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perhaps the most advanced) are unable to reliably prepare so many distantly separated entangled 

states simultaneously.  

 The problem of generating a sufficient number of entangled states would be alleviated to 

some extent if a quantum memory device was developed, i.e., a device capable of storing 

quantum information in a noise-free environment.  Previously prepared entangled states could 

then be stored while others were being generated. To date, only preliminary forms of such a 

device exist [18], but, as we shall see in the next section, the development of robust quantum 

memory could underlie future secure forms of encrypted communication.  

 Finally, we present a note on the security of a quantum repeater in the even that Alice and 

Bob must rely on a third party to operate the intermediary entanglement swapping nodes. In this 

scenario, Alice and Bob must verify that their quantum communication channel has not been 

compromised by some man-in-the middle attack. To do so, Alice and Bob will test the 

entanglement of states prepared using the quantum repeater in order to quantity the amount of 

entanglement present. Maximally entangled states (1 ebit) are only obtainable in the absence of 

an eavesdropping attack. This testing procedure requires that both parties sample from an 

ensemble of entangled states prepared using the quantum repeater. The sampling procedure for 

both parties consists of randomly choosing between two measurement bases. These choices will 

later be announced openly to determine instances of when Alice and Bob made different bases 

choices. By comparing the measurements obtained in the latter cases, a measure of the 

entanglement in the down-selected sample of states can be obtained using, e.g., Bell’s inequality 

[8]. Effectively, Alice and Bob are ensuring that correlations between their data exist and that 

these correlations are inherently quantum mechanical. As we will see below, this same 

verification step is required to test the security of QKD protocols. Of course, this technique of 
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testing entanglement can also be used for diagnosing between which nodes the eavesdropper is 

located. 

Entanglement-based Quantum Key Distribution 

 Quantum communication channels are useful not only for teleporting unknown quantum 

states, but also for generating strings of random bits between distant parties. This has lead to the 

development of quantum key distribution (QKD). In QKD, one exploits uncertainty inherent to 

the quantum-mechanical measurement in order to circumvent eavesdropping in the distribution 

of a cryptographic key. When both parties share the secret key, it can be used by them to encrypt 

a (classical) message. 

 The original QKD protocol was proposed by Bennett and Brassard in 1984 (BB84) and 

uses single, unentangled particles [2]. In the BB84 protocol, Alice sends Bob a particle whose 

state she randomly chooses to belong either to the set 
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"  and 
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" , or 
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"  and 
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" . (The two 

bases must be maximally conjugate in the sense that 
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"#
2

= $#
2

=1 2 , etc.) Similarly, Bob 

randomly chooses to measure the state of the received particle in one of the two bases. After Bob 

performs his measurements on a sample of the transmitted particles, he announces to Alice (and 

anyone else who may be listening) what sequence of bases he used for his measurements. Alice 

confirms to Bob which of his measurements coincided with her preparations, and the 

corresponding measurement results (which are not communicated openly but are known to both 

Alice and Bob) comprise the raw key. In the next stage, classical cryptographic methodology 

takes over with the use of error correction and privacy amplification to strengthen the security of 

the trusted, sifted key [11]. 
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Figure 4. Two schemes for quantum key distribution. (a) BB84 protocol: Alice transmits 
randomly prepared states while Bob detects each particle in a randomly chosen basis. Alice and 
Bob compare the generated bit values over an open channel to create a secret key. Eve’s access 
to the particle during transmission may compromise the security of the key because she could 
potentially carry out some form of eavesdropping attack, e.g., an intercept-resend attack. (b) 
Entanglement-based protocol: Alice and Bob use shared entangled particles to generate a random 
string. They verify the expected nonlocal and reconcile their strings over an open channel. To 
circumvent any form eavesdropping by Eve, the entangled particles can be securely distributed 
ahead of time and stored until a key needs to be generated. 

 In BB84, the classical communication channel over which Alice and Bob communicate 

need only be authentic, not confidential, such that any eavesdropper Eve may listen to their 

conversation but not modify it. BB84-QKD is provably secure under ideal circumstances, i.e., 

the sources and detectors are working ideally [19], but under more realistic conditions, including 

noisy transmission channels and imperfect detectors, QKD is only known to withstand certain 

attacks. For example, it has been shown that if Eve attempts to intercept and resend the photons 

that Alice transmits to Bob, then Eve’s interceptions can be identified by an increased bit error 

rate in the sifted key (a consequence of the no-cloning theorem) [11]. Hence, Alice and Bob 
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monitor the extent of Eve’s intrusion through an accompanying increase in the (quantum) bit 

error rate; they reject the sifted key in the event the bit error rate is too large (~11% or more 

[19]), or they perform privacy amplification techniques to increase the secrecy of the sifted key. 

However, the possibility that Eve might gain some vital information of the shared key using 

more sophisticated attacks has not been ruled out [20, 21]. 

 An alternative, entanglement-based strategy for quantum key distribution closely mimics 

the original BB84 protocol. In this implementation of QKD, first put forward by Ekert [3], Alice 

and Bob share a pair of entangled particles. Both parties measure their particles using randomly 

and independently chosen bases. After completing a sequence of measurements, Alice and Bob 

announce their respective bases (but not the measured values). For those measurements where 

their chosen bases are different, Alice and Bob then openly share their measurement results. 

With this data, both are able to compute a suitable form of Bell’s inequality to test the 

nonlocality of the particles observed behavior [8, 22]. If violated, Bell’s inequality assures the 

security of the quantum communication channel, since only quantum-mechanically entangled 

particles remain correlated when subjected to this combined random measurement apparatus. 

The other, unannounced measurements can be used to build the raw key from which a sifted key 

is generated by means of error correction and privacy amplification (as in the BB84 protocol). If 

Bell’s inequality is not violated, then Alice and Bob should not trust that their remaining 

measurements were derived from the intended entangled particles. This is because, in addition to 

sources of noise, the failure to violate Bell’s inequality signals the presence of an eavesdropper 

and a loss of confidentiality. 

 Despite strongly similarities between BB84 and the Ekert protocol, there are some 

benefits to entanglement-based QKD that lie in the use of nonlocality to ensure privacy. 
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Foremost is the fact that no information about the secret key exists until Alice and Bob measure 

an entangled particle pair. Accordingly, the distribution of entangled particles does not commit 

the users to communication with each other. In contrast, the BB84 protocol requires that Alice 

initially prepare and track the quantum state of each particle sent to Bob. This operational 

restriction means that whomever distributes the particles has the information necessary to discern 

the raw key that Bob generates with his choice of basis. Since generation and distribution of the 

entangled particles in the Ekert protocol could occur by means of third parties (quantum 

repeaters), the former restriction does not apply. Of course, such generated and distributed 

particles would need to be tested to ensure entanglement between Alice and Bob. 

 An appealing scenario for the use of entanglement-based QKD arises when quantum 

memory devices are available. It should then be possible for Alice and Bob to store distributed, 

entangled particles for future use. For example, Alice and Bob could distribute entanglement in a 

trusted (local) environment, after which they part ways. At some later time, the shared 

entanglement resources could be used to perform QKD provided a classical (authentic) two-way 

communication channel was available. This procedure would side step Eve’s potential attacks on 

entanglement distribution, including those denial-of-service attacks in which the particles are 

(intentionally) destroyed. Of course, if the quantum memory entanglement stores become 

depleted, Alice and Bob must replenish them. Because the distribution of entangled particles 

does not commit the recipients to communication, one can envision secure couriers that 

independently provide renewed quantum memories to the Alice and Bob. 

Quantum Networks and Quantum Computers 

 Quantum teleportation has expanded the repertoire of quantum information science by 

enabling a host of teleportation-based quantum technologies. In addition to straightforward 
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teleportation, our survey has included applications to remote-state preparation [12], entanglement 

distribution and quantum repeaters [15, 16], quantum memories [18], and entanglement-based 

quantum key distribution [3]. These applications are themselves the foundations for developing 

quantum computers, quantum key distribution systems, and long-distance quantum 

communication networks [1, 23]. The latter are multi-faceted, integrated systems composed of 

many interconnected components and protocols. We will describe briefly some aspects of their 

continuing development. A more comprehensive review can be found in Ref. [1]. 

 Quantum networks consist of multiple interconnected nodes between which qubits of 

information are transmitted. Transmission of information between nodes is done either by 

directly sending the encoded particle or by using variations of quantum teleportation. Individual 

nodes in a network may be quantum memory or entanglement sources, or nodes may be used 

together to carry out steps in a communication protocol, e.g., a quantum repeater. The 

connectivity of the nodes determines the geometry of the quantum network and is a basic feature 

in the design of network function. Entanglement-based QKD is a simple example of a quantum 

network where two parties directly interact. More elaborate networks consisting of multiple users 

and indirect communication pathways are also possible. An essential component of a given 

quantum network is an accompanying network of classical communication channels to satisfy 

the communication cost incurred, e.g., as in the teleportation protocol. Quantum networks, 

especially those based on faint laser pulses, have recently been implemented outside of the 

laboratory. In particular, simple quantum networks set up for QKD have become the first 

quantum technology to reach the market [24] and to be implemented on a large (metropolitan) 

scale [25, 26]. Future quantum networks will utilize entanglement sources, quantum 

teleportation, and quantum repeaters. 
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 Quantum computers are, in many regards, specialized quantum networks for executing 

quantum algorithms [27]. The development of quantum computers has attracted attention 

because of the enormous speed up that quantum algorithms can bring to certain problems, e.g., 

factoring numbers [5]. Although proposed architectures vary, quantum computers are typically 

composed of a sequence of computational gates (unitary transformations) that transform an input 

qubit to an output qubit. Ultimately, the calculation terminates when a measurement on the 

transformed qubit(s) is carried out and a classical bit value is obtained. Confidence in the 

measurement is built by repeating the procedure a desired number of times. The global effort 

currently underway seeks to identify those physical systems best suited for the development of a 

quantum computer. Several proposals show promise, but outstanding technical issues remain 

with each [28]. 

 The capabilities that quantum networks and quantum computers portend are significant: 

communication networks for securely transmitting information, both classical and quantum, and 

sufficient computational power for pragmatic brute-force cryptanalysis. Though many practical 

issues remain unresolved in their development, the theory leading to their inception can be 

viewed as a demonstration of the capabilities of quantum information science [29]. 
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