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ON THE PHYSICAL INTERPRETATION OF THE FINE-STRUCTURE CONSTANT 

 

I will employ the usual notation: e for electron charge h for Planck’s constant, h  for the reduced 

Planck constant and c for the light velocity.  Also I use Gaussian units. 

 

1. The characteristic classical Coulomb energy and characteristic lengths 

The definition I propose for the characteristic classical Coulomb longitudinal energy W (cccl) is  
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namely, the Coulomb interaction energy of two charged particles separated by a characteristic 

length l.  This definition can be applied to both charged particles and photons, but the 

characteristic lengths will be different. 

 

1.1 Characteristic length and period of charged particles 

For a charged particle the characteristic length l is  
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where M is any mass, the subscripts e and cl denote a charged classical particle.  For a particle of 

mass equal to the rest mass of the electron, Eq. (2) obviously becomes, 
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the classical electron radius traditionally defined in the rest frame.  The subscript 0 is used to 

denote that rest frame.  For the general case of any inertial frame we denote the characteristic 

length of any charged particle with mass energy 2Mc by analogy to the classical electron radius. 
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This characteristic length has an associated characteristic classical period:  
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This period eclτ  transforms the same as ecll  under a Lorentz transformation (eclτ  is familiar from 

the formula for relativistic Larmor radiation, and just for the record has the value 2310−
�  

second.).  Now if we perform elementary DeBroglie quantization on the mass energy we get 
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where DBv is the DeBroglie frequency.  From this equation we now see that  
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I have now replaced the circular frequency v by the angular frequency ω  in order to avoid a 

superfluity of 2 'sπ .  I will be using both of these.  Eq. (7) says that the characteristic length of a 

charged particle multiplied by its DeBroglie angular frequency is equal to the velocity scale 

factor of the hydrogen Bohr orbits.  If we divide both sides of Eq. (7) by c the result is, using 

Eq.(5) for eclτ ,  

DB eclω τ α= .      (8) 
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Therefore the product of a classical period and an angular quantum frequency for a charged 

particle yields the fine structure constant.  Both Eq. (7) and (8) are Lorentz invariant. 

 

1.2 Characteristic length and period of the photon 

A “physical interpretation” of α  is given in Wikipedia (without attribution) as the ratio of the 

Coulomb interaction energy of two charged particles separated by the distance λ  to the photon 

energy, i. e.  
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This formula becomes α  if andvλ  belong to the same light wave because then, of course, 

v cλ = .  Thus, while the answer is correct, it is an observation, not a derivation; its meaning is 

obscure because the wavelength λ  does not belong to the wave of frequency ω .  This is a subtle 

but interesting point.  
2e

λ
 is a classical expression where λ  happens to have the magnitude of an 

electromagnetic wavelength, not necessarily that of the wave of frequency v  There is another 

way of proceeding that adds physical content and clarifies the meaning. 

 The characteristic length of the photon is the wavelength clλ of the classical 

electromagnetic wave that when quantized by quantum field theory produces photons.  It then 

follows from Eq. (1) that the characteristic classical Coulomb energy of a photon is  

2

cl

e

λ
,       (10) 

Where clλ  as the wavelength of the classical electromagnetic wave obeys v cλ = . 
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This longitudinal Coulomb energy is equivalent to a mass energy so it does not have the same 

quantized frequency as the massless photon.  This can be seen by equating hv , the energy of a 

photon to 
2e

λ
.  This results in the relation  
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which, if v cλ =  (as is assumed in Wikipedia) becomes 
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 which is obviously incorrect.  

The longitudinal Coulomb energy must be quantized by elementary DeBroglie quantization, the 

same way mass energy is quantized.  This yields the result 
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From this it follows that 
2
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, the same as our earlier Eq. (7) for a charged particle but 

with clλ  replacing eclR .  Now since it is true that cl clv cλ =  for a classical electromagnetic wave 

so clλ  can be replaced in Eq. (12) by 
cl

c

v
.  The result then is (returning to angular frequencies), 
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or replacing clλ  by clcτ  Eq. (13) becomes  

DB clω τ α=       (14) 

Where the angular frequency DBω  is a quantum frequency and clτ  is the classical period of the 

electromagnetic wave.  This is precisely the same as in the particle case. 
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2. Summary and Conclusion 

 A longitudinal characteristic Coulomb energy is defined as 
2e

l
 where l is the 

characteristic classical length 
2
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 associated with a charged particle, and is clλ , the classical 

electromagnetic wavelength associated with the photon.  The characteristic Coulomb energies 

are then subjected to DeBroglie quantization.  The product of the angular quantum frequencies 

and characteristic classical lengths for both the charged particle and the photon yields the 

velocity 
2e

h
, independently of the hydrogen atom.  Substituting the classical periods associated 

with the classical lengths yields the fine structure constant in both cases.  It follows that α  

couples the quantum frequency and a classical period for both a charged particle and the photon-

-between longitudinal and transverse modes of energy as is the case in quantum electrodynamics, 

so these results are consistent with the historical nature of α  as a coupling constant between 

leptons and the quantized electromagnetic field.  But the explicit form of this constant as 

coupling a quantum frequency and a classical period does not appear to have been previously 

recognized.  The Lorentz invariance of the coupling and the use of both quantum and classical 

electromagnetic theory indicate that α  is determined as an intersection of these three theories.   


