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Abstract

The peridynamic model of solid mechanics is a nonlocal theory containing a length
scale. It is based on direct interactions between particles separated by a finite distance.
The maximum interaction distance provides a length scale for the material model. This
paper addresses the question of whether the peridynamic model for an elastic material
reproduces the classical local model as this length scale goes to zero. We show that if
the deformation, constitutive model, and any nonhomogeneities are sufficiently smooth,
then the peridynamic stress tensor converges in this limit to a Piola-Kirchhoff stress
tensor that is a function only of the local deformation gradient tensor, as in the classi-
cal theory. This limiting Piola-Kirchhoff stress tensor field is differentiable and obeys
the classical partial differential equation for the equation of motion. The limiting, or
collapsed, stress-strain model is hyperelastic and obeys the conditions in the classical
theory for angular momentum balance, isotropy, and objectivity, provided the original
peridynamic constitutive model satisfies these conditions.
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1 Introduction

The peridynamic model of solid mechanics [1] has been proposed as a way to model de-
formation of bodies in which discontinuities, especially cracks, occur spontaneously. The
objective is to replace the classical continuum description, which assumes a smooth defor-
mation, so that the basic equations remain applicable even when singularites appear in the
deformation. This is in contrast to the classical approach, in which the inability to evaluate
the spatial derivatives on a crack leads to the need for the special techniques of fracture
mechanics. The basic equations of the peridynamic model include the equation of motion,

ρ(x)ü(x, t) = Lu(x, t) + b(x, t) ∀x ∈ B, t ≥ 0, (1)

Lu(x, t) =
∫
B

{
T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉

}
dVx′

where B is the reference configuration of the body, ρ is the density in the reference con-
figuration, u is the displacement, and b is the body force density. The term Lu(x, t) is a
functional of displacement that represents the internal force density (per unit volume) that
is exerted on x by other points in the body. T[x, t] is the force state at x at time t. The
force state is a mapping from a bond x′ − x to a force density (per unit volume squared)
at x. In the peridynamic theory, a material model is provided by a relation between the
deformation near x and the force state at x:

T = T̂(Y)

where T̂ is the constitutive model and Y is the deformation state. Y is a mapping from
bonds connected to any x to the deformed images of these bonds:

Y[x, t]〈x′ − x〉 = Φ(x′, t)−Φ(x, t) = (x′ + u(x′, t))− (x + u(x, t)) (2)

where Φ is the deformation. We assume that there is a number δ > 0 called the horizon
such that

|ξ| > δ =⇒ T〈ξ〉 = 0. (3)

The purpose of this paper is to demonstrate the convergence of the peridynamic model to
the classical (local) theory of continuum mechanics. To do this, the equation of motion (1)
is expressed in terms of the peridynamic stress tensor field, resulting in a partial differential
equation that is formally identical to the classical equation of motion. The elastic material
model is parameterized by the length scale δ in such a way that the bulk properties of the
material under homogeneous deformation are independent of δ. Subject to the assumptions
of sufficient smoothness of the deformation and of the constitutive model, it is then shown
that in the limit of small δ, the peridynamic stress tensor field approaches a limit ν0

that is a differentiable function of x, thus supplying the Piola-Kirchhoff stress tensor field
corresponding to the classical formulation of the equation of motion. This Piola-Kirchhoff
stress tensor is a function of the (local) deformation gradient tensor.

We further show that the functional Lu approaches ∇ · ν0, where ∇· denotes the di-
vergence operator. The Cauchy stress tensor corresponding to ν0 is symmetric whenever
the underlying peridynamic constitutive model T̂ satisfies the appropriate condition for
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balance of angular momentum. Isotropy and objectivity of ν0 also hold whenever T̂ has
these properties.

Convergence of the peridynamic equations in the limit of small δ, as well as other
important results related to well-posedness and uniqueness, was established by Emmrich and
Weckner [2] for the special case of a linear, isotropic material within the bond-based version
of the peridynamic theory. This version differs from the more general state-based theory
considered in the present paper in that in the bond-based theory, internal forces within a
body occur only due to central force interactions between pairs of particles. One implication
of the bond-based theory is that the bulk properties of a linear isotropic microelastic material
necessarily have a Poisson ratio of 1/4. The development in [2] relies on the linearity of
the problem. In contrast, the present paper takes a more direct approach that exploits
the peridynamic stress tensor [3] and is more generally applicable to nonlinear constitutive
models and large deformations.

2 Peridynamic states

A peridynamic state of order m is a mapping that associates with each bond a tensor of
order m. A state of order 0 is called a scalar state, a state of order 1 is called a vector state,
and a state of order 2 is called a tensor state. The set of all vector states is denoted V.
A number of notational conveniences have been introduced in [4] for manipulating states.
Some of the more important notation for present purposes is summarized below. In the
following, A and B are vector states, C is a second order tensor, and v is a vector. The
product of a tensor with a vector state is

(CA)〈ξ〉 = C(A〈ξ〉), (4)

the product of a tensor state with a vector is

(Av)〈ξ〉 = (A〈ξ〉)v,

and the dot product of two vector states is

A •B =
∫
H

A〈ξ〉 ·B〈ξ〉 dVξ (5)

where the symbol · denotes the usual Cartesian scalar product of two vectors in R3 and H
is a neighborhood of 0 with radius δ. Expressed in component form, the dot product of two
vector states is written as

A •B =
∫
H

Ai〈ξ〉Bi〈ξ〉 dVξ

where the Ai〈ξ〉 are the components of A〈ξ〉 in an orthonormal basis, and where the sum-
mation convention is in effect. The composition of two vector states is defined by

(A ◦B)〈ξ〉 = A〈B〈ξ〉〉.

Suppose Ψ : V → R is a scalar valued function of a vector state A. For any differential dA,
let dΨ be defined by

dΨ = Ψ(A + dA)−Ψ(A).
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If there exists a vector state valued function ∇Ψ(·) such that

dΨ = ∇Ψ(A) • dA (6)

for any A and dA, then ∇Ψ is called the Frechet derivative of Ψ, and Ψ is said to be
differentiable. Geometrically, the Frechet derivative of Ψ can be thought of as the state
whose “direction” results in the maximum incremental change in Ψ, thus providing an
infinite-dimensional analogue of the familiar directional derivative of a function on R3.

If Ψ is a state-valued function of a vector state A, then its Frechet derivative ∇Ψ〈·, ·〉
is a rank 2 state field, which means simply that it is a function of two bonds rather than
one. In this case we alter the notation for the dot product so that the Frechet derivative is
defined by

dΨ〈ξ〉 = (∇Ψ • dA)〈ξ〉 =
∫
H
∇Ψ〈ξ, ξ′〉dA〈ξ′〉 dVξ′

for any differential state dA. ∇Ψ has order one higher than Ψ; thus, if Ψ ∈ V,

dΨi〈ξ〉 =
∫
H

(∇Ψ〈ξ, ξ′〉)ijdAj〈ξ′〉 dVξ′ . (7)

3 Peridynamic stress tensor

Previous results [3] have shown that the peridynamic equation of motion (1) expressed in
the form

ρ(x)ü(x, t) =
∫
B
f(x′,x) dVx′ + b(x, t) (8)

is equivalent to the following partial differential equation:

ρ(x)ü(x, t) = ∇ · ν(x, t) + b(x, t) (9)

where the symbol ∇· denotes the divergence operator. Here, ν is the peridynamic stress
tensor field defined by

ν(x, t) =
1
2

∫
S

∫ δ

0

∫ δ

0
(y + z)2 f(x + ym,x− zm, t)⊗m dz dy dΩm (10)

where ⊗ denotes the dyadic product of two vectors: (a⊗b)ij = aibj . The vector f(p,q, t) is
the force density (per unit volume squared) that point p ∈ B exerts on q ∈ B. S is the unit
sphere, and dΩm is a differential solid angle in the direction of unit vector m. It is required
as a consequence of Newton’s third law that f(q,p, t) = −f(p,q, t). If this condition is met,
then the equations (9) and (10) hold regardless of how f is determined, i.e., regardless of
the deformation and constitutive model. So, if we set

f(p,q, t) = T[q, t]〈p− q〉 −T[p, t]〈q− p〉 (11)

as indicated by comparing (1) with (8), then the peridynamic stress tensor defined in (10)
takes the form

ν(x, t) =
∫
S

∫ δ

0

∫ δ

0
(y + z)2 T[x− zm, t]〈(y + z)m〉 ⊗m dz dy dΩm. (12)
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T appears only once in this expression, rather than twice as in (11), because both terms turn
out to be equal after evaluating the triple integral. In the following sections, the peridynamic
stress tensor field given by (12), under suitable parameterization of the constitutive model,
will be shown to converge to an admissible Piola-Kirchhoff stress tensor field in the classical
theory, provided the deformation and constitutive model are sufficiently smooth.

4 Parameterization of an elastic peridynamic material model

A useful constitutive model is the elastic peridynamic material, defined by

T = T̂(Y) = ∇Ŵ (Y) ∀Y ∈ V (13)

where Ŵ : V → R is a differentiable (in the sense of Frechet derivatives) scalar valued
function called the strain energy density function. (In the remainder of this paper, T and
T̂ represent the same force state, but the latter denotes a function of Y, while the former
denotes particular values of this function.) Peridynamic elastic materials have many of the
same properties as elastic materials in the classical theory, including the reversible storage
of energy supplied by external loads.

A key consideration in the process of shrinking the horizon to zero is that the bulk
properties of the material should be unchanged during this process. To ensure this, a
family of strain energy density functions parameterized by the horizon will be defined such
that all these functions have the same response under homogeneous deformation.

Let an elastic material model be given with horizon δ and strain energy density function
Ŵ ; thus the force state is provided by (13). This reference horizon δ will be held fixed
throughout the remaining discussion. Consider a family of peridynamic elastic materials
parameterized by variable horizon δ′, and define

s = δ′/δ,

so the shrinkage process means taking the limit as s → 0. Let the strain energy density
functions in this family of materials be given by

Ŵ s(Y) = Ŵ (E(Y)) ∀Y ∈ V (14)

where E(Y) is the enlarged deformation state defined by

E(Y)〈ξ〉 = s−1Y〈sξ〉 ∀ξ ∈ H, ∀Y ∈ V (15)

(Figure 1). If the deformation happens to be homogeneous with deformation gradient tensor
F, then by (2), Y〈ξ〉 = Fξ; hence from (15),

E(Y)〈ξ〉 = s−1Y〈sξ〉 = s−1Fsξ = Y〈ξ〉.

To derive T̂
s

from (14), consider a differential increment dY in the deformation state, and
apply (13) and the defining relation of the Frechet derivative (6):

dW = T̂
s
(Y) • dY = T̂(E(Y)) • dE(Y).
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From this, (15), and the definition of the dot product for vector states (5),∫
Hs

Ts〈ζ〉 · dY〈ζ〉 dVζ =
∫
H

T〈ξ〉 · s−1dY〈sξ〉 dVξ

where Hs is a sphere of radius sδ, Ts = T̂
s
(Y), and T = T̂(E(Y)). Changing the dummy

variable of integration on the left side from ζ to sξ results in∫
H

Ts〈sξ〉 · dY〈sξ〉 (s3dVξ) =
∫
H

T〈ξ〉 · s−1dY〈sξ〉 dVξ,

hence ∫
H

(
Ts〈sξ〉 − s−4T〈ξ〉

)
· dY〈sξ〉 dVξ = 0. (16)

Since (16) holds for any dY, it follows that

T̂
s
(Y)〈sξ〉 = s−4T̂(E(Y))〈ξ〉 ∀ξ ∈ H,∀Y ∈ V. (17)

To account for nonhomogeneity of a body, x will now be included explicitly in the consti-
tutive model: T = T̂(Y,x).

5 Convergence of the peridynamic stress field

A given deformation Φ is assumed, independent of s. The following assumptions will be
made that permit a meaningful comparison between the classical and peridynamic models:

(i) The deformation Φ is a twice continuously differentiable function of x and t.

(ii) The constitutive model T̂(Y,x) is a continuously differentiable function of Y and x.

Let F denote the usual deformation gradient tensor field,

F(x, t) =
∂Φ
∂x

(x, t) ∀x ∈ B, t ≥ 0. (18)

In the following discussion, the time variable t will be omitted to make the notation more
concise. Assumption (i) immediately implies

Y[x]〈ξ〉 = F(x)ξ + O(|ξ|2) ∀ξ ∈ H. (19)

Consider the behavior of Y near some x. For any increment ∆x, define ∆Y by

∆Y = Y[x + ∆x]−Y[x]. (20)

Suppose both of the following hold:

∆x = O(s), ξ = O(s). (21)

Using assumption (i), equations (2), (18), (20), (21), and the first three terms of a Taylor
series with remainder,

∆Y〈ξ〉 = (∇xF(x))∆xξ + O(s3) or ∆Y i〈ξ〉 = Fij,k(x)∆xjξk + O(s3). (22)

11
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Figure 1. Enlarged deformation state E(Y) maps the part of
the deformation state Y within the small horizon sδ to the original
horizon δ.
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The notation Fij,k = ∂Fij/∂xk is used in (22). Before proceeding further, we record the
following result.

Lemma 1. Let a be a positive number, and let g : [0, a] → R be an integrable function.
Let

I(a) =
∫ a

0

∫ a

z
g(p) dp dz. (23)

Then
I(a) =

∫ a

0
pg(p) dp. (24)

Proof. Define k(z, a) =
∫ a
z g(p)dp; thus I(a) =

∫ a
0 k(z, a)dz. Differentiating this,

dI

da
= k(a, a) +

∫ a

0

∂k

∂a
(z, a) dz = 0 +

∫ a

0
g(a) dz = ag(a).

This is a first order differential equation whose solution under the initial condition I(0) = 0,
which is implied by (23), is given by (24). 2

Now consider the limiting behavior of the peridynamic stress tensor νs(x) as s becomes
small. From the definition of the peridynamic stress tensor (12),

νs(x) =
∫
S

∫ sδ

0

∫ sδ

0
(y + z)2 T̂

s
(Y[x− zm],x− zm)〈(y + z)m〉 ⊗m dz dy dΩm. (25)

Using (17) and the change of dummy variables y → sy and z → sz,

νs(x) =
∫
S

∫ δ

0

∫ δ

0
(sy + sz)2

(
s−4T̂(E(Y[x− szm]),x− szm)〈(y + z)m〉

)
⊗m (sdz) (sdy) dΩm

=
∫
S

∫ δ

0

∫ δ

0
(y + z)2T̂(E(Y[x− szm]),x− szm)〈(y + z)m〉

⊗m dz dy dΩm. (26)

Now observe that by assumption (i) and equations (15), (19), (20), and (22) with ∆x =
−szm, we have that for any ξ ∈ H,

E(Y[x− szm])〈ξ〉 = s−1Y[x− szm]〈sξ〉
= s−1 (Y[x]〈sξ〉+ ∆Y〈sξ〉)
= s−1

(
Y[x]〈sξ〉+ (∇xF(x))(−szm)(sξ) + O(s3)

)
= s−1

(
Y[x]〈sξ〉+ O(s2)

)
= s−1

(
F(x)sξ + O(s2)

)
= F(x)ξ + O(s). (27)

From (27),
E(Y[x− szm]) = F(x)X + O(s) (28)
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where X is the identity vector state defined by

X〈ξ〉 = ξ ∀ξ. (29)

To further simplify the integrand in (26), use (28) and assumption (ii) to yield

T̂(E(Y[x− szm]),x− szm)〈(y + z)m〉
= T̂(F(x)X + O(s),x− szm)〈(y + z)m〉
= T̂(F(x)X,x)〈(y + z)m〉+ O(s). (30)

From (26) and (30),

νs(x) =
∫
S

∫ δ

0

∫ δ

0
(y + z)2T̂(F(x)X,x)〈(y + z)m〉 ⊗m dz dy dΩm + O(s)

=
∫
S

∫ δ

0

∫ δ

z
p2T̂(F(x)X,x)〈pm〉 ⊗m dp dz dΩm + O(s) (31)

where the change of variables p = y + z has been used. The upper limit of integration on
the integral over p is shown as δ instead of δ + z because of (3).

Using Lemma 1 in (31) with g(p) = p2T̂(F(x)X,x)〈pm〉, it follows that

νs(x) =
∫
S

∫ δ

0
p3T̂(F(x)X,x)〈pm〉 ⊗m dp dΩm + O(s)

=
∫
H
|p| T̂(F(x)X,x)〈p〉 ⊗m dVp + O(s)

=
∫
H

T̂(F(x)X,x)〈p〉 ⊗ p dVp + O(s)

in which the change of variables p = pm was used, hence dVp = p2dΩm. Now define the
collapsed peridynamic stress tensor field ν0 by

ν0(x) =
∫
H

T̂(F(x)X,x)〈ξ〉 ⊗ ξ dVξ ∀x ∈ B. (32)

Geometrically, F(x)X represents the deformation state Y that would be obtained by observ-
ing the deformation at x “through a microscope” as suggested by Figure 1. The discussion
above has established the following proposition.

Proposition 1. Let B be an open region occupied by the reference configuration of an
elastic peridynamic body, and let Φ be a deformation of B. Let Ŵ be a strain energy
density function for the body with horizon δ, and let T̂ be the corresponding constitutive
model derived from (13). Suppose that assumptions (i) and (ii) are satisfied. Let a family
of constitutive models parameterized by horizon δ′ = sδ be given by (14) for any s > 0. Let
νs be the corresponding family of peridynamic stress tensor fields defined by (25). Then

lim
s→0

νs = ν0 on B

where ν0 is the tensor field defined by (32).
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The condition stated in Proposition 1 that B is an open set is required so that for sufficiently
small s, the neighborhood of radius s centered at any x ∈ B is contained in B. This is needed
for statements such as (19) to be true. Proposition 1 still holds if assumption (i) is replaced
by the weaker assumption that Φ is a continuously differentiable function of x. However, the
stronger assumptions will be needed for subsequent results below. The following proposition
follows immediately from (32) and assumptions (i) and (ii):

Proposition 2. Under the conditions of Proposition 1, ν0 is a continuously differentiable
function of x.

6 Convergence of the divergence of the peridynamic stress
field

Propositions 1 and 2 do not by themselves establish that the integral in the equation of mo-
tion (1) converges to ∇·ν0 as s → 0. However, this convergence will now be shown directly.
Let a deformation Φ on B be given. Define the following functional of u, parameterized by
s:

Ls
u(x) =

∫
Hs

{Ts[x]〈ζ〉 −Ts[x + ζ]〈 − ζ〉} dVζ ∀x ∈ B. (33)

(Time labels will be omitted to simplify the notation, although it is understood that u can
depend on time.) From (17) and (33), and setting ζ = sξ,

Ls
u(x) =

∫
H

{
s−4T[x]〈ξ〉 − s−4T[x + sξ]〈 − ξ〉

}
s3dVξ

= s−1

∫
H
{T[x]〈ξ〉 −T[x + sξ]〈 − ξ〉} dVξ (34)

where
T[x] = T̂(E(Y[x]),x), T[x + sξ] = T̂(E(Y[x + sξ]),x).

Setting
∆Y = Y[x + sξ]−Y[x], ∆E = E(Y[x + sξ])−E(Y[x]),

it follows from (15) that
∆E = E(∆Y). (35)

Applying (15) again to write out ∆E explicitly, and using (22) to approximate the result
for small s, for any ξ, ξ′ ∈ H,

∆E〈ξ′〉 = s−1∆Y〈sξ′〉
= s−1

(
(∇xF)(sξ′)(sξ) + O(s3)

)
= s(∇xF)ξ′ξ + O(s2)

or
∆E = s(∇xFX)ξ + O(s2). (36)
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(Recall from (29) that FX〈ξ′〉 = Fξ′. The identity vector state X does not depend on x.)
To evaluate the second term in the integrand in (34), use assumptions (i) and (ii), the first
two terms of a Taylor series with remainder, and (36) to obtain

T[x + sξ] = T[x] +∇T̂ •∆E + (∇xT̂)sξ + O(s2)

= T[x] + s(∇T̂ • (∇xFX) +∇xT̂)ξ + O(s2). (37)

The term ∇xT̂ refers to the explicit dependence of T̂(Y,x) on x due to nonhomogeneity.
Using (37) in (34) with the change of dummy variable ξ → −ξ, applying the chain rule,
and noting that the zero-order terms T[x]〈ξ〉 and T[x]〈 − ξ〉 cancel each other when the
integration is carried out,

Ls
u(x) =

∫
H

(∇T̂ • (∇xFX) +∇xT̂)〈ξ〉ξ dVξ + O(s)

= ∇ ·
∫
H

T̂(FX,x)〈ξ〉 ⊗ ξ dVξ + O(s)

= ∇ · ν0(x) + O(s) (38)

where ∇· denotes the divergence operator and the last step comes from (32). This proves
the following result.

Proposition 3. Under the conditions of Proposition 1,

lim
s→0

Ls
u = ∇ · ν0 on B

where Ls
u is defined by (33).

7 Constitutive model for the collapsed peridynamic stress
tensor

Since (32) provides an expression for the collapsed peridynamic stress tensor at x that
depends only on F(x), we can now define a constitutive model for this ν0 as follows:

ν̂0(F,x) =
∫
H

T̂(FX,x)〈ξ〉 ⊗ ξ dVξ ∀F ∈ L, ∀x ∈ B (39)

where L is the set of all second order tensors. Recall that FX is a vector state; see (4) and
(29) regarding notation.

Equation (39) is a local constitutive model in the sense that it depends on the defor-
mation only through the deformation gradient tensor. (It can also depend on x explicitly
to reflect nonhomogeneity of the body.) As shown by Proposition 3 and (1), the ν0 field
provided by this constitutive model describes the internal forces to which the peridynamic
model converges (subject to assumptions (i) and (ii)) in the limit of small horizon. In the
remainder of this section we consider the properties of ν̂0, in the sense of the classical the-
ory, with regard to angular momentum balance, isotropy, and objectivity. The function ν̂0

will be referred to below as a “stress-strain relation” to distinguish it from a peridynamic
constitutive model and to reflect its dependence on the strain-like quantity F.
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7.1 Angular momentum balance

To complete the identification of ν̂0 defined by (39) with the Piola-Kirchhoff stress in the
classical theory, we now investigate the properties of the corresponding Cauchy stress defined
by

τ̂ 0 =
1
J

ν̂0FT , J = detF ∀F ∈ L (40)

where it is assumed that J 6= 0 [5]. As described in [4], a sufficient condition for global
balance of angular momentum to hold in a peridynamic body is that the constitutive model
obey ∫

H
T̂(Y,x)〈ξ〉 ×Y〈ξ〉 dVξ = 0 ∀Y ∈ V, ∀x ∈ B (41)

or using components,

εijk

∫
H

T̂ j(Y,x)〈ξ〉Y k〈ξ〉 dVξ = 0 ∀Y ∈ V, ∀x ∈ B (42)

where εijk is the alternator symbol. Geometrically, the condition (41) means that force
states individually satisfy balance of angular momentum; i.e., the forces on x due to T[x]
exert no net moment.

Proposition 4. Under the conditions of Proposition 1, suppose T̂ satisfies (41). For any
x ∈ B, let ν̂0 be given by (39), and let τ̂ 0 be given by (40). Then τ̂ 0 is symmetric on B.

Proof. Setting Y = FX in (42) and using (39) leads to

0 = εijk

∫
H

T̂ j(FX,x)〈ξ〉(FX)km〈ξ〉 dVξ

= εijk

∫
H

T̂ j(FX,x)〈ξ〉Fkmξm dVξ

= εijk

(∫
H

T̂ j(FX,x)〈ξ〉ξm dVξ

)
Fkm

= εijkν̂
0
jmFkm

= Jεijkτ̂
0
jk

so τ̂0
jk = τ̂0

kj . 2

7.2 Isotropy

If Q is any orthogonal tensor, then the corresponding orthogonal state Q is defined by

Q〈ξ〉 = Qξ ∀ξ.

As discussed in [4], the definition of isotropy in a peridynamic body is

T̂(Y ◦Q,x) = T̂(Y,x) ◦Q ∀Y ∈ V, ∀x ∈ B (43)
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or
T̂(Y ◦Q,x)〈ξ〉 = T̂(Y,x)〈Qξ〉 ∀Y ∈ V, ∀x ∈ B, ∀ξ ∈ H

for all orthogonal states Q.

Proposition 5. Under the conditions of Proposition 1, suppose T̂ satisfies (43). For any
x ∈ B, let ν̂0 be given by (39). Then

ν̂0(FQ,x) = ν̂0(F,x)Q (44)

for all orthogonal tensors Q and all F.

Proof. For any orthogonal tensor Q and any F, using (39) and (43) and the change of
variables ξ′ = Qξ,

ν̂0(FQ,x) =
∫
H

T̂(FQX,x)〈ξ〉 ⊗ ξ dVξ

=
∫
H

T̂(FX ◦Q,x)〈ξ〉 ⊗ ξ dVξ

=
∫
H

T̂(FX,x)〈Qξ〉 ⊗ ξ dVξ

=
∫
H

T̂(FX,x)〈ξ′〉 ⊗ (QT ξ′) dVξ′

=
(∫

H
T̂(FX,x)〈ξ′〉 ⊗ ξ′ dVξ′

)
Q

= ν̂0(F,x)Q. 2

Equation (44) is the condition for isotropy of a (local) material model in the classical theory
in terms of the Piola-Kirchhoff stress [5]. So, the conclusion is that if the peridynamic
material model is isotropic, then the corresponding ν̂0 is also isotropic in the sense of the
classical theory.

7.3 Objectivity

As discussed in [4], the definition of an objective peridynamic body is

T̂(Q ◦Y,x) = Q ◦ T̂(Y,x) ∀Y ∈ V, ∀x ∈ B (45)

or
T̂(Q ◦Y,x)〈ξ〉 = QT̂(Y,x)〈ξ〉 ∀Y ∈ V, ∀x ∈ B, ∀ξ ∈ H

for all orthogonal states Q.

Proposition 6. Under the conditions of Proposition 1, suppose T̂ satisfies (45). For any
x ∈ B, let ν̂0 be given by (39). Then

ν̂0(QF,x) = Qν̂0(F,x) (46)
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for all orthogonal tensors Q and all F.

Proof. For any orthogonal tensor Q and any F, from (39) and (45),

ν̂0(QF,x) =
∫
H

T̂(QFX,x)〈ξ〉 ⊗ ξ dVξ

=
∫
H

T̂(Q ◦ FX,x)〈ξ〉 ⊗ ξ dVξ

=
∫
H

QT̂(FX,x)〈ξ〉 ⊗ ξ dVξ

= Qν̂0(F,x). 2

(46) is the condition for a classical constitutive model to be objective expressed in terms
of the Piola-Kirchhoff stress [5]. From this result, the conclusion is that if a peridynamic
constitutive model is objective, then the corresponding ν̂0 is also objective in the sense of
the classical theory.

7.4 Hyperelasticity

In this section it will be shown that ν̂0 is derivable from a scalar valued strain energy density
function via the usual tensor gradient within the classical theory. To do this, define the
collapsed strain energy density function Ŵ 0 : L × B → R by

Ŵ 0(F,x) = Ŵ (FX,x) ∀F ∈ L, ∀x ∈ B. (47)

where Ŵ is the peridynamic strain energy density function in (13). Denote the tensor
gradient by ∂/∂F, thus (

∂Ŵ 0

∂F

)
ij

=
∂Ŵ 0

∂Fij
. (48)

Proposition 7. Let a peridynamic elastic strain energy density function Ŵ : V × B → R
for a nonhomogeneous body B be given, and let T = ∇Ŵ , where ∇ denotes the Frechet
derivative. Let ν̂0 be given by (39). Let Ŵ 0 be defined by (47). Then

ν̂0(F,x) =
∂Ŵ 0

∂F
(F,x) ∀F ∈ L, ∀x ∈ B. (49)

Proof. Since
(FX)k〈ξ〉 = Fkmξm,

it follows that (
∂(FX)

∂F
〈ξ〉
)

kij

=
∂

∂Fij
(Fkmξm) = δikδjmξm = δikξj . (50)
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By definition, Ŵ is differentiable. From (47) and the chain rule,

∂Ŵ 0

∂F
= ∇Ŵ • ∂(FX)

∂F
.

Expressing this in component form, expanding out the dot product, and using (50),(
∂Ŵ 0

∂F

)
ij

=
∫
H

T k〈ξ〉
(

∂(FX)
∂F

〈ξ〉
)

kij

dVξ

=
∫
H

T k〈ξ〉δikξj dVξ

=
∫
H

T i〈ξ〉ξj dVξ

= ν̂0
ij

where the final step comes from (39). 2

One implication of Proposition 7 is that the collapsed peridynamic stress tensor ν̂0 is
complementary to F, which is consistent with the properties of Piola-Kirchhoff stress tensors
in the classical theory for hyperelastic materials.

8 Discussion

The above development has shown that under the assumptions (i) and (ii), the elastic
peridynamic model converges to the classical model in the limit of small horizon. Starting
with any peridynamic strain energy function Ŵ , and defining a family of peridynamic
materials by (14) for variable horizon while holding the bulk properties fixed, the limiting
stress tensor is provided by (39). This is a local stress-strain relation. The stress tensor is
obtainable from the tensor gradient of the strain energy density function defined by (47).
The resulting stress field ν0 satisfies the classical equation of motion,

ρ(x)ü(x, t) = ∇ · ν0(x, t) + b(x, t).

As shown in Section 7, the stress-strain relation (39) satisfies the conditions on the Piola-
Kirchhoff stress in the classical theory for angular momentum balance, isotropy, and objec-
tivity, provided the underlying peridynamic model meets these conditions.

If the assumptions (i) and (ii) fail to be satisfied, i.e., if either the deformation fails
to be twice continuously differentiable, or if the peridynamic constitutive model fails to be
continuously differentiable, then the conclusions regarding convergence to a classical model
in the limit of small horizon fail to hold. In this case, the peridynamic equations continue to
be applicable at any finite horizon, but convergence properties in the limit of zero horizon
are undetermined.
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