IQI 04, Seminar 3

Produced with pdflatex and xfig

- Oracles
- The Classical Parity Problem.
- Quantum Oracles.
- The Quantum Parity Problem.
- Gate Set Limitations.
- Universality.

E. "Manny" Knill: knill@boulder.nist.gov

• A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

$$x \quad \mathcal{O} \quad \mathcal{O}(x)$$

• A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

$$x \quad \mathcal{O} \quad \mathcal{O}(x)$$

Examples:

- $\mathcal{O}_1(x) = 1$ if x is a true statement about numbers, $\mathcal{O}_1(x) = 0$ otherwise.

• A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

$$x \quad \mathcal{O} \quad \mathcal{O}(x)$$

Examples:

- $\mathcal{O}_1(x) = 1$ if x is a true statement about numbers,

$$\mathcal{O}_1(x) = 0$$
 otherwise.

- $\mathcal{O}_2(x) = 1$ if x is a satisfiable boolean formula, $\mathcal{O}_2(x) = 0$ otherwise.

• A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

$$x \quad \mathcal{O} \quad \mathcal{O}(x)$$

Examples:

- $\mathcal{O}_1(x) = 1$ if x is a true statement about numbers,

$$\mathcal{O}_1(x) = 0$$
 otherwise.

- $\mathcal{O}_2(x) = 1$ if x is a satisfiable boolean formula,

$$\mathcal{O}_2(x) = 0$$
 otherwise.

... Oracles can be used to add computational power.

• A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

$$x \quad \mathcal{O} = \mathcal{O}(x)$$

Examples:

- $\mathcal{O}_1(x) = 1$ if x is a true statement about numbers,

$$\mathcal{O}_1(x) = 0$$
 otherwise.

- $\mathcal{O}_2(x) = 1$ if x is a satisfiable boolean formula,

$$\mathcal{O}_2(x) = 0$$
 otherwise.

... Oracles can be used to add computational power.

- $\mathcal{O}_3(x)$ computes an unknown parity of x. Determine the parity.

• A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

$$x \quad \mathcal{O} = \mathcal{O}(x)$$

Examples:

- $\mathcal{O}_1(x) = 1$ if x is a true statement about numbers,

$$\mathcal{O}_1(x) = 0$$
 otherwise.

- $\mathcal{O}_2(x) = 1$ if x is a satisfiable boolean formula,

$$\mathcal{O}_2(x) = 0$$
 otherwise.

... Oracles can be used to add computational power.

- $\mathcal{O}_3(x)$ computes an unknown parity of x. Determine the parity.

... Oracles can act as black boxes to be analyzed.

• Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$

 $\leftarrow |\mathsf{Bot}| \!\rightarrow\! | \!\rightarrow\! |\mathsf{TOC}$

- Bit strings may be identified with 0-1 vectors. Example: $0110 \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. **Example:** $P(ollo) = (1, 1, 1, 1)(0, 1, 1, 0)^T$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(ollo) = (1, 1, 1, 1)(0, 1, 1, 0)^T = 2 \mod 2 = 0$

- Bit strings may be identified with 0-1 vectors. Example: $0110 \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. **Example:** $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$

 \ldots computations with 0-1 entities are modulo 2.

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$... computations with 0-1 entities are modulo 2.
- Parity of a substring. Examples: $P_{(0,1,0,1)}(0110) = (0,1,0,1)(0,1,1,0)^T$

 $\leftarrow |\mathsf{Top}|\mathsf{Bot}| \!\rightarrow\! | \!\rightarrow\! |\mathsf{TOC}$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$... computations with 0-1 entities are modulo 2.
- Parity of a substring. Examples: $P_{(0,1,0,1)}(olio) = (0,1,0,1)(0,1,1,0)^T = 1 \mod 2 = 1$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$... computations with 0-1 entities are modulo 2.
- Parity of a substring. Examples: $P_{(1,1,1,0)}(ollo) = (1,1,1,0)(0,1,1,0)^T$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$... computations with 0-1 entities are modulo 2.
- Parity of a substring. Examples: $P_{(1,1,1,0)}(oldowno) = (1,1,1,0)(0,1,1,0)^T = 2 \mod 2 = 0$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$... computations with 0-1 entities are modulo 2.
- Parity of a substring. Examples: $P_{\mathbf{p}}(\mathbf{s}) = \mathbf{p} \cdot \mathbf{s}$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$... computations with 0-1 entities are modulo 2.
- Parity of a substring. Examples: $P_{\mathbf{p}}(\mathbf{s}) = \mathbf{p} \cdot \mathbf{s}$
- A parity oracle.

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$... computations with 0-1 entities are modulo 2.
- Parity of a substring. Examples: $P_{\mathbf{p}}(\mathbf{s}) = \mathbf{p} \cdot \mathbf{s}$
- A parity oracle. $(a, b)^T$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$... computations with 0-1 entities are modulo 2.
- Parity of a substring. Examples: $P_{\mathbf{p}}(\mathbf{s}) = \mathbf{p} \cdot \mathbf{s}$
- A parity oracle. $(a, b)^T$ $(1, 0)^T$ $(p_1, p_2)(a, b)^T$ $(p_1, p_2)(1, 0)^T = p_1$

- Bit strings may be identified with 0-1 vectors. Example: $oiio \leftrightarrow (0, 1, 1, 0)^T$
- The parity of bitstring s is the number of 1's in s modulo 2. Example: $P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$... computations with 0-1 entities are modulo 2.
- Parity of a substring. Examples: $P_{\mathbf{p}}(\mathbf{s}) = \mathbf{p} \cdot \mathbf{s}$
- A parity oracle. $(a, b)^T$ $(1, 0)^T$ $(0, 1)^T$ $(p_1, p_2)(a, b)^T$ $(p_1, p_2)(1, 0)^T = p_1$ $(p_1, p_2)(0, 1)^T = p_2$

Reversible Oracles

• Reversible oracles add the answer to a register.

Reversible Oracles

• Reversible oracles add the answer to a register.

• Simulation, using a standard oracle.

Reversible Oracles

• Reversible oracles add the answer to a register.

• Simulation, using a standard oracle.

• Is the simulation equivalent to a reversible oracle?

Quantum Oracles

• A Quantum Oracle is the linear extension of a classical reversible oracle.

$$\sum_{x,b} \alpha_{x,b} |x\rangle_{|} |b\rangle_{0} \left\{ \mathcal{O} \left\{ \mathcal{O} \right\} \right\} \sum_{x,b} \alpha_{x,b} |x\rangle_{|} |b + \mathcal{O}(x)\rangle_{0} \right\}$$

Quantum Oracles

• A Quantum Oracle is the linear extension of a classical reversible oracle.

$$\sum_{x,b} \alpha_{x,b} |x\rangle_{|} |b\rangle_{0} \left\{ \underbrace{\mathcal{O}}_{\mathcal{O}} \left\{ \sum_{x,b} \alpha_{x,b} |x\rangle_{|} |b + \mathcal{O}(x)\rangle_{0} \right\} \right\}$$

• Quantum oracles versus classical reversible oracles?

Quantum Oracles

• A Quantum Oracle is the linear extension of a classical reversible oracle.

$$\sum_{x,b} \alpha_{x,b} |x\rangle_{|} |b\rangle_{0} \left\{ \underbrace{\mathcal{O}}_{\mathcal{O}} \left\{ \sum_{x,b} \alpha_{x,b} |x\rangle_{|} |b + \mathcal{O}(x)\rangle_{0} \right\} \right\}$$

- Quantum oracles versus classical reversible oracles?
 - Does it help to use a quantum computer to analyze a classical reversible oracle?

Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.
- Def.: $\begin{cases} |+\rangle = \frac{1}{\sqrt{2}} (|\mathfrak{o}\rangle + |\mathfrak{l}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}} (|\mathfrak{o}\rangle |\mathfrak{l}\rangle) \end{cases}$
- Which logical states $|\mathfrak{ab}\rangle_{AB}$ have a minus sign in $|+\rangle_{A}|+\rangle_{B}$

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.

Def.:
$$\begin{cases} |+\rangle = \frac{1}{\sqrt{2}}(|\mathfrak{o}\rangle + |\mathfrak{l}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}}(|\mathfrak{o}\rangle - |\mathfrak{l}\rangle) \end{cases}$$

- Which logical states $|ab\rangle_{AB}$ have a minus sign in

 $|+\rangle_{A}|+\rangle_{B}, |+\rangle_{A}|-\rangle_{B}$

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.

Def.:
$$\begin{cases} |+\rangle = \frac{1}{\sqrt{2}} (|\mathfrak{o}\rangle + |\mathfrak{l}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}} (|\mathfrak{o}\rangle - |\mathfrak{l}\rangle) \end{cases}$$

– Which logical states $|\mathfrak{ab}\rangle_{\!\!AB}$ have a minus sign in

$$+\lambda_{\rm A}|+\lambda_{\rm B}, |+\lambda_{\rm A}|-\lambda_{\rm B}, |-\lambda_{\rm A}|+\lambda_{\rm B}$$

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.
- Def.: $\begin{cases} |+\rangle = \frac{1}{\sqrt{2}} (|\mathbf{0}\rangle + |\mathbf{1}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}} (|\mathbf{0}\rangle |\mathbf{1}\rangle) \end{cases}$
- Which logical states $|\mathfrak{ab}\rangle_{AB}$ have a minus sign in

 $|+\rangle_{A}|+\rangle_{B}, |+\rangle_{A}|-\rangle_{B}, |-\rangle_{A}|+\rangle_{B}, |-\rangle_{A}|-\rangle_{B}?$

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.
 - Which logical states $|\mathfrak{ab}\rangle_{AB}$ have a minus sign in $|+\rangle_{A}|+\rangle_{B}$, $|+\rangle_{A}|-\rangle_{B}$, $|-\rangle_{A}|+\rangle_{B}$, $|-\rangle_{A}|-\rangle_{B}$?
 - Ans.: States with odd parity w.r.t. the $|-\rangle$ -qubits.

Def.: $\begin{cases} |+\rangle = \frac{1}{\sqrt{2}}(|\mathfrak{0}\rangle + |\mathfrak{1}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}}(|\mathfrak{0}\rangle - |\mathfrak{1}\rangle) \end{cases}$

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.
- Def.: $\begin{cases} |+\rangle = \frac{1}{\sqrt{2}}(|\mathfrak{0}\rangle + |\mathfrak{1}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}}(|\mathfrak{0}\rangle |\mathfrak{1}\rangle) \end{cases}$ - Which logical states $|\mathfrak{ab}\rangle_{AB}$ have a minus sign in

 $|+\rangle_{A}|+\rangle_{B}, |+\rangle_{A}|-\rangle_{B}, |-\rangle_{A}|+\rangle_{B}, |-\rangle_{A}|-\rangle_{B}?$

- Ans.: States with odd parity w.r.t. the $|-\rangle$ -qubits.
- Are these states distinguishable?

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.
 - Which logical states $|ab\rangle_{AB}$ have a minus sign in $|+\rangle_{A}|+\rangle_{B}$, $|+\rangle_{A}|-\rangle_{B}$, $|-\rangle_{A}|+\rangle_{B}$, $|-\rangle_{A}|-\rangle_{B}$?
 - Ans.: States with odd parity w.r.t. the $|-\rangle$ -qubits.
 - Are these states distinguishable?

Product state convention: Multiply states associated with different qubit lines.

Def.: $\begin{cases} |+\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle - |\mathbf{1}\rangle) \end{cases}$

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.
 - Which logical states $|\mathfrak{ab}\rangle_{AB}$ have a minus sign in $|+\rangle_{A}|+\rangle_{B}$, $|+\rangle_{A}|-\rangle_{B}$, $|-\rangle_{A}|+\rangle_{B}$, $|-\rangle_{A}|-\rangle_{B}$?
 - Ans.: States with odd parity w.r.t. the $|-\rangle$ -qubits.
 - Are these states distinguishable?

Def.: $\begin{cases} |+\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle - |\mathbf{1}\rangle) \end{cases}$

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.
 - Which logical states $|ab\rangle_{AB}$ have a minus sign in $|+\rangle_{A}|+\rangle_{B}$, $|+\rangle_{A}|-\rangle_{B}$, $|-\rangle_{A}|+\rangle_{B}$, $|-\rangle_{A}|-\rangle_{B}$?
 - Ans.: States with odd parity w.r.t. the $|-\rangle$ -qubits.
 - Are these states distinguishable?

Def.: $\begin{cases} |+\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle - |\mathbf{1}\rangle) \end{cases}$

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 1. Parity and the Hadamard basis.
- Def.: $\begin{cases} |+\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle) \\ |-\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle |\mathbf{1}\rangle) \end{cases}$ - Which logical states $|\mathfrak{ab}\rangle_{AB}$ have a minus sign in

 $|+\rangle_{A}|+\rangle_{B}, |+\rangle_{A}|-\rangle_{B}, |-\rangle_{A}|+\rangle_{B}, |-\rangle_{A}|-\rangle_{B}?$

- Ans.: States with odd parity w.r.t. the $|-\rangle$ -qubits.
- Are these states distinguishable?

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

$$|x\rangle_{l} \qquad |x\rangle_{l} \qquad |x\rangle_$$

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

$$\frac{1}{\sqrt{2}}(|\mathfrak{o}_{0}-|\mathfrak{l}_{0}) - \frac{1}{\sqrt{2}}(|\mathfrak{o}_{0}-|\mathfrak{l}_{0})$$

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- $|-\rangle$ is an eigenstate of not with eigenvalue -1.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- $|-\rangle$ is an eigenstate of not with eigenvalue -1.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

 $|-\rangle$ is an eigenstate of not with eigenvalue -1.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- $|-\rangle$ is an eigenstate of not with eigenvalue -1.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

- $|-\rangle$ is an eigenstate of not with eigenvalue -1.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

1.&2.

 $\begin{array}{c|c} A & |(-)^{p_1}\rangle_{A}|(-)^{p_2}\rangle_{B} \\ \hline \\ B & (p_1, p_2) \\ \hline \\ O & |-\rangle_{O} \\ |+\rangle_{A}|+\rangle_{B}|-\rangle_{O} \end{array}$

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

1.&2.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

• One query suffices for solving the *n*-qubit parity problem.

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

• One query suffices for solving the *n*-qubit parity problem.

... note use of "quantum parallelism".

Gate picture	Symbol	Matrix form
0	$\mathbf{prep}(0)$	
0/1 b	$\mathbf{meas}(Z \mapsto b)$	

Gate picture	Symbol	Matrix form
0	$\mathbf{prep}(\mathfrak{o})$	
0/1 b	$\mathbf{meas}(Z \mapsto b)$	
-	not	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Z	sgn	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Gate picture	Symbol	Matrix form
0	$\mathbf{prep}(0)$	
0/1 b	$\mathbf{meas}(Z {\mapsto} b)$	
	not	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Z	sgn	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
н	had	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$

Gate picture	Symbol	Matrix form
0	$\mathbf{prep}(\mathfrak{o})$	
0/1 b	$\mathbf{meas}(Z \mapsto b)$	
	not	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Z	sgn	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
н	had	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$
A B	cnot ^(AB)	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

 $\leftarrow |\mathsf{Top}|\mathsf{Bot}| \rightarrow | \rightarrow |\mathsf{TOC}|$

Gate picture	Symbol	Matrix form
0	$\mathbf{prep}(\mathfrak{o})$	
0/1 b	$\mathbf{meas}(Z \mapsto b)$	
	not	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Z	sgn	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
н	had	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$
A B	cnot ^(AB)	$\begin{bmatrix} 00 \\ AB \\ 00 \\ AB \\ 01 \\ AB \\ 10 \\ AB \\ 11 \\ AB \\ AB \\ AB \\ AB \\ AB \\ AB$

• Consider not, sgn, had and cnot. They satisfy:

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

$$U^{-1}$$
 V U

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Applications: Network rearrangements.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Applications: Network rearrangements.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Applications: Network rearrangements.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...
- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had. had^{-1} .sgn.had = not, had^{-1} .not.had = sgn.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had.

$$\begin{array}{c|c} \textbf{H} & \textbf{Z} & \textbf{H} \\ \hline \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \underbrace{\frac{1}{\sqrt{2}}}_{\cdot \sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{array}$$

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had.

$$\begin{array}{c|c} \textbf{H} & \textbf{Z} & \textbf{H} \\ \hline \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{array}$$

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had.

$$\begin{array}{c|c} H & Z & H \\ \hline \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had.

$$\begin{array}{c|c} H & Z & H \\ \hline \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ \hline \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \end{array}$$

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had. had⁻¹.sgn.had = not, had⁻¹.not.had = sgn.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had. had^{-1} .sgn.had = not, had^{-1} .not.had = sgn.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had. had⁻¹.sgn.had = not, had⁻¹.not.had = sgn.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1$.
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had. had^{-1} .sgn.had = not, had^{-1} .not.had = sgn.

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $U^2 = 1.$
 - Conjugation properties...

- sgn and not: not^{-1} .sgn.not = -sgn, sgn^{-1} .not.sgn = -not.
- sgn and not conjugated by had. had^{-1} .sgn.had = not, had^{-1} .not.had = sgn.
- sgn and not conjugated by cnot. $\operatorname{cnot}^{(AB)^{-1}}.\operatorname{not}^{(B)}.\operatorname{cnot}^{(AB)} = \operatorname{not}^{(B)},$ $\operatorname{cnot}^{(AB)^{-1}}.\operatorname{sgn}^{(A)}.\operatorname{cnot}^{(AB)} = \operatorname{sgn}^{(A)},$ $\operatorname{cnot}^{(AB)^{-1}}.\operatorname{not}^{(A)}.\operatorname{cnot}^{(AB)} = \operatorname{not}^{(A)}.\operatorname{not}^{(B)},$ $\operatorname{cnot}^{(AB)^{-1}}.\operatorname{sgn}^{(B)}.\operatorname{cnot}^{(AB)} = \operatorname{sgn}^{(A)}.\operatorname{sgn}^{(B)}$

Preservation of Products of "Flips"

 Products of not and sgn are preserved under conjugation by operators composed of cnot's and had's.

Preservation of Products of "Flips"

 Products of not and sgn are preserved under conjugation by operators composed of cnot's and had's.

- What is the power of this gate set?

 $\begin{array}{c} 12 \\ \leftarrow |\mathsf{Bot}| {\rightarrow} | {\rightarrow} | \mathsf{TOC} \end{array}$

- Define an operator U by linear extension of $U|x\rangle_{\!\!\mathsf{S}} = \sum_y u_{yx}|y\rangle_\!\!\mathsf{S}$
 - To be well-defined, $U|x\rangle_{s}$ must be a state:

$$\sum_{y} |u_{yx}|^2 = 1.$$

- Define an operator U by linear extension of $U|x\rangle_{\!\!\mathsf{S}} = \sum_y u_{yx}|y\rangle_\!\!\mathsf{S}$
 - To be well-defined, $U|x\rangle_{\rm S}$ must be a state: $\sum_{y} |u_{yx}|^2 = 1.$

- U's linear extension must preserve states.

- Define an operator U by linear extension of $U|x\rangle_{\!\!\mathsf{S}} = \sum_y u_{yx}|y\rangle_\!\!\mathsf{S}$
 - To be well-defined, $U|x\rangle_{s}$ must be a state:

$$\sum_{y} |u_{yx}|^2 = \mathbf{1}.$$

- U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{s} + e^{i\phi}|z\rangle_{s}) = \sum_{y}\frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{s}$.

- Define an operator U by linear extension of $U|x\rangle_{\!\!\rm S} = \sum_y u_{yx}|y\rangle_\!\!\rm S$
 - To be well-defined, $U|x\rangle_{\rm S}$ must be a state: $\sum_{y} |u_{yx}|^2 = 1.$
 - U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{\!\!S} + e^{i\phi}|z\rangle_{\!\!S}) = \sum_{y}\frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{\!\!S}.$ $1 = \sum_{y}\frac{1}{2}|u_{yx} + e^{i\phi}u_{yz}|^2$

- Define an operator U by linear extension of $U|x\rangle_{\!\!\rm S} = \sum_y u_{yx}|y\rangle_\!\!\rm S$
 - To be well-defined, $U|x\rangle_{s}$ must be a state: $\sum_{y} |u_{yx}|^{2} = 1.$
 - U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{\!\!S} + e^{i\phi}|z\rangle_{\!\!S}) = \sum_{y}\frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{\!\!S}.$ $1 = \sum_{y}\frac{1}{2}|u_{yx} + e^{i\phi}u_{yz}|^2$ $= \sum_{y}\frac{1}{2}(|u_{yx}|^2 + |u_{yz}|^2 + e^{i\phi}\bar{u}_{yx}u_{yz} + e^{-i\phi}u_{yx}\bar{u}_{yz})$

- Define an operator U by linear extension of $U|x\rangle_{\!\!\rm S} = \sum_y u_{yx}|y\rangle_\!\!{\rm S}$
 - To be well-defined, $U|x\rangle$ must be a state: $\sum_{y} |u_{yx}|^2 = 1.$
 - U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{\varsigma} + e^{i\phi}|z\rangle_{\varsigma}) = \sum_{y}\frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{\varsigma}$. $1 = \sum_{y}\frac{1}{2}|u_{yx} + e^{i\phi}u_{yz}|^{2}$ $= \sum_{y}\frac{1}{2}(|u_{yx}|^{2} + |u_{yz}|^{2} + e^{i\phi}\bar{u}_{yx}u_{yz} + e^{-i\phi}u_{yx}\bar{u}_{yz})$ $= 1 + 2\sum_{y}\operatorname{Re}(e^{i\phi}\bar{u}_{yx}u_{yz})$

- Define an operator U by linear extension of $U|x\rangle_{\!\!\rm S} = \sum_y u_{yx}|y\rangle_\!\!\rm S$
 - To be well-defined, $U|x\rangle_{s}$ must be a state: $\sum_{y} |u_{yx}|^{2} = 1.$
 - U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{s} + e^{i\phi}|z\rangle_{s}) = \sum_{y}\frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{s}$.

$$1 = \sum_{y} \frac{1}{2} |u_{yx} + e^{i\phi} u_{yz}|^{2}$$

= $\sum_{y} \frac{1}{2} (|u_{yx}|^{2} + |u_{yz}|^{2} + e^{i\phi} \bar{u}_{yx} u_{yz} + e^{-i\phi} u_{yx} \bar{u}_{yz})$
= $1 + 2 \sum_{y} \operatorname{Re}(e^{i\phi} \bar{u}_{yx} u_{yz})$
= $1 + 2 \operatorname{Re}(e^{i\phi} \sum_{y} \bar{u}_{yx} u_{yz}).$

- Define an operator U by linear extension of $U|x\rangle_{\!\!\rm S} = \sum_y u_{yx}|y\rangle_\!\!{\rm S}$
 - To be well-defined, $U|x\rangle_{s}$ must be a state: $\sum_{y} |u_{yx}|^{2} = 1.$
 - U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{s} + e^{i\phi}|z\rangle_{s}) = \sum_{y}\frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{s}$.

$$1 = \sum_{y} \frac{1}{2} |u_{yx} + e^{i\phi} u_{yz}|^{2}$$

= $\sum_{y} \frac{1}{2} (|u_{yx}|^{2} + |u_{yz}|^{2} + e^{i\phi} \bar{u}_{yx} u_{yz} + e^{-i\phi} u_{yx} \bar{u}_{yz})$
= $1 + 2 \sum_{y} \operatorname{Re}(e^{i\phi} \bar{u}_{yx} u_{yz})$
= $1 + 2\operatorname{Re}(e^{i\phi} \sum_{y} \bar{u}_{yx} u_{yz})$.
Hence $\sum_{y} \bar{u}_{yx} u_{yz} = 0$.

- Define an operator U by linear extension of $U|x\rangle_{\!\!\rm S} = \sum_y u_{yx}|y\rangle_\!\!\rm S$
 - To be well-defined, $U|x\rangle_{s}$ must be a state: $\sum_{y} |u_{yx}|^{2} = 1.$
 - U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{\!S} + e^{i\phi}|z\rangle_{\!S}) = \sum_{y}\frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{\!S}$. Hence $\sum_{y} \bar{u}_{yx}u_{yz} = 0$.

- Define an operator U by linear extension of $U|x\rangle_{\!\!\rm S} = \sum_y u_{yx}|y\rangle_\!\!{\rm S}$
 - To be well-defined, $U|x\rangle_{\rm S}$ must be a state: $\sum_{y}|u_{yx}|^2={\sf 1}.$
 - U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{\!\!S} + e^{i\phi}|z\rangle_{\!\!S}) = \sum_{y} \frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{\!\!S}.$ Hence $\sum_{y} \bar{u}_{yx}u_{yz} = 0.$
- U is unitary.

- Define an operator U by linear extension of $U|x\rangle_{\!\!\rm S} = \sum_y u_{yx}|y\rangle_\!\!\rm S$
 - To be well-defined, $U|x\rangle_{\rm S}$ must be a state: $\sum_{y} |u_{yx}|^2 = 1.$
 - U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{s} + e^{i\phi}|z\rangle_{s}) = \sum_{y}\frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{s}$. Hence $\sum_{y} \bar{u}_{yx}u_{yz} = 0$.
- U is unitary. In matrix form with $x \in \{1, 2, \dots, N\}$: U^{\dagger} U^{\dagger} U^{\dagger} I $\begin{pmatrix} \bar{u}_{11} & \bar{u}_{21} & \dots & \bar{u}_{N1} \\ \bar{u}_{12} & \bar{u}_{22} & \dots & \bar{u}_{N2} \end{pmatrix}$ $\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1N} \\ u_{21} & u_{22} & \dots & u_{2N} \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \end{pmatrix}$

a_{11}	a_{21}	• • •	a_N		u_{11}	a_{12}	• • •	a_{1N}	1	–	0	• • •	0	١
$ar{u}_{12}$	$ar{u}_{22}$	•••	$ar{u}_{N2}$		u_{21}	u_{22}	•••	u_{2N}	_	0	1	•••	0	
:	÷	·	:		÷	:	••.	:	_	:	:	•••	÷	
\bar{u}_{1N}	$ar{u}_{2N}$	•••	$ar{u}_{NN}$,)	$igvee u_{N1}$	u_{N2}	•••	u_{NN} ,	/	0	0	•••	1	ļ

- Define an operator U by linear extension of $U|x\rangle_{\!\!S} = \sum_y u_{yx}|y\rangle_\!\!S$
 - To be well-defined, $U|x\rangle_{s}$ must be a state: $\sum_{y} |u_{yx}|^{2} = 1.$
 - U's linear extension must preserve states. Consider $U\frac{1}{\sqrt{2}}(|x\rangle_{s} + e^{i\phi}|z\rangle_{s}) = \sum_{y}\frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle_{s}$. Hence $\sum_{y} \bar{u}_{yx}u_{yz} = 0$.
- U is unitary. In matrix form with $x \in \{1, 2, \dots, N\}$: U^{\dagger} $\begin{pmatrix} \bar{u}_{11} & \bar{u}_{21} & \dots & \bar{u}_{N1} \\ \bar{u}_{12} & \bar{u}_{22} & \dots & \bar{u}_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{u}_{1N} & \bar{u}_{2N} & \dots & \bar{u}_{NN} \end{pmatrix}$ $\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1N} \\ u_{21} & u_{22} & \dots & u_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ u_{N1} & u_{N2} & \dots & u_{NN} \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$
 - Should every unitary operator be implementable?

• Should every unitary operator be implementable?

 $\begin{array}{c} 13 \\ \leftarrow |\mathsf{Bot}| {\rightarrow} | {\rightarrow} | \mathsf{TOC} \end{array}$

- Should every unitary operator be implementable?
- A set of gates is *universal* if every unitary *n*-qubit operator can be implemented with a network.

- Should every unitary operator be implementable?
- A set of gates is *universal* if every unitary *n*-qubit operator can be implemented with a network.

- Should every unitary operator be implementable?
- A set of gates is *universal* if every unitary *n*-qubit operator can be implemented with a network.

- Other notions of universality:
 - Allow use of ancillas and measurements.

- Should every unitary operator be implementable?
- A set of gates is *universal* if every unitary *n*-qubit operator can be implemented with a network.

- Other notions of universality:
 - Allow use of ancillas and measurements.
 - Allow approximation to within arbitrarily small error.

• Can any *n*-qubit unitary operator be a gate?

 $\begin{array}{c} 14 \\ \leftarrow |\text{Bot}| {\rightarrow} | {\rightarrow} | \text{TOC} \end{array}$

- Can any *n*-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.

- Can any *n*-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.
 - Locality: Elementary gates act on at most three qubits.

- Can any *n*-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.
 - Locality: Elementary gates act on at most three qubits. The Toffoli gate: $c^2not^{(ABC)} = \underline{if} A\&B \underline{then} not^{(C)}$.

- Can any *n*-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.
 - Locality: Elementary gates act on at most three qubits. The Toffoli gate: $c^2not^{(ABC)} = \underline{if} A\&B \underline{then} not^{(C)}$.

- Can any *n*-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.
 - Locality: Elementary gates act on at most three qubits. The Toffoli gate: $c^2not^{(ABC)} = \underline{if} A\&B \underline{then} not^{(C)}$.

- Can any *n*-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.
 - Locality: Elementary gates act on at most three qubits. The Toffoli gate: $c^2 not^{(ABC)} = \underline{if} A\&B \underline{then} not^{(C)}$.

- Can any *n*-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.
 - Locality: Elementary gates act on at most three qubits. The Toffoli gate: $c^2not^{(ABC)} = \underline{if} A\&B \underline{then} not^{(C)}$.

- Discreteness: Finite gate sets are preferred.

- Can any *n*-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.
 - Locality: Elementary gates act on at most three qubits. The Toffoli gate: $c^2not^{(ABC)} = \underline{if} A\&B \underline{then} not^{(C)}$.

- Discreteness: Finite gate sets are preferred.
- Fault tolerance: Elementary gates should be experimentally verifiable and readily made stable.

- Can any *n*-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.
 - Locality: Elementary gates act on at most three qubits. The Toffoli gate: $c^2not^{(ABC)} = \underline{if} A\&B \underline{then} not^{(C)}$.

- Discreteness: Finite gate sets are preferred.
- Fault tolerance: Elementary gates should be experimentally verifiable and readily made stable.
- ... but do investigate other gate sets.

Contents

Title: IQI 04, Seminar 3		.0
Classical Oracles	. top	.1
Parity Oracles	.top	.2
Reversible Oracles	. top	.3
Quantum Oracles	. top	.4
The Quantum Parity Problem I	. top	.5
The Quantum Parity Problem II		.6
The Quantum Parity Problem III		. 7
Summary of Gates Introduced So Far	. top	. 8

Properties of Reversible Gates I	top.	9
Properties of Reversible Gates II		. 10
Preservation of Products of "Flips"	top	.11
Physically Allowed Reversible Operators	top	. 12
Universality for Gate Sets	top	. 13
Locality Constraints on Gate Sets	top	. 14
References		16

References

- [1] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26:1411–1473, 1997.
- [2] L. K. Grover. Quantum computers can search arbitrarily large databases by a single query. *Phys. Rev. Lett.*, 79:4709–4712, 1997.
- [3] D. A. Meyer. Sophisticated quantum search without entanglement. *Phys. Rev. Lett.*, 85:2014–2017, 2000.

