IQI 04, Seminar 3

- Oracles
- The Classical Parity Problem.
- Quantum Oracles.
- The Quantum Parity Problem.
- Gate Set Limitations.
- Universality.

Classical Oracles

- A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

Classical Oracles

- A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

Examples:

- $\mathcal{O}_{1}(x)=1$ if x is a true statement about numbers, $\mathcal{O}_{1}(x)=0$ otherwise.

Classical Oracles

- A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

Examples:

- $\mathcal{O}_{1}(x)=1$ if x is a true statement about numbers, $\mathcal{O}_{1}(x)=0$ otherwise.
- $\mathcal{O}_{2}(x)=1$ if x is a satisfiable boolean formula, $\mathcal{O}_{2}(x)=0$ otherwise.

Classical Oracles

- A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

Examples:

- $\mathcal{O}_{1}(x)=1$ if x is a true statement about numbers,
$\mathcal{O}_{1}(x)=0$ otherwise.
- $\mathcal{O}_{2}(x)=1$ if x is a satisfiable boolean formula,
$\mathcal{O}_{2}(x)=0$ otherwise.
... Oracles can be used to add computational power.

Classical Oracles

- A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

Examples:

- $\mathcal{O}_{1}(x)=1$ if x is a true statement about numbers,
$\mathcal{O}_{1}(x)=0$ otherwise.
- $\mathcal{O}_{2}(x)=1$ if x is a satisfiable boolean formula,
$\mathcal{O}_{2}(x)=0$ otherwise.
... Oracles can be used to add computational power.
- $\mathcal{O}_{3}(x)$ computes an unknown parity of x.

Determine the parity.

Classical Oracles

- A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

Examples:

- $\mathcal{O}_{1}(x)=1$ if x is a true statement about numbers,
$\mathcal{O}_{1}(x)=0$ otherwise.
- $\mathcal{O}_{2}(x)=1$ if x is a satisfiable boolean formula,
$\mathcal{O}_{2}(x)=0$ otherwise.
... Oracles can be used to add computational power.
- $\mathcal{O}_{3}(x)$ computes an unknown parity of x.

Determine the parity.
... Oracles can act as black boxes to be analyzed.

Parity Oracles

- Bit strings may be identified with 0-1 vectors.
Example:
Ollo $\leftrightarrow(0,1,1,0)^{T}$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { ollo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of l 's in s modulo 2 . Example: $\quad P($ olıo $)=(1,1,1,1)(0,1,1,0)^{T}$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { ollo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of l 's in s modulo 2 . Example: $P($ ollo $)=(1,1,1,1)(0,1,1,0)^{T}=2 \bmod 2=0$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { ollo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of l 's in s modulo 2 . Example: $\quad P(1101)=(1,1,1,1)(1,1,0,1)^{T}$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { ollo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of l 's in s modulo 2 . Example: $\quad P($ ııı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { oııo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of I 's in s modulo 2 . Example: $\quad P($ ıı०ı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$
...computations with 0-1 entities are modulo 2 .

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { oııo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of I 's in s modulo 2 . Example: $\quad P($ ıı०ı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$

$$
\text { . . . computations with 0-1 entities are modulo } 2 .
$$

- Parity of a substring.

Examples:

$$
P_{(0,1,0,1)}(\text { ollo })=(0,1,0,1)(0,1,1,0)^{T}
$$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { oııo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of I 's in s modulo 2 . Example: $\quad P($ ıı०ı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$

$$
\text { . . . computations with 0-1 entities are modulo } 2 .
$$

- Parity of a substring.

Examples:

$$
P_{(0,1,0,1)}(\mathbf{0} \perp 10)=(0,1,0,1)(0,1,1,0)^{T}=1 \bmod 2=1
$$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { oııo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of I 's in s modulo 2 . Example: $\quad P($ ıı०ı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$

$$
\text { ... computations with 0-1 entities are modulo } 2 .
$$

- Parity of a substring.

Examples:

$$
P_{(1,1,1,0)}(\text { olıo })=(1,1,1,0)(0,1,1,0)^{T}
$$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { oııo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of I 's in s modulo 2 . Example: $\quad P($ ıı०ı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$

$$
\text { . . . computations with 0-1 entities are modulo } 2 .
$$

- Parity of a substring.

Examples:

$$
P_{(1,1,1,0)}(\text { olıo })=(1,1,1,0)(0,1,1,0)^{T}=2 \bmod 2=0
$$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { olıo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of I 's in s modulo 2 . Example: $\quad P($ ıı०ı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$
... computations with $0-1$ entities are modulo 2 .
- Parity of a substring.

Examples:

$$
P_{\mathbf{p}}(\mathbf{s})=\mathbf{p} \cdot \mathbf{s}
$$

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { oııo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of I 's in s modulo 2 . Example: $P($ ıloı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$... computations with 0-1 entities are modulo 2 .
- Parity of a substring.

Examples:

$$
P_{\mathbf{p}}(\mathbf{s})=\mathbf{p} \cdot \mathbf{s}
$$

- A parity oracle.

How many "queries" does it take to learn p?

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { oııo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of I 's in s modulo 2 . Example: $\quad P($ ıı०ı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$...computations with 0-1 entities are modulo 2 .
- Parity of a substring.

Examples:

$$
P_{\mathbf{p}}(\mathbf{s})=\mathbf{p} \cdot \mathbf{s}
$$

- A parity oracle. $(a, b)^{T}$

How many "queries" does it take to learn p?

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { oııo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of I 's in s modulo 2 . Example: $\quad P($ ıloı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$...computations with 0-1 entities are modulo 2 .
- Parity of a substring.

Examples:

$$
P_{\mathbf{p}}(\mathbf{s})=\mathbf{p} \cdot \mathbf{s}
$$

- A parity oracle.

$$
\begin{gathered}
(a, b)^{T} \\
(1,0)^{T}
\end{gathered}
$$

$$
\begin{aligned}
& \left(p_{1}, p_{2}\right)(a, b)^{T} \\
& \left(p_{1}, p_{2}\right)(1,0)^{T}=p_{1}
\end{aligned}
$$

How many "queries" does it take to learn p?

Parity Oracles

- Bit strings may be identified with 0-1 vectors.

$$
\text { Example: } \quad \text { olıo } \leftrightarrow(0,1,1,0)^{T}
$$

- The parity of bitstring s is the number of r 's in s modulo 2 . Example: $\quad P($ ıı०ı $)=(1,1,1,1)(1,1,0,1)^{T}=3 \bmod 2=1$...computations with 0-1 entities are modulo 2 .
- Parity of a substring.

Examples:

$$
P_{\mathbf{p}}(\mathbf{s})=\mathbf{p} \cdot \mathbf{s}
$$

- A parity oracle.

$$
\begin{array}{lll}
(a, b)^{T} & \mathbf{p} & \left(p_{1}, p_{2}\right)(a, b)^{T} \\
(1,0)^{T} & \left(p_{1}, p_{2}\right)(1,0)^{T}=p_{1} \\
(0,1)^{T} & \left(p_{1}, p_{2}\right)(0,1)^{T}=p_{2}
\end{array}
$$

How many "queries" does it take to learn p?

Reversible Oracles

- Reversible oracles add the answer to a register.

Reversible Oracles

- Reversible oracles add the answer to a register.

- Simulation, using a standard oracle.

Reversible Oracles

- Reversible oracles add the answer to a register.

- Simulation, using a standard oracle.

- Is the simulation equivalent to a reversible oracle?

Quantum Oracles

- A Quantum Oracle is the linear extension of a classical reversible oracle.
$\sum_{x, b} \alpha_{x, b}|x\rangle_{1}|b\rangle_{0}\{\sim \mathcal{O}, \mathcal{O}$

Quantum Oracles

- A Quantum Oracle is the linear extension of a classical reversible oracle.
$\sum_{x, b} \alpha_{x, b}|x\rangle_{1}|b\rangle_{0}\{\sim \mathcal{O}, ~ \mathcal{O}$
- Quantum oracles versus classical reversible oracles?

Quantum Oracles

- A Quantum Oracle is the linear extension of a classical reversible oracle.
$\sum_{x, b} \alpha_{x, b}|x\rangle_{\mid}|b\rangle_{0}\left\{\begin{array}{l}\square \mathcal{O}\end{array}\right\} \sum_{x, b} \alpha_{x, b}|x\rangle|b+\mathcal{O}(x)\rangle_{0}$
- Quantum oracles versus classical reversible oracles?
- Does it help to use a quantum computer to analyze a classical reversible oracle?

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{~}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{~}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{~}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{~}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

$$
\left.\left.\left|+\lambda_{A}\right|+\right\rangle_{B}, \quad\left|+\lambda_{A}\right|-\right\rangle_{B}
$$

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{1}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{1}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

$$
\left.\left.\left|+\lambda_{A}\right|+\right\rangle_{B}, \quad\left|+\lambda_{A}\right|-\right\rangle_{B},\left|-\lambda_{A}\right|+\lambda_{B}
$$

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{1}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{1}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

$$
\left|+\lambda_{A}\right|+\lambda_{B},\left|+\lambda_{A}\right|-\lambda_{B},\left|-\lambda_{A}\right|+\lambda_{B}, \quad\left|-\lambda_{A}\right|-\lambda_{B} ?
$$

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{~}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{~}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

$$
\left|+\lambda_{A}\right|+\lambda_{B},\left|+\lambda_{A}\right|-\lambda_{B},\left|-\lambda_{A}\right|+\lambda_{B}, \quad\left|-\lambda_{A}\right|-\lambda_{B} ?
$$

- Ans.: States with odd parity w.r.t. the $|-\rangle$-qubits.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{1}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{~}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

$$
\left|+\lambda_{A}\right|+\lambda_{B},\left|+\lambda_{A}\right|-\lambda_{B},\left|-\lambda_{A}\right|+\lambda_{B}, \quad\left|-\lambda_{A}\right|-\lambda_{B} ?
$$

- Ans.: States with odd parity w.r.t. the $|-\rangle$-qubits.
- Are these states distinguishable?

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{1}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{~}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

$$
\left|+\lambda_{A}\right|+\lambda_{B}, \quad\left|+\lambda_{A}\right|-\lambda_{B},\left|-\lambda_{A}\right|+\lambda_{B}, \quad\left|-\lambda_{A}\right|-\lambda_{B} ?
$$

- Ans.: States with odd parity w.r.t. the $|-\rangle$-qubits.
- Are these states distinguishable?

Product state convention:
Multiply states associated with different qubit lines.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{1}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{~}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

$$
\left|+\lambda_{A}\right|+\lambda_{B},\left|+\lambda_{A}\right|-\lambda_{B},\left|-\lambda_{A}\right|+\lambda_{B}, \quad\left|-\lambda_{A}\right|-\lambda_{B} ?
$$

- Ans.: States with odd parity w.r.t. the $|-\rangle$-qubits.
- Are these states distinguishable?

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{1}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{~}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

$$
\left|+\lambda_{A}\right|+\lambda_{B},\left|+\lambda_{A}\right|-\lambda_{B},\left|-\lambda_{A}\right|+\lambda_{B}, \quad\left|-\lambda_{A}\right|-\lambda_{B} ?
$$

- Ans.: States with odd parity w.r.t. the $|-\rangle$-qubits.
- Are these states distinguishable?

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

1. Parity and the Hadamard basis.

$$
\text { Def.: }\left\{\begin{array}{l}
|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|\mathbf{1}\rangle) \\
|-\rangle=\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle-|\mathbf{~}\rangle)
\end{array}\right.
$$

- Which logical states $|\mathfrak{a b}\rangle_{A B}$ have a minus sign in

$$
\left|+\lambda_{A}\right|+\lambda_{B},\left|+\lambda_{A}\right|-\lambda_{B},\left|-\lambda_{A}\right|+\lambda_{B}, \quad\left|-\lambda_{A}\right|-\lambda_{B} ?
$$

- Ans.: States with odd parity w.r.t. the $|-\rangle$-qubits.
- Are these states distinguishable?

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

$$
\frac{1}{\sqrt{2}}\left(|0\rangle_{0}+|\mathbf{1}\rangle_{0}\right) \rightleftharpoons \frac{1}{\sqrt{2}}\left(|0\rangle_{0}+|\mathbf{1}\rangle_{0}\right)
$$

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

$$
\frac{1}{\sqrt{2}}\left(|\mathbf{o}\rangle_{0}-|\mathbf{1}\rangle_{0}\right) \rightleftharpoons-\frac{1}{\sqrt{2}}\left(|\mathbf{0}\rangle_{0}-|\mathbf{1}\rangle_{0}\right)
$$

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks.

2. Sign kickback for oracles with one-bit answers.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks. 1.\&2.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks. 1.\&2.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks. 1.\&2.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks. 1.\&2.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks. 1.\&2.

- One query suffices for solving the n-qubit parity problem.

The Quantum Parity Problem

- Promise: \mathcal{O} is a quantum 2-qubit parity oracle. Problem: Determine the parity vector with one query.
- Solution in two tricks. 1.\&2.

- One query suffices for solving the n-qubit parity problem.
... note use of "quantum parallelism".

Summary of Gates Introduced So Far

Summary of Gates Introduced So Far

Gate picture	Symbol	Matrix form
	$\operatorname{prep}(0)$	
0/1 b	$\operatorname{meas}(Z \mapsto b)$	
\bigoplus	not	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(Z)	sgn	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Summary of Gates Introduced So Far

Gate picture	Symbol	Matrix form
0	prep(0)	
-011 b-	meas $(Z \mapsto b)$	
-	not	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(2)	sgn	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
H	had	$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$

Summary of Gates Introduced So Far

Gate picture	Symbol	Matrix form
0	prep(o)	
-11 b	$\operatorname{meas}(Z \mapsto b)$	
\bigoplus	not	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(2)	sgn	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
	had	$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
	$\operatorname{cnot}^{(\mathrm{AB})}$	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$

Summary of Gates Introduced So Far

Gate picture	Symbol	Matrix form
$0\rangle$	$\operatorname{prep}(0)$	
$0 / 1$ b	$\operatorname{meas}(Z \mapsto b)$	
	not	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(z)	sgn	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
H	had	$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
A		$\left.\left\|00 \hat{A}_{A B}\right\| 0\right\|_{A B}\|10\rangle_{A B} \mid 111_{A B}$ $100)_{A B}\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$
	$\operatorname{cnot}^{(A B)}$	

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy: - Only real coefficients.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$=U^{2}=\mathbb{1}$.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
- $U^{2}=\mathbb{1}$.
- Conjugation properties...

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
- $U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$=U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

- Applications: Network rearrangements.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$=U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

- Applications: Network rearrangements.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$=U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

- Applications: Network rearrangements.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$=U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

- Applications: Network rearrangements.

Error effect determination.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$=U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

- Applications: Network rearrangements.

Error effect determination.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$=U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

- Applications: Network rearrangements.

Error effect determination.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

- Applications: Network rearrangements.

Error effect determination.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

- Applications: Network rearrangements.

Error effect determination.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...
- Conjugating V by U gives U^{-1}.V.U.

- Applications: Network rearrangements.

Error effect determination.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
- $U^{2}=\mathbb{1}$.
- Conjugation properties...
- sgn and not: not $^{-1} \cdot$ sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$.sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

$$
\left(\begin{array}{ll}
\mathbb{X} \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{array}\right.
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

$$
\left(\begin{array}{ll}
0 \times-(2)-\mathbb{Z} \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

$$
\underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{\left(\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right)}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

$$
\underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{\left(\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right)}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \leftrightarrow\left(\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right)
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
= Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn^{-1}. not.sgn $=-$ not.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

$$
\begin{aligned}
& \rightarrow \times-(2)-\text { - }- \text { - }-2 \\
& \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn. not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$.sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\text { had }^{-1} \cdot \text { sgn.had }=\text { not, } \text { had }^{-1} \cdot \text { not.had }=\text { sgn. }
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\begin{aligned}
& \text { had }^{-1} \text {. sgn. had }=\text { not }, \text { had }^{-1} \text {. not. had }=\text { sgn. } \\
& \text {, (2) }
\end{aligned}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\begin{aligned}
& \text { had }^{-1} \text {.sgn.had }=\text { not, } \text { had }^{-1} \text {.not.had = sgn. } \\
& \text { H } \\
& \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\begin{aligned}
& \text { had }^{-1} \text {.sgn.had = not, } \text { had }^{-1} \text {.not.had = sgn. } \\
& \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\begin{aligned}
& \text { had }^{-1} \text {.sgn.had = not, } \text { had }^{-1} \text {.not.had = sgn. } \\
& \text { H } \underbrace{\text { H }} \underbrace{\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)} \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\begin{aligned}
& \text { had }^{-1} \text {.sgn.had = not, } \text { had }^{-1} \text {.not.had = sgn. } \\
& \underbrace{\underbrace{1}}_{\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)} \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=1$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn. not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\begin{aligned}
& \text { had }^{-1} \text {.sgn.had }=\text { not, } \text { had }^{-1} \text {.not.had }=\text { sgn. } \\
& \underbrace{\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -1 \\
1 & 1
\end{array}\right)} \frac{1}{\sqrt{2}}
\end{aligned}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\begin{aligned}
& \text { had }^{-1} . \text { sgn.had }=\text { not, } \text { had }^{-1} . \text { not.had }=\text { sgn. } \\
& \text { H (2)- } \mathrm{H} \leftrightarrow-\text { - }
\end{aligned}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\text { had }^{-1} \cdot \text { sgn.had }=\text { not, } \text { had }^{-1} \cdot \text { not } \cdot \text { had }=\text { sgn. }
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn. not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\begin{aligned}
& \text { had }^{-1} \cdot \text { sgn.had }=\text { not, } \text { had }^{-1} \text {. not. had }=\text { sgn. } \\
& \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn. not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\begin{gathered}
\text { had }^{-1} \text {.sgn.had }=\text { not, } \text { had }^{-1} \text {.not.had }=\text { sgn. } \\
\text { H }
\end{gathered}
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn.not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\text { had }^{-1} \cdot \text { sgn.had }=\text { not, } \text { had }^{-1} \cdot \text { not.had }=\text { sgn. }
$$

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
- Only real coefficients.
$-U^{2}=\mathbb{1}$.
- Conjugation properties...

- sgn and not: not $^{-1}$. sgn. not $=-$ sgn, sgn $^{-1}$. not.sgn $=-$ not.
- sgn and not conjugated by had.

$$
\text { had }^{-1} \cdot \text { sgn.had }=\text { not }, \text { had }^{-1} \cdot \text { not } \cdot \text { had }=\text { sgn. }
$$

- sgn and not conjugated by cnot.

$$
\begin{aligned}
& \operatorname{cnot}^{(A B)-1} \cdot \text { not }^{(\mathrm{B}} . \text { cnot }^{(\mathrm{AB})}=\text { not }^{(\mathrm{B})} \text {, } \\
& \text { cnot }^{(A B)-1} \cdot \operatorname{sgn}^{(A)} \cdot \text { cnot }^{(A B)}=\operatorname{sgn}^{(A)} \text {, } \\
& \operatorname{cnot}^{(A B)-1} \cdot \operatorname{not}^{(A)} \cdot \operatorname{cnot}^{(A B)}=\text { not }^{(A)} \cdot \operatorname{not}^{(B)}, \\
& \operatorname{cnot}^{(A B)-1} \cdot \operatorname{sgn}^{(B)} \cdot \text { cnot }^{(A B)}=\operatorname{sgn}^{(A)} \cdot \operatorname{sgn}^{(B)}
\end{aligned}
$$

Preservation of Products of "Flips"

- Products of not and sgn are preserved under conjugation by operators composed of cnot's and had's.

Preservation of Products of "Flips"

- Products of not and sgn are preserved under conjugation by operators composed of cnot's and had's.

- What is the power of this gate set?

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U|x\rangle_{S}=\sum_{y} u_{y x}|y\rangle_{S}
$$

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U|x\rangle_{S}=\sum_{y} u_{y x}|y\rangle_{S}
$$

- To be well-defined, $U|x\rangle_{s}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1
$$

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U|x\rangle_{S}=\sum_{y} u_{y x}|y\rangle_{S}
$$

- To be well-defined, $U|x\rangle_{5}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1
$$

= U's linear extension must preserve states.

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U|x\rangle_{S}=\sum_{y} u_{y x}|y\rangle_{S}
$$

- To be well-defined, $U|x\rangle_{5}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1
$$

= U's linear extension must preserve states.
Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{s}+e^{i \phi}|z\rangle_{s}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{s}$.

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U|x\rangle_{S}=\sum_{y} u_{y x}|y\rangle_{S}
$$

- To be well-defined, $U|x\rangle_{5}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1
$$

= U's linear extension must preserve states.
Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{s}+e^{i \phi}|z\rangle_{s}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{s}$.

$$
1=\sum_{y} \frac{1}{2}\left|u_{y x}+e^{i \phi} u_{y z}\right|^{2}
$$

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U|x\rangle_{S}=\sum_{y} u_{y x}|y\rangle_{S}
$$

- To be well-defined, $U|x\rangle_{5}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1
$$

= U's linear extension must preserve states.
Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{s}+e^{i \phi}|z\rangle_{s}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{s}$.

$$
\begin{aligned}
1 & =\sum_{y} \frac{1}{2}\left|u_{y x}+e^{i \phi} u_{y z}\right|^{2} \\
& =\sum_{y} \frac{1}{2}\left(\left|u_{y x}\right|^{2}+\left|u_{y z}\right|^{2}+e^{i \phi} \bar{u}_{y x} u_{y z}+e^{-i \phi} u_{y x} \bar{u}_{y z}\right)
\end{aligned}
$$

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U\left|x_{\bar{s}}=\sum_{y} u_{y x}\right| y y_{s}
$$

- To be well-defined, $U|x\rangle_{s}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1 .
$$

- U's linear extension must preserve states.

Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{5}+e^{i \phi}|z\rangle_{5}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{5}$.

$$
\begin{aligned}
1 & =\sum_{y} \frac{1}{2}\left|u_{y x}+e^{i \phi} u_{y z}\right|^{2} \\
& =\sum_{y} \frac{1}{2}\left(\left|u_{y x}\right|^{2}+\left|u_{y z}\right|^{2}+e^{i \phi} \bar{u}_{y x} u_{y z}+e^{-i \phi} u_{y x} \bar{u}_{y z}\right) \\
& =1+2 \sum_{y} \operatorname{Re}\left(e^{i \phi} \bar{u}_{y x} u_{y z}\right)
\end{aligned}
$$

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U\left|x_{\bar{s}}=\sum_{y} u_{y x}\right| y y_{s}
$$

- To be well-defined, $U|x\rangle_{s}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1 .
$$

- U's linear extension must preserve states.

Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{5}+e^{i \phi}|z\rangle_{5}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{5}$.

$$
\begin{aligned}
1 & =\sum_{y} \frac{1}{2}\left|u_{y x}+e^{i \phi} u_{y z}\right|^{2} \\
& =\sum_{y} \frac{1}{2}\left(\left|u_{y x}\right|^{2}+\left|u_{y z}\right|^{2}+e^{i \phi} \bar{u}_{y x} u_{y z}+e^{-i \phi} u_{y x} \bar{u}_{y z}\right) \\
& =1+2 \sum_{y} \operatorname{Re}\left(e^{i \phi} \bar{u}_{y x} u_{y z}\right) \\
& =1+2 \operatorname{Re}\left(e^{i \phi} \sum_{y} \bar{u}_{y x} u_{y z}\right) .
\end{aligned}
$$

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U\left|x_{\bar{s}}=\sum_{y} u_{y x}\right| y y_{s}
$$

- To be well-defined, $U|x\rangle_{s}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1 .
$$

- U's linear extension must preserve states.

Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{5}+e^{i \phi}|z\rangle_{5}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{5}$.

$$
\begin{aligned}
1 & =\sum_{y} \frac{1}{2}\left|u_{y x}+e^{i \phi} u_{y z}\right|^{2} \\
& \left.=\left.\sum_{y} \frac{1}{2}| | u_{y x}\right|^{2}+\left|\left.\right|_{y_{y}}\right|^{2}+e^{i \phi} \bar{u}_{y x} u_{y z}+e^{-i \phi} u_{y x} \bar{u}_{y z}\right) \\
& =1+2 \sum_{y} \operatorname{Re}\left(e^{\phi} \bar{u}_{y x} u_{y z}\right) \\
& =1+2 \operatorname{Re}\left(e^{i \phi} \sum_{y} \bar{u}_{y x} u_{y z}\right) .
\end{aligned}
$$

Hence $\sum_{y} \bar{u}_{y x} u_{y z}=0$.

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U|x\rangle_{S}=\sum_{y} u_{y x}|y\rangle_{S}
$$

- To be well-defined, $U|x\rangle_{s}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1
$$

= U's linear extension must preserve states.
Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{s}+e^{i \phi}|z\rangle_{s}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{s}$. Hence $\sum_{y} \bar{u}_{y x} u_{y z}=0$.

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U|x\rangle_{s}=\sum_{y} u_{y x}|y\rangle_{s}
$$

- To be well-defined, $\left.U\right|_{\rangle_{s}}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1 .
$$

- U 's linear extension must preserve states.

Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{5}+e^{i \phi}|z\rangle_{5}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{5}$. Hence $\sum_{y} \bar{u}_{y x} u_{y z}=0$.

- U is unitary.

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U\left|x_{\bar{s}}=\sum_{y} u_{y x}\right| y y_{s}
$$

- To be well-defined, $U \mid x x_{5}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1 .
$$

- U's linear extension must preserve states.

Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{5}+e^{i \phi} \mid z_{5}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{5}$. Hence $\sum_{y} \bar{u}_{y x} u_{y z}=0$.

- U is unitary. In matrix form with $x \in\{1,2, \ldots, N\}$:

$$
\left(\begin{array}{cccc}
U^{\dagger} \\
\bar{u}_{11} & \bar{u}_{21} & \cdots & \bar{u}_{N 1} \\
\bar{u}_{12} & \bar{u}_{22} & \cdots & \bar{u}_{N 2} \\
\vdots & \vdots & \ddots & \vdots \\
\bar{u}_{1 N} & \bar{u}_{2 N} & \cdots & \bar{u}_{N N}
\end{array}\right) \quad\left(\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 N} \\
u_{21} & u_{22} & \ldots & u_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N 1} & u_{N 2} & \cdots & u_{N N}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & \ldots \\
0 \\
0 & 1 & \ldots \\
\vdots & \vdots & \ddots \\
\vdots \\
0 & \cdots & 1
\end{array}\right)
$$

Physically Allowed Reversible Operators

- Define an operator U by linear extension of

$$
U\left|x_{\bar{s}}=\sum_{y} u_{y x}\right| y y_{s}
$$

- To be well-defined, $U \mid x x_{s}$ must be a state:

$$
\sum_{y}\left|u_{y x}\right|^{2}=1 .
$$

- U's linear extension must preserve states.

Consider $U \frac{1}{\sqrt{2}}\left(|x\rangle_{5}+e^{i \phi} \mid z_{5}\right)=\sum_{y} \frac{1}{\sqrt{2}}\left(u_{y x}+e^{i \phi} u_{y z}\right)|y\rangle_{5}$. Hence $\sum_{y} \bar{u}_{y x} u_{y z}=0$.

- U is unitary. In matrix form with $x \in\{1,2, \ldots, N\}$:

$$
\left(\right) \quad\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 N} \\
u_{21} & u_{22} & \ldots & u_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N 1} & u_{N 2} & \ldots & u_{N N}
\end{array}\right)=\left(\begin{array}{cccc}
& \mathbb{1} \\
0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

- Should every unitary operator be implementable?

Universality for Gate Sets

- Should every unitary operator be implementable?

Universality for Gate Sets

- Should every unitary operator be implementable?
- A set of gates is universal if every unitary n-qubit operator can be implemented with a network.

Universality for Gate Sets

- Should every unitary operator be implementable?
- A set of gates is universal if every unitary n-qubit operator can be implemented with a network.

Universality for Gate Sets

- Should every unitary operator be implementable?
- A set of gates is universal if every unitary n-qubit operator can be implemented with a network.

- Other notions of universality:
- Allow use of ancillas and measurements.

Universality for Gate Sets

- Should every unitary operator be implementable?
- A set of gates is universal if every unitary n-qubit operator can be implemented with a network.

- Other notions of universality:
- Allow use of ancillas and measurements.
= Allow approximation to within arbitrarily small error.

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
- "Good" gates are physically realizable in one step.

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
= "Good" gates are physically realizable in one step.
- Locality: Elementary gates act on at most three qubits.

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
- "Good" gates are physically realizable in one step.
- Locality: Elementary gates act on at most three qubits. The Toffoli gate: \mathbf{c}^{2} not $^{(A B C)}=$ if $A \& B$ then $\operatorname{not}^{(C)}$.

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
- "Good" gates are physically realizable in one step.
- Locality: Elementary gates act on at most three qubits. The Toffoli gate: \mathbf{c}^{2} not $^{(\mathrm{ABC})}=$ if $\mathrm{A} \& \mathrm{~B}$ then $\boldsymbol{n o t}^{(\mathrm{C})}$.

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
- "Good" gates are physically realizable in one step.
- Locality: Elementary gates act on at most three qubits. The Toffoli gate: \mathbf{c}^{2} not $^{(\mathrm{ABC})}=$ if $\mathrm{A} \& \mathrm{~B}$ then $\boldsymbol{n o t}^{(\mathrm{C})}$.

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
- "Good" gates are physically realizable in one step.
- Locality: Elementary gates act on at most three qubits. The Toffoli gate: \mathbf{c}^{2} not $^{(\mathrm{ABC})}=$ if $\mathrm{A} \& \mathrm{~B}$ then $\boldsymbol{n o t}^{(\mathrm{C})}$.

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
- "Good" gates are physically realizable in one step.
- Locality: Elementary gates act on at most three qubits. The Toffoli gate: $\mathbf{c}^{\mathbf{2}} \mathrm{not}^{(\mathrm{ABC})}=$ if $\mathrm{A} \& \mathrm{~B}$ then $\boldsymbol{n o t}^{(\mathrm{C})}$.

- Discreteness: Finite gate sets are preferred.

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
- "Good" gates are physically realizable in one step.
- Locality: Elementary gates act on at most three qubits. The Toffoli gate: \mathbf{c}^{2} not $^{(\mathrm{ABC})}=$ if $\mathrm{A} \& \mathrm{~B}$ then not $^{(\mathrm{C})}$.

$$
|\mathfrak{a b c}\rangle_{\mathrm{ABC}}\left\{\begin{array}{l}
\mathrm{A} \\
\mathrm{~B} \\
\mathrm{C}
\end{array}\right\}|\mathfrak{a b}(c+\mathfrak{a} \cdot \mathfrak{b})\rangle_{\mathrm{ABC}}
$$

- Discreteness: Finite gate sets are preferred.
= Fault tolerance: Elementary gates should be experimentally verifiable and readily made stable.

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
- "Good" gates are physically realizable in one step.
- Locality: Elementary gates act on at most three qubits. The Toffoli gate: $\mathbf{c}^{\mathbf{2}}{ }^{\left(\boldsymbol{t}^{(A B C)}\right.}=$ if $\mathrm{A} \& B$ then $\operatorname{not}^{(\mathrm{C})}$.

$$
|\mathfrak{a b c}|_{A B C}\left\{\begin{array}{l}
\frac{\mathrm{A}}{\mathrm{~B}} \\
\underline{C}
\end{array}\right\}|\mathfrak{a b}(c+\mathfrak{a} \cdot \mathfrak{b})\rangle_{A B C}
$$

- Discreteness: Finite gate sets are preferred.
- Fault tolerance: Elementary gates should be experimentally verifiable and readily made stable.
- ... but do investigate other gate sets.

Contents

Title: IQI 04, Seminar 3
Classical Oracles top. . . 1
Parity Oracles top. . . 2
Reversible Oracles top. . 3
Quantum Oracles top. . . 4
The Quantum Parity Problem I top. . . 5
The Quantum Parity Problem II 6
The Quantum Parity Problem III 7
Summary of Gates Introduced So Far top. . 8
Properties of Reversible Gates I. 910
Preservation of Products of "Flips" 11
Physically Allowed Reversible Operators top... 12
Universality for Gate Sets top... 13
Locality Constraints on Gate Sets top... 14
References 16

References

[1] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26:1411-1473, 1997.
[2] L. K. Grover. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett., 79:4709-4712, 1997.
[3] D. A. Meyer. Sophisticated quantum search without entanglement. Phys. Rev. Lett., 85:2014-2017, 2000.

